lecture #2 devices, mixers and modulators...is much higher than audio frequencies * selectivity is...

27
1 Radio Frequency Engineering Lecture #2 Devices, Mixers and Modulators Lecture #2 Devices, Mixers and Modulators The main objective of this lecture is to introduce a range of basic semiconductor devices and to give examples of how they can be employed in various analogue signal processing building blocks. The technological limitations of simple implementations and more complex solutions will be discussed Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 solutions will be discussed. Radio Frequency Engineering Lecture #2 Devices, Mixers and Modulators OVERVIEW Devices Mixers and Modulators Frequency Translation Variable Phase Shifters Group Delay Synthesiser Variable Attenuators Direct-carrier Signal Processing V t Mdlt Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Vector Modulators Radio Frequency Engineering Lecture #2 Devices, Mixers and Modulators Devices Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 Radio Frequency Engineering Lecture #2 Devices, Mixers and Modulators Silicon versus Gallium Arsenide Silicon is much cheaper! Silicon afers ha e increased in dia eter fro 100 (4”) Silicon wafers have increased in diameter from 100 mm (4”) to 150 mm (6”) to 200 mm (8”) to 300 mm (12”). Because of the compound nature of GaAs semiconductors it is not possible to make such large wafers. GaAs wafer diameter increases from 50 mm (2”) to 75 mm (3”) to 150 mm (6”) Stepan Lucyszyn ステファン・ルシズィン インペリアル・カレッジ・ロンドン准教授 More devices per wafer run and higher yield per run For example, if the wafer diameter doubles, the area is increased by a factor of 4 and, therefore, cost is reduced by ~ factor of 4

Upload: others

Post on 03-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

1

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Lecture #2

Devices, Mixers and ModulatorsThe main objective of this lecture is to introduce a range of basic semiconductor devices and to give examples of how they can be

employed in various analogue signal processing building blocks. The technological limitations of simple implementations and more complex

solutions will be discussed

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

solutions will be discussed.

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

OVERVIEW DevicesMixers and Modulators

Frequency Translation Variable Phase Shifters Group Delay Synthesiser Variable Attenuators

Direct-carrier Signal ProcessingV t M d l t

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Vector Modulators

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators Devices

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Silicon versus Gallium Arsenide

Silicon is much cheaper!

Silicon afers ha e increased in dia eter fro 100 (4”) Silicon wafers have increased in diameter from 100 mm (4”) to 150 mm (6”) to 200 mm (8”) to 300 mm (12”).

Because of the compound nature of GaAs semiconductors it is not possible to make such large wafers.

GaAs wafer diameter increases from 50 mm (2”) to 75 mm (3”) to 150 mm (6”)

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

More devices per wafer run and higher yield per run

For example, if the wafer diameter doubles, the area is increased by a factor of 4 and, therefore, cost is reduced by ~ factor of 4

Page 2: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

2

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

More compatible with Si3N4 passivation layer

Lower risk of charge-carrier traps g pand improved contamination protection and more scratch resistant!

Compatible with digital VLSI CMOS gate array logic

Improved thermal conductivity (factor of ~ 3) and, therefore, better thermal management

Lower band-gap energy and, therefore, lower DC voltage supply required

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

LDMOS™ FETs are now commercially available with unprecedented output power levels

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Advantages of GaAs over Silicon (consider a MESFET)

higher bulk resistivities in undoped substrates

Gallium Arsenide versus Silicon

higher bulk resistivities in undoped substrates Passive components can have lower losses and less parasitic capacitances Lower power dissipation and lower noise figure performance

higher low-field electron mobility in the channel, μe (by a factor of ~6) Higher conduction current densities (since Jc µe)

higher carrier (electron) saturated drift velocity, vSAT, with GaAs (InGaAs is better)

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Tg

SATT and

Lgv

1

higher cut-off frequency and faster switching speeds:

GaAs FETs have a higher vSAT, compared to silicon FETs, therefore, higher fT and fmax.

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Cross-Section of a Recessed-Gate Depletion-ModeGaAs Metal-Semiconductor Field Effect Transistor (MESFET)( )

SOURCE DRAIN

GATE

n+ contact layer

n channel

n- buffer layer

+ + + + ++

+ +++ +

d GaAsActiveLayer< 0.5 m

AuGe/Ni/AuAlloyedOhmicContact

Ti/Pt/AuSchottkyContact

Lg

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

GaAs Semi-Insulating Substrate (SIS)

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Dual-gate FET cross-section and representation as a cascodeSource DrainGate 1 Gate 2

n+n

Gate 2Gate 1

Drain

n

Semi-insulating substrate

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Applications include mixers, modulators and variable gain control circuits

Page 3: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

3

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

High Electron Mobility Transistors (HEMTs)

The HEMT has a similar design to the MESFET, however, the intrinsic physics and electrical characteristics are dramatically different

A heterojunction is a junction between 2 semiconductors with different band gap energies

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

50

gm [mS]

Wg

PLAN-VIEWof a 4-Finger FET

4000 Wg [μm]

Cgs [pF]

1.2 2.0

1.5

Gate Length, Lg [μm]

of a 4-Finger FET

GATE

Lg

DRAIN

MESFET Peripheryis 4 Fingers x Wg

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

0 400

1.0

0.5

Wg [μm]

SOURCE

Lg

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Gate Drain

Source

2X100

Gate Drain

Source

4X75

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

A scaleable model is one which has input parameters (e.g. number of fingers, gate width) which are used to scale the model values

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

TransistOr PArameter Scalable (TOPAS) Nonlinear Model

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 4: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

4

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Gate

Lg

RgCdg

Rd Drain

Cds

Cgs

Linear FET Model

• Only valid for small-signal design

• Bias dependant and scaleable

Cds

gm RdsRI

Rs

Ls

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

SourceLg 0.02 nH gm 40ms Cgs 0.3 pF Rds 350 Rg 2 Cds 0.06 pF RI 8 Rs 2

Cdg 0.04 pF Ls 0.05 nH Rd 2 Vds 3 V Vgs -0.5 V Ids 10 mA

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Resistive or Cold-FET:

(a) equivalent circuit model (b) variation of Gds with Vgs

Cgs Gds(Vg)+Vg-

CgdG D

Rg

Rs

Rd

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

(b)(a)

S

Rs

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Interdigitated Planar Schottky Varactor Diode (IPSVD) from GaAs MESFETs

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Simple Schottky diode equivalent circuit model

I

Cj(V) Rj(V)+V-

I

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

RSF

Page 5: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

5

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

C3

Equivalent Circuit Model for Interdigitated Planar Schottky Varactor Diodes

Cj C2

RjLgRs

C1

FrequencyDispersionModel

DelayModel

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Characterization of the 6 x 150 m IPSVD

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Interdigitated Planar Schottky Diodes

nkTRIVq

S

SF

eIICurrentDiode

chargeelectronqpotentialbiasforwardV

1, 6 x 150 m diode

2 x 60 m diodes are

nkT

RIVq

SS

SF

eqInkT

IIqnkT

VIV

/)(R ,Resistance LeakageJunction

diodeofetemperaturabsoluteTconstantBoltzmannsk

resistanceseriesbiasforwardRgq

1

j

SF

6 x 150 m diode

1 x 150 m diode

commonplace

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

6 x 150 m diode

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Frequency translation by ideal multiplication of two sinusoids

Mixers and ModulatorsFrequency Translation

0.5 cos(RFt - LOt) + 0.5 cos(RFt + LOt)

cos(RF t)

cos(LOt)

LO

Input Output

Mixer

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 6: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

6

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

A simple single-ended mixer

FET)-Cold a of econductanc channel (e.g.function nsfer linear tra][FET)-Hot a of nductanceor transco diodeSchottky a of resistance leakagejunction (e.g.function transfer nonlinear ...][

)]([)()(2

bVaVgcVbVaVg

tvgtvti LORF

signal VRF cosRFt

LO VLO cosLOt

RS non-linear device

RLI

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

bias Vb

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

pump harmonics

er

Spectrum of frequencies of the form i RF j LO

IF RF

LO

Imag

e

SumSp

ectr

al p

owe

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

LO

-R

F

RF

LO

LO

-R

F

LO+ R

F

LO

LO

-R

F

LO

+ R

F

LO

LO

-R

F

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

The 1 dB compression point is an indication of a mixer’s INPUT power dynamic range and the maximum power capabilities

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Homodyne (or Direct Conversion or Zero IF) Receiver

* Image rejection filter not required in theory

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

* Selectivity is controlled by a simple low-pass filter* Gain is split between the RF and baseband amplifiers* Since fIF = 0, there is no image frequency to deal with* High stability of the LO can be a problem

Page 7: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

7

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

RF

Homodyne Approach

Thi i k f DSB SC d BPSK i l b th h USB LSB

Baseband

LO (=RF)

LO DC

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

This is okay for DSB-SC and BPSK signals, because they have USB = LSB. However, if the USB and LSB contain different information

(e.g. QPSK and QAM) then quadrature conversion is required

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-Conversion Superheterodyne Receiver

* Image rejection filter should also be included !!! (otherwise the +RF that is translated down into the +IF will be combined with any Image that is translated up to the +IF)

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

down into the +IF will be combined with any –Image that is translated up to the +IF)* Super-sonic Heterodyne (or Superhet for short) refers to the fact that the IF frequency is much higher than audio frequencies* Selectivity is improved by sharper IF band-pass filters* Increased complexity and, therefore, cost

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-ended diode mixer Vb

LO IFInput

MatchingLO

FilterOutput

Matching

RFFilter

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

RF

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

I

Approximation of pulse duty ratio

V

dcV

tV

kVpWhere:S =

cos-1 Vt VdckVp

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Where:S = Pulse duty ratio Vt Turn on voltage Vdc DC operating point

-cos-1 dVdcdkVp

Page 8: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

8

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

10

11

12

RF = 94 GHz P 93 GH

Conversion loss against pump power for different bias voltages

3

4

5

6

7

8

9C

onve

rsio

n Lo

ss (

dB)

0

0.20.30.4

0.5

0.6

DC Bias Voltage

Pump = 93 GHz

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

0

1

2

LO Power (dBm)

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

9

10

11

-3.9

R F = 94 G Hz

Pum p = 93 GH z

Conversion loss against DC junction voltage for different pump power levels

3

4

5

6

7

8

Con

vers

ion

Loss

(dB

)

98dBm

(0.4V)

= M in im a

2.04dBm

(0.8V)

5.56dBm (1.2V)

-0.46dBm

(0.6V) 3.98dBm (1.0V)

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

0

1

2

DC Junction Voltage V dc

-0 .3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

0 4

0.5

0.6

0.7

0.8

rsio

n Lo

ss

Vdc

xS opt

1

cos 1 1. 05

1. 2

0 .1609

Optimum DC junction voltage against pump voltage

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

C J

unct

ion

Vol

tage

For

Min

imum

Con

ve

x

x

x

x

x

V tk

0 . 65

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

-0.8

-0.7

-0.6

0.5

0

0.2

0.4

0.6

0.8 1

1.2

1.4

1.6

1.8 2

Pump Voltage ( V p )

Opt

imum

DC

x

x

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

8

9

10Conversion loss against pulse duty ratio

2

3

4

5

6

7

Con

vers

ion

Loss

(dB

)

Pulse Duty Ratio (S)

0.1609

0.35

4.0

5.1

At P = 2.04 dBmp

RF = 94 GHz Pump = 93 GHz

-0.46dBm2.04dBm3.98dBm5.56dBm

Conversion Loss (dB)

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

0

1

2

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pulse Duty Ratio (S)

S=0.

35

S

= 0.

1609

opt

Page 9: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

9

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Microstrip implementation of a single-ended mixerVb O/C Shorts LO/RF’s

2nd Harmonic

IFO/PLO/RF

I/P

g/4

g/8

g/4Shorts the IF

and gives DC Shorts the

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

O/CS/C

g/4g/4and gives DC return

Shorts the LO/RF

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-balanced mixers (SBMs) using 180° hybrids (1)180 Hybrid V 1

00

0180

RF

LO

IF

+ -

I IF= I 1- I 2I 2

I 1

+ -

RF1= 0 LO1 = 0

RF2= 0 LO2 =180

V 2

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

SBMs can remove ½ of the unwanted spectral components generated by single-ended mixers

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-balanced mixers using using 180° Hybrids (2)

I IF= I 1- I 2

00

0180

LO

RF

IF

180 Hybrid+ -

I 2

I1

+ -

V1

V 2

RF1= 0LO1= 0

RF2= 180LO2= 0

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

V 2

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-balanced mixers (SBMs) using 90° hybrids

900

090

RF

LO

IF

90 Hybrid+ -

I 2

I 1

+ -

I IF = I 1- I 2

V 1

V 2

RF1 = 90 LO1 = 0

RF2 = 0 LO2 = 90

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

V 2

Page 10: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

10

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

cuit

Typical mm-wave diode mixer

RF

LO

IF

g/4

ope

n st

ub/8

ope

n st

ub

RF/

LO s

hort

circ

shor

t circ

uit

Branch-line coupler

g /4

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

LO

g/

g /4 shorted stubFor biasing and IF short circuit

2 X

RF/

LO

Matching

cap.

GND

bias pad

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

SEM of a 60 GHz GaAs MMIC pHEMT-Diode mixer

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-balanced mixers using baluns

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Double-balanced mixers (DBMs) as a combination of two single-balanced mixers (SBMs)

SBM balunbalun

0

180LO IF

LO 0

LO 180

RF0

180

SBM

RF 0

RF 180

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

SBM

DBMs can remove ¾ of the unwanted spectral components generated by single-ended mixers

Page 11: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

11

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Double-balanced ring mixer derived from the SBM pair

IFbalun

0

180LO

LO 0

LO 180

+IF

-IF

-IF

+IF

RF 0 RF 180 °

balun

balun

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

0 180

RF

balun

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Phase relationships in double-balanced diode mixersV 1

+ -I 1 RF1 = 0

O1 = 0

IF

I IF1 = I 1- I 2+I 3-I 4

I 2

+ -

V 3+ -

I 3

V 1

LO1 = 0

RF2 = 0 LO2 =180

RF3 = 180 LO3 = 180

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

I 4

+ -V 4

RF4 = 180 LO4 = 0

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-ended Resistive FET mixerIF

LO

IF

RF

Vg

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

IF

Single-balanced resistive FET mixers (1)

LOBalun

IFBalun

RFLO

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 12: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

12

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-balanced resistive FET mixers (2)IF

RFLO

RFBalun

IFBalun

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-balanced resistive FET mixers (3)IF

LO

90Hybrid

90Hybrid

RFLO

5050

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-ended Resistive FET mixer for direct conversion to baseband

RF

Low PassFilt

RFMatch

LOMatch LO

VgLf cancels Cdg at the LO frequency

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Baseband

Filter

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Microphotograph of the single-ended resistive pHEMT mixer for direct conversion to baseband (1 x 1 mm2)

RF

LO

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Baseband

Page 13: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

13

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Microphotograph of single-balanced resistive pHEMT mixer for direct conversion to baseband (1.3 x 1.6 mm2)

Baseband

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

LORF

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-ended mixer

Single-balanced mixer

Measured performance of the direct-conversion resistive mixers

10 1 dB Conversionloss

8.5 0.5 dB

30 dB LO-RF isolation 32 dB

-6 dB LOreturn loss

-10 dB

-5 dB RFreturn loss

-15 dB

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

return loss

25 dBm IP2 28 dBm

28 dBm IP3 30 dBm

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Double-balanced Cold-FET mixer

LO Balun

LODouble-balanced Hot-FET

Gilbert Cell Mixer

RFSS

D

D

RF B

alun

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

IF

IF Balun

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

A millimetre-wave double-balanced resistive pHEMT ring mixer (3 x 3.2 mm2)

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 14: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

14

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Hartley Image-rejection mixer (IRM) block diagram DBM

RF

USB

90Hybrid

LSB

90Splitter 0

Splitter

0

-90

0

-90

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

LODBM

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

MDB207 HBT-Diode IRM with star mixers

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-sideband modulator block diagram

0

LO

RFin0

Combiner90

Splitter 90Splitter RFout

(LSB)-90

0

-90

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

LO(Modulating signal)

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Sub-harmonically-pumped resistive FET mixerIF

RF

IFFilter

RFFilter

LOBalun LO

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 15: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

15

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Microphotograph of a millimetre-wave sub-harmonically-pumped resistive pHEMT mixer (1.1 x 2.1mm2)

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

A phase shifter is a control device found in many microwave communication, radar,sensor and measurement systems

Variable Phase Shifters

MMIC were developed so that phase shifters could be miniaturised for phased antenna array applications (MiMiC Programme in the US)

In principle, sub-1 dB worst-case losses would relax both transmitter power amplifier and receiver low noise amplifier specifications

For phased-array applications, low DC control power and repeatable batch processing is important

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

important

In order to understand the subtle differences between the two main generic types of phase shifters, the true phase shifter and true delay line must be defined

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Phase Array Antennas

Adaptive phased-array antenna is probably the single most important MMIC application

fo

odcSin

ooSteeringTime

fodcSinoSteeringPhase

1:

1:

Since a phased-array antenna could have thousands of transmitter-receiver modules,MMICs are essential because they give excellent reproducibility with small size and mass

TWT Antenna Feeds

Phase Shifter

Attenuator

Phase Shifter

Attenuator

Phase Shift

Attenuator

SSPA

SSPA

SSPAAntenna Feeds

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Fixed Beam-Forming Network (usually waveguide "plumbing")

ShifterAttenuator

Phase Shifter

Attenuator

SSPA

Adaptive Beam-Forming Network

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Differential-Phase

)(21S

Group Delay

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 16: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

16

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

True Phase Shifters

Defined as a control device that has a flat group delay frequency response within its defined bandwidth of operation; the level of which does not change as the insertion phase is varied. Its characteristic features are:

(1) a flat relative phase shift frequency response, at all levels of relative phase shift

(2) constant group delay, resulting in no change in the timing of an input RF pulse envelope

true phase shifters can be employed in multiple space diversity receiver-combiners for aligning RF signals within a pulse envelope without changing the timing of the pulse edges

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

they should not be employed in wideband beam-forming networks for large aperture phased-array antennas, in order to avoid the effects of ‘phase squinting’ and ‘pulse stretching’

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Frequency characteristics of a true phase shifter: (a) Insertion phase; (b) Relative phase shift; (c) Group delay

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

True Delay Lines

Defined as a control device that has a flat group delay frequency response, with a level that changes as its insertion phase varies, within a defined bandwidth of operation:

(1) linear relative phase shift frequency response, with a gradient that changes as the valueof relative phase shift varies

(2) flat group delay frequency response, with a level that varies, resulting in a change in thetiming of an input RF pulse envelope

true delay lines find many applications in general wideband microwave signal processing

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

true delay lines find many applications in general wideband microwave signal processingapplications, including beam-forming networks for large aperture phased-array antennas

When component non-idealities are included, an ideal true phase shifter circuit mayexhibit frequency characteristics of a true delay line, and vice versa

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

A special case of a time shifter is a true delay line, which is definedby the following expression:

S21()

frequency.angular at shift phase relative)(21

delay, group inshift relative

S

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

q yg

Page 17: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

17

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Frequency characteristics of a true delay line: (a) Insertion phase; (b) Relative phase shift; (c) Group delay

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Advantages of Analogue Modulators

High quality switches are not required

Free from clock related harmonics

No control power with reflection-topologies (having Schottky junction devices)

Can have compact circuit

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Completely multifunctional and adaptive

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-stage Reflection-type Phase Shifters

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Microphotograph of the Optimum Design Analogue Phase Shifter

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 18: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

18

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Frequency response of the optimum design MMIC phase shifter:(a) relative phase shift and (b) group delay

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Microphotograph of the Analogue Delay Line

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

GHzofunitshavingfrequency,centrewhere10

and,pF0.3,nH0.4

of

ZoTR

ofmaxC

ofL

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Frequency responses of the MMIC delay line: (a) relative phase shift and (b) group delay

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-stage Reflection-type Group Delay Synthesiser

Diff ti l Ph G D l

Group Delay Synthesiser

Differential-Phase Group Delay:

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 19: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

19

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Single-stage Bi-phase Reflection-type Attenuator

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Balanced analogue attenuator employing PIN diodes

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Small-Shift Frequency Translator (SSFT)

Mixers cannot perform small-shift frequency translations near carrier frequency

Direct-carrier Signal Processing

Mixers cannot perform small shift frequency translations near carrier frequency A serrodyne frequency translator employs a 360o phase shifter and a sawtooth generator

Linear 360o

Phase Shifterfreq. freq.

cosotInput spectrum Output spectrum

fo (fo+ 1/T)fo

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Time

Control voltage

T0

Page 20: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

20

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

SSFT Applications

* Velocity deception doppler radar jammers* Homodyne vector network analyzer* Frequency scanning antenna* Chirp signal processing* Frequency-hopping CDMA* Homodyne FDMA

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Velocity Deception Electronic Counter MeasuresThe velocity gate stealer (VGS) is employed against enemy Doppler radars that use a speed gate and velocity tracker. The VGS generates a slowly-changing false Doppler return (Jamming Output Power = +23 dBm at the 1dB compression point), pulling the velocity tracker off the target and then dropping it (known as velocity gate walk-off, VGWO). The radar may then lock onto clutter or be forced into a reacquisition sequence.

Madni and Wan

(Systron Donner Corp.),

Microwave System News,

Oct. 1983

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Frequency Hopping CDMA

LNAFixed

frequencytransmitter

Frequencytranslator

Frequencytranslator

Fixedfrequencyreceiver

Sync.detector

Pseudo-randomsequencegenerator

Pseudo-randomsequencegenerator

TRANSMITTER RECEIVER

PADATA DATALNA

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

generator generator

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Homodyne Frequency Division Multiplexing (FDM)

MIXER/FILTER

FREQUENCYTRANSLATOR1 FILTER

MIXER/FILTER

MIXER/FILTER

TRANSLATOR1

FREQUENCYTRANSLATOR

i

FREQUENCYTRANSLATORN

i

1

POWERCOMBINER

OUTPUTSIGNAL

INPU

T SI

GN

AL

S

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

FILTER TRANSLATORN

N

MASTERCARRIER

OSCILLATOR

Page 21: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

21

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Multi-Functional Signal Processing

Simultaneous multifunctional operation:

Vector Modulators

multi-level digital modulation spectral filtering, using pulse shaping small-shift frequency translation power amplifier pre-distortion linearisation

The first three functions have already been demonstrated simultaneously

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Microwave vector modulators have the potential of providing high performance & low-cost solutions for next generation transmitters

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Integrated Homodyne Transmitter

Phase Shifteror

Vector ModulatorOUTPUT

Vector Modulator

DAC (analogue)or

Decoder (digital)

PROMLook-up

Table

CounterClock

CARRIERGENERATOR

Clk

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

CounterGenerator

DigitalDecoderSPCDATA

C

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Pre-DistortedConstellation

CarrierOscillator

DSP/DAC

RFOutput

PAVector

Modulator

Without Pre-Filtered

Data

Transmitted Spectrum

SSFT WithPre-Filtered Data

BasebandPredistortionLinearisation

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

WithPre-Filtered

Data

DataInput

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

RF Pre-Distortion LinearisationVector modulator can give gain expansion

GAIN GAIN

Pin Pin GAIN

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Pin

Page 22: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

22

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Adaptive Baseband Pre-Distortion Linearisation“Digital Predistortion” or “Cartesian Feedback”

BASEBAND INPUT

OUTPUTHPA COUPLER

MODULATOR UPCONVERTER

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

DEMODULATOR

I, Q

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Topology Tree for All Possible Vector Modulators Implementations

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

1-Channel Vector Modulators

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

mono-phase amplitude control

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

2-Channel or I-Q Vector Modulators

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 23: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

23

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

3-Channel Vector Modulators

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

4-Channel Vector Modulators

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Minimum Theoretical Insertion Loss for Vector Modulators

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

28 GHz 4-Channel Vector Modulator with Nortel

GaInP-HBTVariable (-12 to +4 dB) MMICGain Stage for Feedforward

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Gain Stage for FeedforwardPower Amplifier Lineariser

Page 24: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

24

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

M/A-COM MAMDCC0002 PIN diode I-Q Vector Modulator1.805-1.88 GHz and 1.93-1.99 GHz

IIP3 +41 dBm over 10 dB control range

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Employing Gilbert Cell Double-balanced Mixers

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Basic bi-phase reflection-type modulator

3 dB quadrature coupler1 4

6 k 6 k

2x60 m

23-90º-90º0º 0º

V = 0.3 V

V = -0.9 V

V = -2.0 V

inherent insertion loss

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

V

pHEMT

S21 = j

2f x 60 m Cold-pHEMT reflection termination:

S11 versus bias voltage at 60 GHz

Page 25: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

25

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

T(V1)

OutputInput

T(V1)Vector sum Image by 180 phase shift

(two couplers)

OFF

I

I

T(V2)

T(V2)

Vector sum

( p )

ON ON

OFF

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Push-pull bi-phase amplitude modulator Push-pull operation of the bi-phase amplitude modulator

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Bi-phase amplitude modulator using Cold-HBT reflection terminations: microphotograph and static constellation calibrated at 38 GHz

S21REF 1.0 Units200.0 mUnits /

Calibrated bias points (V)S S'0.0, 3.50.54, 2.3

SS'

0 5 , 30.78, 1.951.05, 1.831.18, 1.641.24, 1.511.25, 1.391.27, 1.301.19, 0.991.15, 0.731.13, 0.431.24, 0.771.32, 0.881.36, 0.801.40, 0.731.50, 0.651.63, 0.571 75 0 13

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

C.W. 38.000000000 GHz

1.75, 0.132.14, 0.03.0, 0.05.35, 0.0

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

I-Q (Push-Pull) Vector Modulator Principles

6 k 6 k push-pull bi-phase analogue reflection-type attenuator

Inputquadraturecoupler

6 k 6 k50 50

I

I

50 6 k 6 k

100

Outputin-phasecombiner push-pull bi-phase

modulator

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

6 k 6 k50 50

Q

Q

full vector modulator

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

I-Q (Push-Pull) Vector Modulator

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Page 26: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

26

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Simultaneous Multifunctionality:• Digital modulation

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Microphotograph of 38 GHz I-Q (push-pull) vector modulator

• Digital modulation (QPSK with 20 Kbit/s PRBS at 60 GHz)

• Spectral filtering using pulse shaping(square-root raised-cosine digital filter)

• +8 KHz small-shift frequency translation

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

W-Band Vector Modulator for Software Radar

76.5 GHz vector modulator

microstrip on 100 m GaAs

0.25 m AlGaAs/InGaAs pHEMTs (2f x 60 m)

fabricated on the Marconi Caswell Ltd. H40 MMIC

1.6

mm

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

H40 MMIC process2 mm

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Static S-parameter Measurements (using Agilent 8510XF )

swept I and Q inputs 64 QAM constellation

Extract data

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

p Q p 0 V to -2 V, step 0.016 V

64 QAM constellation

Minimum insertion loss 12 dB Flatness over 1 GHz ± 0.1 dB Input return loss 15 dB Output return loss 8 dB

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Modulation Spectra

64-QAM

3.125 MHz

SSFT FMCW

Carrier

6 MBit/s

fclk = 1 MHz

Lowersideband

fclk = 50 MHz fclk = 10 MHz

Carrier

Lowersideband

625 kHz

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

16 Samples/cycleQ-channel

I-channel

Page 27: Lecture #2 Devices, Mixers and Modulators...is much higher than audio frequencies * Selectivity is improved by sharper IF band-pass filters * Increased complexity and, therefore, cost

27

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

76.5 GHz Single-Chip Radar

complete radar prototype 2.8 mm x 2 mm

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

110 GHz Vector Modulator

2001

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

Measured Static Constellations

90

135 45

50 mUnits per division 90

135 45

50 mUnits per division

180

135 45

225 315

0 180

135 45

225 315

0

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

225

270

315

C.W. 110 GHz

225

270

315

C.W. 110 GHz

Swept inputs Extracted 64-QAM

Radio Frequency EngineeringLecture #2 Devices, Mixers and Modulators

64-QAM Spectral Response: 60 MBit/s at 110 GHz

Stepan Lucyszynステファン・ルシズィンインペリアル・カレッジ・ロンドン准教授

Baseband I-Q signals Spectral response