lecture on polarisation

Upload: ajoy2bar

Post on 07-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Lecture on Polarisation

    1/41

    R. Botet 04/2016

    Module B:aggregates of grains

    -formation and simulation -

    LECTURE 6 :

    physics of aggregates  

  • 8/18/2019 Lecture on Polarisation

    2/41

    R. Botet 04/2016

    VI. Details about the numerical algorithms

    VI.1 the hierarchical model VI.2 hierarchical BaCCA

    VI.3 hierarchical DLCCA

    VI.4 hierarchical RCCA

    VII. Fractal structure

     VII.1 fundamentals

    VI I.2 the mass-radius relation

     VII.3 the pair-correlation function

    VII.4 values of the fractal dimension

    VIII. Fractal aggregates

     VIII.1 fundamentals

     VIII.2 definitions of the aggregate radius

    VIII.3 physical properties depending only on the fractal dimension

    VIII.4 definitions of the porosity

    OUTLINE - LECTURE 6 -

  • 8/18/2019 Lecture on Polarisation

    3/41

    R. Botet 04/2016

    VI.1 DETAILS ABOUT THE NUMERICALALGORITHMS

    - the hierarchical model -

    aggregation models are based on the double process : diffusion + sticking

    full-system simulations are possible but the codes are a bit difficult to write because

    of the (generally : periodic) boundary conditions, and the simulations are slow in

    the usual dilute regime

    in the following pages, some remarks about :

    • how to model diffusion (Brownian, ballistic or reaction-limited)

    • how to manage the sticking event

  • 8/18/2019 Lecture on Polarisation

    4/41

    R. Botet 04/2016

    VI.2 DETAILS ABOUT THE NUMERICAL ALGORITHMS- Hierarchical Ballistic Cluster-Cluster Aggregation model -

    along the simulation, the most demanding part is the diffusion, that is :

    consider two clusters moving along random linear trajectories, when do they

    collide?

    • the full-system problem is tricky because of the periodic boundary conditions(and kind of billiard if hard boundaries)

  • 8/18/2019 Lecture on Polarisation

    5/41

    R. Botet 04/2016

    VI.2 DETAILS ABOUT THE NUMERICAL ALGORITHMS- Hierarchical Ballistic Cluster-Cluster Aggregation model -

    in principle, one should take the initial distance, Do, between the two clusters to be

    1/n1/3, with n the number of clusters per unit of volume

    generally, one does not know the value of Do,

     but it was proved that the resulting clusters

    do not depend on the choice of Do if

     Do > 1.2( Rmax,1+ Rmax,2)

     Do

     Rmax,2

     Rmax,1

    computing time is   Do

    2  take Do as small as possible 

    the hierarchical algorithm is much simpler (because only 2 clusters in free space)

  • 8/18/2019 Lecture on Polarisation

    6/41

    R. Botet 04/2016

    VI.2 DETAILS ABOUT THE NUMERICAL ALGORITHMS- Hierarchical Ballistic Cluster-Cluster Aggregation model -

    consider two clusters moving along random linear trajectories, when do theycollide?

    l u

    for each couple of grains (i, j) with i  cluster 1 and j  cluster 2,

    is there a  positive solution in l   to the quadratic equation :

    ?22 )2()(   a ji     rur l 

    i

     j

  • 8/18/2019 Lecture on Polarisation

    7/41R. Botet 04/2016

    VI.2 DETAILS ABOUT THE NUMERICAL ALGORITHMS- Hierarchical Ballistic Cluster-Cluster Aggregation model -

    l u

    yes if :0)(     i j   rru

      222 4)()(   ai ji j     rrrru

    ri

    r jr j-r

    i

    (and starting from the circumscribed spheres)

     positive solution

     real solution

    much faster

    than N 2 process

    consider two clusters moving along random linear trajectories, when do theycollide?

    for each couple of grains (i, j) with i  cluster 1 and j  cluster 2,

    is there a  positive solution in l   to the quadratic equation :

    ?22 )2()(   a ji     rur l 

  • 8/18/2019 Lecture on Polarisation

    8/41R. Botet 04/2016

    VI.3 DETAILS ABOUT THE NUMERICAL ALGORITHMS- Hierarchical Brownian Cluster-Cluster Aggregation model -

    same idea as for BaCCA, but diffusion = random walk

    for each couple of grains (i, j) with i  cluster 1 and j  cluster 2,

    is there a positive solution in l   < dl   to the quadratic equation :

    dl  u

    yes if :

    rir j r j-ri

    (and starting from the circumscribed spheres)

     positive solution

     real solution

    at each step :

    22 )2()(   a ji     rur l 

    0)(     i j   rru

      222 4)()(   ai ji j     rrrru

  • 8/18/2019 Lecture on Polarisation

    9/41R. Botet 04/2016

     Do

    VI.3 DETAILS ABOUT THE NUMERICAL ALGORITHMS- Hierarchical Brownian Cluster-Cluster Aggregation model -

    one can take the initial distance, Do, between the two clusters as small as possible

    (for example : Rmax,1 + Rmax,2 + dl )

     select a large sphere (radius Dmax) : if the diffusing cluster crosses the limit of

    this large sphere : it is removed and replaced on the small sphere of radius Do 

    it was proved that the resulting clusters do not depend on the choice of Dmax if Dmax > 5 Do

     Dmax

    computing time is   Dmax2  take Dmax as small as possible

     

  • 8/18/2019 Lecture on Polarisation

    10/41R. Botet 04/2016

    VI.4 DETAILS ABOUT THE NUMERICAL ALGORITHMS- Hierarchical Reaction-Limited Cluster-Cluster Aggregation -

    Meakin’s algorithm = no diffusion

    the full-system simulations are impracticable ( sticking probability very small )

    find a random couple of grains (i, j) with i  cluster 1 and j  cluster 2,

    and a random tangent position between them, such that :

    for all the other couples (i’, j’) of grains 

    (we do not know tricks to make it faster)

    22

    ''   )2()(   a ji   rr

    at each step :

  • 8/18/2019 Lecture on Polarisation

    11/41R. Botet 04/2016

    VI. Details about the numerical algorithms

    VI.1 the hierarchical model

    VI.2 hierarchical BaCCA

    VI.3 hierarchical DLCCA

    VI.4 hierarchical RCCA

    VII. Fractal structure

     VII.1 fundamentals

    VI I.2 the mass-radius relation

     VII.3 the pair-correlation function

    VII.4 values of the fractal dimension

    VIII. Fractal aggregates

     VIII.1 fundamentals

     VIII.2 definitions of the aggregate radius

    VIII.3 physical properties depending only on the fractal dimension

    VIII.4 definitions of the porosity

    OUTLINE - LECTURE 6 -

  • 8/18/2019 Lecture on Polarisation

    12/41R. Botet 04/2016

    VII.1 FRACTAL STRUCTURE- FUNDAMENTALS -

    Witten and Sander proved in 1981 that natural aerosol aggregates have fractal  structure… 

    what is a fractal ?

  • 8/18/2019 Lecture on Polarisation

    13/41R. Botet 04/2016

    VII.1 FRACTAL STRUCTURE- FUNDAMENTALS -

    FRACTAL IS CHARACTERIZED BY SELF-SIMILARITY

    that is : part is similar to the whole, just after changing the length-scale

    example : Vicsek fractal

    grain 5 grains

    length-scale divided by 3

    25 grains

    length-scale divided by 9 5n

     grainslength-scale divided by 3n

    … 

  • 8/18/2019 Lecture on Polarisation

    14/41R. Botet 04/2016

    VII.2 FRACTAL STRUCTURE- THE MASS-RADIUS RELATION -

    FRACTAL IS CHARACTERIZED BY SCALING-LAW

    in particular : between mass and diameter (or : number of grains and radius)

    example : finite-size Vicsek fractals

     N  = 5 grains

    diameter = 3

     N  = 25 grains

    diameter = 9

     N  = 5n grains

    diameter = 3n

      f  d  R N  

    in this example  d  f   = log(5)/log(3) = 1.46… 

    (5n = (3n)d  f )

  • 8/18/2019 Lecture on Polarisation

    15/41R. Botet 04/2016

    VII.2 FRACTAL STRUCTURE- THE MASS-RADIUS RELATION -

    FRACTAL IS CHARACTERIZED BY SCALING-LAW

    in particular : between mass and diameter (or : number of grains and radius)

    check and measurement of the fractal dimension

    is straightforward if we can measure both mass and radius

      f  d  R N  

     Au colloids, Weitz et al 1984log R

    log N

      

     

     

     

     

      

     

  • 8/18/2019 Lecture on Polarisation

    16/41R. Botet 04/2016

    VII.2 FRACTAL STRUCTURE- THE MASS-RADIUS RELATION -

    FRACTAL IS CHARACTERIZED BY SCALING-LAW

    in particular : between mass and diameter (or : number of grains and radius)

    a real experiment :

    in this example

     d  f  

     1.7

      f  d  R N  

    carbon black smoke, Xiong and Frielander 2001

  • 8/18/2019 Lecture on Polarisation

    17/41R. Botet 04/2016

    VII.3 FRACTAL STRUCTURE- THE PAIR-CORRELATION FUNCTION -

    FRACTAL IS CHARACTERIZED BY SCALING-LAW

    g(r) = probability to find grain at the distance r from a given grain

     g d    Rr hr r  g    f   /1)( 3with h a cutoff function

    h(0) = 1 ; h() = 0

    log r

    log g (r )  

      

      

     

     

     

     Ag grains in ait-waterinterface, Yongdong et al 2002

    rr dr

  • 8/18/2019 Lecture on Polarisation

    18/41R. Botet 04/2016

    VII.3 FRACTAL STRUCTURE- THE PAIR-CORRELATION FUNCTION -

    FRACTAL IS CHARACTERIZED BY SCALING-LAW

    g(r) = probability to find grain at the distance r from a given grain

      f  d  R N  

     g d    Rr hr r  g    f   /1)( 3with h a cutoff function

    h(0) = 1 ; h() = 0

    number of grains inside a sphere of radius r  centered on the

    center of mass     r  d   f  r dr r r  g 0

    2 ''4)'(  

  • 8/18/2019 Lecture on Polarisation

    19/41R. Botet 04/2016

    for a fractal  particle (definition) :

    then :

    such that if qRg >> 1 :

    RAYLEIGH-GANS-DEBYE THEORY

    - THE POWER-LAW REGIME-

    power-law regime

     

     g d    Rr hr r  g    f   /1)( 3

    022

    4)(

    sin

    ),(   dr r r  g qr 

    qr 

     F     

    02

    2

    )/()sin(1),(   duqRuhuuq

     F   g d d   f  

      f    

    with h a cutoff functionh(0) = 1 ; h() = 0

      f  d q F 

      1

    ),(

      2

      

    Menger sponge (d f = 2.57)

    direct measurement of the

    fractal dimension of the particles

  • 8/18/2019 Lecture on Polarisation

    20/41R. Botet 04/2016

    RAYLEIGH-GANS-DEBYE THEORY

    - THE POWER-LAW REGIME-

      f  d q F 

      1),(

      2

      

     I sca(q)

    Guinier regime (  R g )

     power-law regime ( d  f )

  • 8/18/2019 Lecture on Polarisation

    21/41R. Botet 04/2016

    VII.4 FRACTAL STRUCTURE- VALUES OF THE FRACTAL DIMENSION -

    FOR AGGREGATES 1  d f   3

    linear aggregate homogeneous aggregate

     R N  

    3 R N  

  • 8/18/2019 Lecture on Polarisation

    22/41R. Botet 04/2016

    VII.4 FRACTAL STRUCTURE- VALUES OF THE FRACTAL DIMENSION -

    FOR AGGREGATES 1  d f   3

    linear aggregate homogeneous aggregate

     R N  

    3 R N   but : fractal dimension is related to correlationsnot to porosity

     porous d  f   3 polymeric sphere (Lapierre, 2014)  

    3

    )1(   R p N   volume fraction

  • 8/18/2019 Lecture on Polarisation

    23/41

    R. Botet 04/2016

    VI. Details about the numerical algorithms

    VI.1 the hierarchical model

    VI.2 hierarchical BaCCA

    VI.3 hierarchical DLCCA

    VI.4 hierarchical RCCA

    VII. Fractal structure

     VII.1 fundamentals

    VI I.2 the mass-radius relation

     VII.3 the pair-correlation function

    VII.4 values of the fractal dimension

    VIII. Fractal aggregates

     VIII.1 fundamentals

     VIII.2 definitions of the aggregate radius

    VIII.3 physical properties depending only on the fractal dimension

    VIII.4 definitions of the porosity

    OUTLINE - LECTURE 6 -

  • 8/18/2019 Lecture on Polarisation

    24/41

    R. Botet 04/2016

    VIII.1 FRACTAL AGGREGATES- FUNDAMENTALS -

    Witten and Sander proved in 1981 that natural aerosol aggregates have fractal structureof fractal dimension d  f  = 1.8

    …this result agrees with numerical results on the aggregate models that we know: 

    Brownian Ballistic Reaction-Limited

    Cluster-Cluster 1.8 1.9 2.0

    Particle-Cluster 2.5 3 3

     fractal dimensions

  • 8/18/2019 Lecture on Polarisation

    25/41

    R. Botet 04/2016

       P   A   R   T   I   C   L   E  -   C   L   U   S   T

       E   R

     

       C   L   U   S   T   E   R  -   C   L   U   S   T   E   R

      BROWNIAN BALLISTIC REACTION-LIMITED 

    d  f  = 1.8 d  f  = 1.9 d  f  = 2.0

    d  f  = 2.5 d  f  = 3 d  f  = 3

  • 8/18/2019 Lecture on Polarisation

    26/41

    R. Botet 04/2016

    VIII.2 FRACTAL AGGREGATES- DEFINITIONS OF THE AGGREGATE RADIUS -

    1) the relevant definition of the radius for dust particle is the radius of gyration :

    where rcm is the location of the center of mass :

     N 

    i

    cmi g  N 

     R1

    22 )(1

    rr

     N 

    i

    icm

     N    1

    1rr

      f  d  R N  

  • 8/18/2019 Lecture on Polarisation

    27/41

    R. Botet 04/2016

    VIII.2 FRACTAL AGGREGATES- DEFINITIONS OF THE AGGREGATE RADIUS -

    1) the relevant definition of the radius for dust particle is the radius of gyration :

    where rcm is the location of the center of mass :

    2) maximum radius (= half diameter of the particle):

     N 

    i

    cmi g  N 

     R1

    22 )(1

    rr

     N 

    i

    icm

     N    1

    1rr

    2,2 )(max4

    1max   ji ji

     R   rr  

      f  d  R N  

      f  d  R N  

    2

  • 8/18/2019 Lecture on Polarisation

    28/41

    R. Botet 04/2016

    VIII.2 FRACTAL AGGREGATES- DEFINITIONS OF THE AGGREGATE RADIUS -

    1) the relevant definition of the radius for dust particle is the radius of gyration :

    where rcm is the location of the center of mass :

    2) maximum radius (= half diameter of the particle):

    3) effective radius ( = radius of the sphere of same volume) : 

     N 

    i

    cmi g  N 

     R1

    22 )(1

    rr

     N 

    i

    icm

     N    1

    1rr

    2,2 )(max4

    1max   ji ji

     R   rr  

     4

    33   V  Reff      f  d 

    eff   R N  

      f  d  R N  

      f  d  R N  

    VIII 2

  • 8/18/2019 Lecture on Polarisation

    29/41

    R. Botet 04/2016

    VIII.2 FRACTAL AGGREGATES- DEFINITIONS OF THE AGGREGATE RADIUS -

    for optical properties of fractal dust, it is important to know if the fractal dimension of thescattering particles is < 2 or > 2

    d  f   1.9

    no shadowing

    all the grains feel directly the incident light

    d  f   2.5

    shadowing

    most of the grains are hidden behind others

    VIII 2

  • 8/18/2019 Lecture on Polarisation

    30/41

    R. Botet 04/2016

    VIII.2 FRACTAL AGGREGATES- DEFINITIONS OF THE AGGREGATE RADIUS -

    for optical properties of fractal dust, it is important to know if the fractal dimension of thescattering particles is < 2 or > 2

    d  f   1.9 d  f   2.5

     

    S  R

     pro

     2

    4) the projected radius (= radius of the circle of same area as projection)

      f  d 

     pro R N  

    VIII 2

  • 8/18/2019 Lecture on Polarisation

    31/41

    R. Botet 04/2016

    VIII.2 FRACTAL AGGREGATES- DEFINITIONS OF THE AGGREGATE RADIUS -

    Particle-Cluster aggregates are isotropic in average

     aggregate radius is well-defined

    d  f  = 2.5 d  f  = 3 d  f  = 3

    VIII 2

  • 8/18/2019 Lecture on Polarisation

    32/41

    R. Botet 04/2016

    VIII.2 FRACTAL AGGREGATES- DEFINITIONS OF THE AGGREGATE RADIUS -

    Cluster-Cluster aggregates are essentially anisotropic one can define three aggregate radius

    they are the eigenvalues of the inertia matrix:

    d  f  = 2.0

     

     

     

     

    i iii iii ii

    i

    ii

    i

    ii

    i

    ii

    i

    ii

    i

    ii

    i

    ii

     y x y z  x z 

     z  y z  x x y

     z  x y x z  y

    )(

    )(

    )(

    22

    22

    22

    for the RCCA model:

     R g 1/ R g 3 = 1.75

     R g 2/ R g 3 = 1.63

    VIII 3

  • 8/18/2019 Lecture on Polarisation

    33/41

    R. Botet 04/2016

    VIII.3 FRACTAL AGGREGATES- PHYSICAL PROPERTIES DEPENDING ONLY ON d f  -

    • in the domain : 1/ R < q 4sin( /2)/l  < 1/a , we have seen that there exists the power-law

     behavior of the X-ray scattering (when Rayleigh-Gans-Debye theory is valid) :

     because I (q) is essentially the Fourier transform of the pair-correlation function g (r )

    it is robust power-law as it remains true even if the conditions are beyond the RGD theory

    1. electromagnetic wave scattering

      f  d qq I    /1)(  

    VIII 3

  • 8/18/2019 Lecture on Polarisation

    34/41

    R. Botet 04/2016

    VIII.3 FRACTAL AGGREGATES- PHYSICAL PROPERTIES DEPENDING ONLY ON d f  -

    • in the solar system, orbits of dust particles around the Sun are essentially ruled by the ratio,

     b , between the force due to radiative pressure and the gravitational force :

     if the particle is compact : b   1/ L ( L = typical size of the particle), hence big difference

     between small and large particles

     it the particle is fractal of fractal dimension d  f  < 2, the system is so fluffy that almost all

    the grains are in surface, then the surface facing the sun is just   N , similarly to the mass.

    Then:

    and no big difference between small and large particles is expected in the fractal d  f  < 2 case

    2. orbits of dust particles

     M 

    S Q pr  b 

     surface of the particle

    mass of the particle

     pr Q b 

    VIII 4

  • 8/18/2019 Lecture on Polarisation

    35/41

    R. Botet 04/2016

    VIII.4 FRACTAL AGGREGATES- DEFINITIONS OF THE POROSITY -

    •  the porosity, p, of a material is generally defined as the void fraction, that is :

    where f  is the volume fraction (proportion of matter = N (4a3/3)/(4 R3/3))

    For a fractal aggregate of size N  and radius R for which : N   k o ( R/a)d  f , porosity is :

    which depends on the size , R, of the aggregate if d  f  < 3

    f 1 p

      f  d 

    o R

    ak  p

     

      

     

    3

    11

     p  1 for the large aggregates d  f  < 3

     p  constant < 1 for the large aggregates d  f   3

    VIII 4

  • 8/18/2019 Lecture on Polarisation

    36/41

    R. Botet 04/2016

    VIII.4 FRACTAL AGGREGATES- DEFINITIONS OF THE POROSITY -

    precise definition of the porosity depends on the context(it may depend on the physical features)

    a few contexts :

    • light scattering using the Effective-Medium theory (aggregate = sphere + inclusions)

    • stocking chemical compounds (aggregate = high specific surface)

    • chemical reactor (aggregate = catalyst)

    • transport of fluid throughout the aggregate (aggregate = permeable material)

    • … 

    is only related to the inertia of the aggregate

    (how fluffy it is)

      f  d 

    o R

    ak  p

     

      

     

    3

    11

    VIII 4

  • 8/18/2019 Lecture on Polarisation

    37/41

    R. Botet 04/2016

    VIII.4 FRACTAL AGGREGATES- DEFINITIONS OF THE POROSITY -

    example : the Effective-Medium Theory

    good choice for the effective refractive index:

    Maxwell -Garnett formula22

    22

    22

    22

    22 m s

    m s

    m

    m

    mm

    mm p

    mm

    mm

    volume fraction of the inclusions

    here : refractive index m s  for the inclusions

    and m m  for the matrix 

    m smm

     Ag inclusions in C grains, Tang et al, 2010

    VIII 4

  • 8/18/2019 Lecture on Polarisation

    38/41

    R. Botet 04/2016

    VIII.4 FRACTAL AGGREGATES- DEFINITIONS OF THE POROSITY -

    example : the Effective-Medium Theory

    inclusions = grains (d  f   < 2) :

    Maxwell -Garnett formula

    2

    1)1(

    2

    12

    2

    2

    2

     g 

     g 

    m

    m p

    m

    m

    volume fraction of the grains

    m g

    aggregate d f  < 2

    1

    refractive index m g  for the grains

    and  1 for the voids

    VIII 4

  • 8/18/2019 Lecture on Polarisation

    39/41

    R. Botet 04/2016

    VIII.4 FRACTAL AGGREGATES- DEFINITIONS OF THE POROSITY -

    example : the Effective-Medium Theory

    inclusions = voids (d  f   > 2) :

    Maxwell -Garnett formula2

    2

    22

    22

    21

    1

    2  g 

     g 

     g 

     g 

    m

    m p

    mm

    mm

    volume fraction of the voids

    refractive index m g  for the grains

    and  1 for the voids

    m g1

    aggregate d f  > 2

    VIII 4

  • 8/18/2019 Lecture on Polarisation

    40/41

    R. Botet 04/2016

    VIII.4 FRACTAL AGGREGATES- DEFINITIONS OF THE POROSITY -

    example : the Effective-Medium Theory

    better formula

    another possible definition of the “porosity” in

    this context :

    • determine the best value of the refractive index m forwhich the Mie sphere theory reproduces the results from

    T-Matrix or DDA

    • warning 1 : the resulting porosity depends on the size R 

    of the aggregate• warning 2 : the resulting porosity should be close to

    (but a bit different from) the Maxwell-Garnett formula

    • the corresponding “porous” sphere scatters the same asthe aggregate

  • 8/18/2019 Lecture on Polarisation

    41/41

    Summary of the Lecture 6

    Cluster-Cluster aggregates are fractal fractal dimension depends on the diffusion process

    d  f for Particle-Cluster > d  f for Cluster-Cluster

     physical properties of fractal clusters depend on d  f d  f can be measured through scattering experiments

    some geometric features, such as porosity, are not well defined