lessen of steel design

Upload: mohammed-adel

Post on 01-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Lessen of Steel Design

    1/34

    Eurocode 3-1-1: 2.2.2.2 (3)

    The self-weight of the structure may, in most

    cases, be calculated on the basis of the nominal

    dimensions and mean unit masses.

    Eurocode 3-1-1: 2.3.2.4 (6)

    The self-weight of any unrelated structural or

    non-structural elements made of different

    construction materials should be treated as

    different permanent actions.

    Self-weights calculationSelf-weights calculation

    Calculating the self-weight of the following floor constructionCalculating the self-weight of the following floor construction

    Floor constructions of commercial building

    consists of

    50 mm sand/cement screed (tasoituslaasti)

    150 mm normal weight reinforcement concrete

    slab

    12 mm plaster(gypsum mortar) ceiling

  • 8/9/2019 Lessen of Steel Design

    2/34

    Materials   Density γγγγ

    [kN/m3]

    concrete (see ENV 206)

    Lightweight (varies with density class) 9 - 20

    normal weight *24

    heavyweight >28

    reinforced and prestressed concrete;

    unhardened concrete

    +1

    mortar

    cement mortar 19 - 23

    gypsum mortar; lime mortar 12 - 18

    lime-cement mortar 18 - 20

  • 8/9/2019 Lessen of Steel Design

    3/34

    Component Density

    (kN/m3)

    Thickness

    (m)

    Load intensity= density

    ×××× thickness (kN/m2)

    Screed 20

    (19 - 23)

    0,05   20 ×××× 0,05 = 1,0

    Slab 24 0,15   24 ×××× 0,15 = 3,6

    Plaster 15(12 - 18)

    0,012   15 ×××× 0,012 = 0,2

  • 8/9/2019 Lessen of Steel Design

    4/34

    A building in Helsinki with duo pitched roof,calculating the snow load distributions.

    αααα 1   24

    αααα 2   36

    s = µ·sks = µ·sk

  • 8/9/2019 Lessen of Steel Design

    5/34

    αααα   [0° 15°] [15° 30°] [30° 60°]   ≥≥≥≥

    60°

    µµµµ1   0.8 0.8   0.8(60 - αααα)/30 0.0

    µµµµ2   0.8  0.8 + 0.6(αααα-15)/30 1.1(60-αααα)/30 0.0

    µµµµ 2.24   0.8 0.6

      24 15−( )

    30⋅+:=   µµµµ 2.24   0.98

    µµµµ 1.36   0.8  60 36−( )

    30⋅:=   µµµµ 1.36   0.64

    µµµµ 1.24   0.8

    µµµµ2.36

      0.88µµµµ 2.36   1.1

      60 36−

    30⋅:=

  • 8/9/2019 Lessen of Steel Design

    6/34

    0.980.98 0.640.64

    0.5x0.8=0.40.5x0.8=0.4

    0.80.8

    0.880.88

    0.5x0.64=0.320.5x0.64=0.32

    The characteristic snow load on the ground sk is

    2.0 kN/m2. The possible snow loads on the roof

    are:

    0.98x2=1.960.98x2=1.96 0.64x2=1.280.64x2=1.28

    0.4x2=0.80.4x2=0.8

    0.8x2=1.6

    0.8x2=1.6

    0.88x2=1.760.88x2=1.76

    0.32x2=0.640.32x2=0.64

    In most cases it may be conservatively assumed

    that maximum snow load intensity is applieduniformly across the full width

  • 8/9/2019 Lessen of Steel Design

    7/34

    Persistent and transient design situations for

    verifications other than those relating to fatigue

    (fundamental combination)

    Σγ G.j Gk.j + γ Q.1Qk.1 + Σγ Q.j Ψ0.iQk.i (1)

    Accidental design situation

    Σγ G.A Gk.j + Ad + Ψ1.1 Qk.1 + ΣΨ2..iQk.i (2)

    For building structures, as a simplification, (1)

    can be replaced by whichever of the following

    combination gives the larger value:

    Σγ G.j Gk.j + γ Q.1Qk.1

    Σγ G.j Gk.j + 0.9Σγ Q.j Qk.i

    Combination of actions for ultimate limit designCombination of actions for ultimate limit design

  • 8/9/2019 Lessen of Steel Design

    8/34

    Three combinations of actions are defined:

    Rare combination

    ΣGk.j + Qk.1 + ΣΨ0.iQk.i (1)

    Frequent combinationΣGk.j + Ψ1.1 Qk.1 + ΣΨ2..iQk.i (2)

    Quasi-permanent combinations

    ΣG

    k.j+ΣΨ2..i

    Qk.i

    (3)

    For building structures, as a simplification, (1)

    can be replaced by whichever of the following

    combination gives the larger value:

    ΣGk.j + Qk.1

    ΣGk.j + 0.9Σ Qk.i

    Combination of actions for serviceability limit designCombination of actions for serviceability limit design

  • 8/9/2019 Lessen of Steel Design

    9/34

    Eurocode 3-1-1: 2.3.2.3 (5)

    For continuous beams and frames, the same

    design value of the self-weight of the structure

    may be applied to all spans, except of cases

    involving the static equilibrium of cantilevers

    Load combinationsLoad combinations

    Write the critical load combination for continuous beam with

    permanent load and imposed load

    Write the critical load combination for continuous beam withpermanent load and imposed load

    Eurocode 3-1-1: 2.3.2.4 (3)

    Variable actions should be applied where they

    increase the destabilizing effects but omitted

    where they would increase the stabilizing

    effects

  • 8/9/2019 Lessen of Steel Design

    10/34

    Load combination 1: maximum bending in span 1

    Load combination 1: maximum bending in span 1

  • 8/9/2019 Lessen of Steel Design

    11/34

    Load combination 2: maximum bending in span 2Load combination 2: maximum bending in span 2

  • 8/9/2019 Lessen of Steel Design

    12/34

  • 8/9/2019 Lessen of Steel Design

    13/34

    Span LSpan L

    SpacingSpacing

    SpacingSpacing

    snow load ssnow load s

    purlinspurlins

    purlinpurlin

    purlinpurlin

    Sheeting gSheeting gSheeting gSheeting g

  • 8/9/2019 Lessen of Steel Design

    14/34

    Write load combinations for ultimate limit state

    Basic load combination ruleBasic load combination rule

    Point load and

    distributed load

    Point load and

    distributed load

    Two variable loadingsTwo variable loadings

  • 8/9/2019 Lessen of Steel Design

    15/34

    Combination

    Case aCase a

  • 8/9/2019 Lessen of Steel Design

    16/34

    Final critical load combinationFinal critical load combination

    Case bCase b

  • 8/9/2019 Lessen of Steel Design

    17/34

    Load combinationLoad combination

    aa

    bb

    1.35 g⋅   1.5 q F+( )⋅+

    1.35 g⋅   0.9 1.5⋅   q F+( )⋅+

    F is assumed to be variable load in

    this example and can be added to q

    F is assumed to be variable load in

    this example and can be added to q

  • 8/9/2019 Lessen of Steel Design

    18/34

    Final critical load combinationFinal critical load combination

    Case aCase a

    Case bCase b

    M max   max M max_a   M max_b,( )

  • 8/9/2019 Lessen of Steel Design

    19/34

    aa

    Determine the maximum

    bending moment in Member 1

    Determine the maximum

    bending moment in Member 1

    11

    22

    the moment of inertia of member

    1 and 2 are the same

    the moment of inertia of member

    1 and 2 are the same

    L = hL = h

    1.35 g⋅   1.5 s⋅+ snow load dominatessnow load dominates

  • 8/9/2019 Lessen of Steel Design

    20/34

    bb 1.35 g⋅   1.5⋅+ wind load dominateswind load dominates

  • 8/9/2019 Lessen of Steel Design

    21/34

    cc 1.35 g⋅   1.35 s W+( )⋅+

  • 8/9/2019 Lessen of Steel Design

    22/34

    The final critical load will be the one with the maximum

    bending moment from the following figures

    The final critical load will be the one with the maximum

    bending moment from the following figures

    aa

    bb

    cc

  • 8/9/2019 Lessen of Steel Design

    23/34

    General

    • Applied to ultimate Limit State

    Design

    • Benefits of classifying cross-sections

     – guide selection of globe analysis – determine the design criteria of

    member 

    • Rules that guide the classification

     – Width-to-thickness ratio – yield strength

     – loading: bending, compression, bending+compression

    • Based on normal stress. Shear buckling is considered separately indesign rules

  • 8/9/2019 Lessen of Steel Design

    24/34

    outstand flangeoutstand flangenormal stress

  • 8/9/2019 Lessen of Steel Design

    25/34

    loading cases: bending or compression

  • 8/9/2019 Lessen of Steel Design

    26/34

    (d)

    (c)

    (b)(a)

    Simply supported onall four edges

    t

    L

     b

    Simply supported

    edge

    Free

    edge

     b

    L

    1

    2

    3

    4

    5

    1 2 30 4 5

    Plate aspect ratio L / b

    Buckling coefficient k 

     b

    L FreeExact

    k = 0.425 + (b/L)2

    0.425

    ( )2

    2

    2

    112  

    −=

    b

    t k cr 

    σ 

    width to thickness ratio

  • 8/9/2019 Lessen of Steel Design

    27/34

    Class 1Class 2

    Class 3

    Euler Buckling Stress

    0,5 0,6 0,9

    1

    1,0   λ  p

     N  f   p

    u

     y

    = σ 

     

     ==

    k 4.28

    /5.0

    σ 

    λ t b

    cr 

    ( )2

    2

    2

    112

    −=

    b

    t k cr 

    σ 

     Np = σu / f y

  • 8/9/2019 Lessen of Steel Design

    28/34

    Outstand

    Internal

    Web

    Flange

    Web

    Internal

    Flange

    (a) Rolled I-section (b) Hollow section

    Flange

    (c) Welded box section

    InternalOutstand

    InternalWeb

    Internal: webs of open beams, flanges of boxes

    Outstand: flanges of open section, legs of angles

  • 8/9/2019 Lessen of Steel Design

    29/34

    a. Webs:  (internal elements perpendicular to axis of bending)

    tw twd

    tw d tw

    tf 

    hdAxis of 

    Bending

    d = h-3t (t = tf  = tw)

    ClassWeb subject to

    bending

    Web subject to

    compression

    Web subject to bending

    and compression

    Stressdistribution in

    element(compression positive)

    + f y

    f y  -

    d h

    + f y + f y

    f y  - f y -

    d h hdαd

    when α > 0,5:d/t w < 396ε/(13α − 1)when α < 0,5:

    d/t w < 36ε/α

     _ 

     _ 

    1 d/t w < 72ε _  d/t w < 33 ε _ 

    d/tw < 83 ε _  d/t w < 38ε _ 2

    when α > 0,5:d/t w < 456ε/(13α − 1) _ when α < 0,5:d/t w < 41,5ε/α _ 

    Stress

    distribution inelement

    (compression positive)

    + f y

    f y -

    + f y

    + f y

    ψ  f y -

    d/2

    d/2h

    +

    d h d h

    3 d/t w < 124 ε _  d/t w < 42 ε _ 

    when ψ > −1:d/t w < 42ε/(0,67 + 0,33ψ) _ 

    when ψ < −1: _ 

    d/t w < 62ε/(1 − ψ) (− )ψ 

    ε =  f   y/235f y

    ε

    235 275 355

    1 0,92 0,81

     _ 

  • 8/9/2019 Lessen of Steel Design

    30/34

    b. Internal flange elements:   (internal elements parallel to axis  of bending)

    axis of 

     bending

     b tf  t f  b

    tf 

     b

     b tf 

    Class TypeSection in bending

    Section in compression

    Stress distribution

    in element andacross section

    (compression

     positive)

    +-

    f y

    - +

    +-

    f y

    - +

    1

    Rolled hollow section

    Other 

    (b - 3t f )/ t f 

     b / t f 

  • 8/9/2019 Lessen of Steel Design

    31/34

  • 8/9/2019 Lessen of Steel Design

    32/34

  • 8/9/2019 Lessen of Steel Design

    33/34

    ε= √235/355 = 0.8136

    Welded profile, flange

    9ε = 7.3 10ε = 8.1 14ε = 11.4

    Web

    33ε = 26.8 38ε = 30.9 42ε = 34.2

  • 8/9/2019 Lessen of Steel Design

    34/34

    (a) Class 4 cross-sections - axial force

    Gross cross-section

    Gross cross-section

    Centroidal axis of

    gross cross-section

    Centroidal axis ofgross cross-section

    Centroidal axis ofeffective cross-section

     Non-effective zones

     Non-effective zone

     Non-effective zone

    Centroidal axis

    Centroidal axisCentroidal axis of

    effective section

    e N

    eM

    e M

    Centroidal axis ofeffective section