leti activities towards a better power efficiency: from today’s ......2015/07/16  · leti...

39
LETI activities towards a better Power efficiency: from today’s solution to disruptive approaches Olivier Faynot• Microelectronic division manager• CEA-Leti

Upload: others

Post on 02-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • LETI activities towards a better Power efficiency: from today’s

    solution to disruptive approachesOlivier Faynot• Microelectronic division manager• CEA-Leti

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 2

    • Context• Use of existing technologies• New materials and integration schemes• Disruptive approaches

    AGENDA

    Olivier Faynot | E3S tutorial | July 2015

    Short term

    Long term

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 3

    • Context• Use of existing technologies• New materials and integration schemes• Disruptive approaches

    AGENDA

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 4

    POWER CHALLENGE

    � Chips� CPU = 130 W; SoC Consumer 10W; SoC Mobile = 1 W

    Traditional CPU

    Consumer chip

    Mobile chip

    Computing power

    250 GFLOPS 40 GFLOPS 4 GFLOPS

    Energy efficiency

    0.5W/ GFLOPS

    0.4 W/ GFLOPS(X1.2)

    0.25 W/ GFLOPS

    (X2)

    REQUIRED HW Efficiency

    25 TFLOPS(X100)

    .5mW/ GB/GFLOP (X1000)

    � Classical computers : Performances (Top 500)� 500mw/GFLOP wall� 1PFLOP = 1MW� 1ExaFLOP = 1 GW (projection 2016)

    � Web 2.0 : Data Transfer 1GFLOPs requires 1GB/s� New kind of processor required

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 5

    POWER CHALLENGE: 2020 OBJECTIVES

    X50 by HW and X20 By SW in 2020Increasing proportion of e-Memories in circuit

    CMOS Logic

    Memory

    3D

    Photonic

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 6

    • Context• Use of existing technologies

    � FDSOI� 3D integration

    • New materials and integration schemes• Disruptive approaches

    AGENDA

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 7

    EXAMPLE 1: PLANAR FDSOI TECHNOLOGY

    Total dielectric isolation

    • Lower S/D capacitances

    • Lower S/D leakages

    • Latch-up immunity

    = Faster, Cooler transistorsUltra-thin Body (TSi~1/3LG)

    • Excellent short-channel immunity • low SCE, DIBL

    No channel doping, no pocket implant

    • Improved VT variationUltra-thin BOX option

    • Back-bias controlGround-plane implantation

    • VT adjustment

    Thin Silicon Channel

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 8

    USE OF FDSOI

    Ene

    rgy

    Effi

    cien

    cy(D

    MIP

    S/m

    W)

    Vdd

    100%

    200%

    300%

    400%

    500%

    0%0.3 0.5 0.70.4 0.6 0.8 0.9 1.0 1.1 1.2

    +50%

    • 2 key words: Low VDD and Back Bias

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 9

    • Best in class for Power efficiency

    • Ability for Low Voltage operation

    USE OF FDSOI

    Thin Silicon Channel

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 10

    Source: Bill Dally, « To ExaScale and Beyond »www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC 10.pdf

    EXAMPLE 2: 3D INTEGRATION

    Source: Bill Dally, « To ExaScale and Beyond »

    www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 11

    EXAMPLE 2: SILICON BOARD CONCEPT TO REDUCE ENERGY CONSUMPTION

    Traditional technology Silicon Board concept

    6 cm²

    Large IC with maximum integration on chip Small dies stacked on a large interposer

    25x0.9 cm²1 die 25 chiplets+ 1 interposer

    95% final test yield

    � 296 $ IC cost

    90% final test yield

    � 284 $ 3D-IC costIC cost*

    5000 $ wafer cost

    89 dies of 6 cm²

    20% yield

    � 281 $ die cost

    300 mm

    Wafer

    6 cm² dies 0.9 cm²dies

    300 mm

    Wafer

    25 cm² dies

    300 mm

    Wafer

    � 255 $ total die cost� 281 $ die cost

    Interposer:500 $ wafer cost

    14 dies of 25 cm²

    98% yield

    � 36.44 $ die cost

    Chiplets:5000 $ wafer cost

    714 dies of 0.9 cm²

    80% yield

    � 8.75 $ die cost

    Die cost

    *: test and package costs are not included but considered equal for both technologies in this exercise

    Sam

    e co

    st 6

    cm

    ² ve

    rsus

    25

    cm²

    2 GFLOPS/W 100 GFLOPS/WMore than 50x energy efficiency

    3Ghz 200Mhz

    [Denis Dutoit, Gilles Simon]

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 12

    • Context• Use of existing technologies• New materials and integration schemes

    � SiGe for TFET� RRAM� Coocube TM

    • Disruptive approaches

    AGENDA

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 13

    • P mode operation

    • No impact of gate length(1µm => 50nm) on measured I D(VG) curves

    A) TUNNEL FET OPERATION

    Olivier Faynot | E3S tutorial | July 2015

    TFET DEVICES: INTEREST OF SIGE

    1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    -2 -1.5 -1 -0.5 0

    Dra

    in c

    urr

    en

    t (µ

    A/µ

    m)

    Gate voltage (V)

    L=1µm

    150nm

    70nm

    50nm

    p mode TFET

    W = 2µm

    SGOI 25%

    VDS = -0.9V

    EC

    EV

    OFF state

    ON statee- P+N+

    Gate

    BOX

    VD

  • | 14

    • on the ID(VG) curves :

    B) IMPACT OF THE GE CONTENT IN THE CHANNEL

    Olivier Faynot | E3S tutorial | July 2015

    TFET DEVICES: INTEREST OF SIGE

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    -2 -1.5 -1 -0.5

    Dra

    in c

    urr

    en

    t (µ

    A/µ

    m)

    Gate voltage (V)

    SGOI 25%

    SGOI 20%

    SOI

    p mode TFET

    L/W = 1/2µm

    VDS = -0.9VVth shift

    ION increase

    • on the SS(ID) figure of merit :

    100

    150

    200

    250

    300

    350

    400

    450

    500

    1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

    SS

    (m

    V/d

    ec)

    Drain current (µA/µm)

    SGOI 25%

    SGOI 20%

    SOI

    � Threshold voltage shift� ION increase

    � No clear impact on min. SS� ION increase at fixed SS

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 15

    C) ORIGIN OF THE ON CURRENT GAIN ?

    Olivier Faynot | E3S tutorial | July 2015

    TFET DEVICES: INTEREST OF SIGE

    1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    -1.5 -1 -0.5 0 0.5

    Dra

    in c

    urr

    en

    t (µ

    A/µ

    m)

    VG - Vth (V)

    SGOI 25%

    SGOI 20%

    SOI

    • ID(VG-Vth) plots• ID(VG) plots

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    -2 -1.5 -1 -0.5

    Dra

    in c

    urr

    en

    t (µ

    A/µ

    m)

    Gate voltage (V)

    SGOI 25%

    SGOI 20%

    SOI

    p mode TFET

    L/W = 1/2µm

    VDS = -0.9V

    ION increase ION,r increase

    � The Vth shift is not the (only) origin of the ON state gain� Relative ON state current (ION,r) is enhanced for large xGe

    ION,r @

    VG-Vth = -0.9V

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 16

    C) ORIGIN OF THE ON CURRENT GAIN ?

    Olivier Faynot | E3S tutorial | July 2015

    TFET DEVICES: INTEREST OF SIGE

    • Impact of the Ge content on the SiGe band diagram *

    0.8

    0.9

    1

    1.1

    0 0.1 0.2 0.3

    cSiG

    e ba

    ndga

    p (e

    V)

    Ge content (cSGOI channel)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.1 0.2 0.3

    ener

    gy (

    eV)

    Ge content

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.1 0.2 0.3

    ener

    gy (

    eV)

    Ge content

    Ec

    Ev

    EG(xGe)

    EG(xGe)

    EG(xGe)

    EC

    EV

    OFF state

    ON statee- P+N+

    � SiGe: Increasing the Ge fraction leads to smaller band gap

    *M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993)

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 17

    • Electrostatics & transport

    TFET - MOSFET COMPARISON : MAIN INTERESTING PROPERTIES

    Olivier Faynot | E3S tutorial | July 2015

    3) INTEREST OF SIGE FOR TFET

    pTFET pMOSFET

    DIBL vs. L 0 ∝ L-2

    SS vs. L constant* SS-kT/q ∝ L-1

    ION vs. L constant ∝ L-1

    ION vs. xGe(SGOI channel)

    ∝ exp(xGe)cf. BTBT

    ∝ xGecf. µhole*

    No clear path today for SS

  • | 18Olivier Faynot | E3S tutorial | July 2015

    COOLCUBE TECHNOLOGY

    L2

    2

    1

    L1

    1 2

    Classical 2D CoolcubeTM

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 19

    COOLCUBE TECHNOLOGY DESCRIPTION

    Olivier Faynot | E3S tutorial | July 2015

    Bulk TSVSOI TSV

    D = 10.000/mm 2

    D = 100.000/mm 2

    D ~ 100.000.000/mm 2

    D> 1.000.000/mm 2

    CoolCubeTM

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 20

    • By construction:� 50% foot print reduction� Reduced wire length� Additional gain if cell

    placement optimized

    Olivier Faynot | E3S tutorial | July 2015

    COOLCUBE

    O. Turkylmaz et al., DATE 2014

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 21

    COOLCUBE TECHNOLOGY DESCRIPTION

    Olivier Faynot | E3S tutorial | July 2015

    L. Brunet, ECS 2014

    Front side macroscopic

    aspect of a 300mm wafer

    Infrared characterization Acoustic characterization

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 22

    CLASSIFICATION OF MEMORY TECHNOLOGY

    RRAMMRAMPCMFRAMSONOSFLASH

    DRAMSRAM

    Volatile Memory Non Volatile Memory

    MEMORY DEVICES

    Resistance change

    Polarization change

    Charge trap

    Phase change

    Tunnel magneto

    resistance

    • Oxygen-vacancy

    • Electro-chemical

    Voltage/ current based,

    Resistor

    Charge based,

    Capacitor

    3D bulk 1D filamentary

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 23

    • Forming voltage compatible with CMOS technology

    RESISTIVE MEMORIES

    • material set compatible with CMOS• fabrication temperature compatible with

    BEOL

    Initial pristine state

    FORMING

    Low Resistive State(LRS)

    VG

    V

    VG(limiter)

    V

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 24Olivier Faynot | E3S tutorial | July 2015

    CBRAM VS OXRAM

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 25Olivier Faynot | E3S tutorial | July 2015

    NONVOLATILE-LOGIC WITH RRAM

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 26Olivier Faynot | E3S tutorial | July 2015

    � Dopage Al de l’électrolyte MOx : augmentation de la fenêtre mémoire

    � Ab initio: réduction coût énergétique de l’insertion du Cu dans les lacunes d’O, diélectrique moins dégradé

    1030.5 1 1.5 2 2.5 3

    104

    105

    106

    107

    108

    HR

    S R

    esi

    sta

    nce

    [Oh

    m]

    RESET BL voltage [V]

    0%

    13%

    21%

    Typical RON

    109

    108

    107

    106

    105

    104

    103

    1 1.5 2 2.5 3

    RESET WL voltage [V]

    13%

    21%

    0%

    Typical RON

    MOx(Al)Optimum

    doping

    Al doping ratio

    Cu-based

    Doped oxide

    MOx(Al)

    BEC0.6 0.7 0.8 0.9

    1.5

    2

    2.5

    0.5 1

    Metal/Oxygen atomic

    3

    1

    FormingSET Forming free

    MOx(Hf)

    0 5 15 16 20V

    olt

    ag

    e [

    V]

    Metal /Oxygen atomic ratio

    Doping content %

    Cu-based

    Doped oxide

    MOx(Hf)

    BEC

    � MOx electrolyte Hf doping : Formingvoltage reduction

    � Ab initio: reduction of Cu filament formation energy

    G. Molas et al., IEDM 2014

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 27

    100ns

    Tsw

    RESISTIVE MEMORIES

    TypicalImplementation

    Embedded

    Distributed

    � Low VDD operation demonstrated� Up to 108 cycles demonstrated� Low VDD: open the path for new circuit architecture

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 28

    • Context• Use of existing technologies• New materials and integration schemes• Disruptive approaches

    AGENDA

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 29Olivier Faynot | E3S tutorial | July 2015

    VON NEUMANN MACHINE

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 30

    • Von Neumann chips are moving away from the brain’s efficiency

    VON NEUMANN BOTTLENECK

    Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 31Olivier Faynot | E3S tutorial | July 2015

    NEUROMORPHIC BASED RRAM CIRCUITS

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 32Olivier Faynot | E3S tutorial | July 2015

    RRAM-SYNAPSE NEURAL NETWORK @ LETI

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 33Olivier Faynot | E3S tutorial | July 2015

    POTENTIATION (LTP)/DEPRESSION (LTD)

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 34Olivier Faynot | E3S tutorial | July 2015

    2 PCM SYNAPSE

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 35Olivier Faynot | E3S tutorial | July 2015

    VISUAL PATTERN EXTRACTION: PCRAM NEURON NETWORK

    XNET spiking neural network simulator

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 36Olivier Faynot | E3S tutorial | July 2015

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 37Olivier Faynot | E3S tutorial | July 2015

    VISUAL PATTERN EXTRACTION

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • | 38

    • Energy efficiency improvement requires to work on:� New materials and devices:

    • CoolcubeTM and RRAM are the most promising� New circuit design tricks� New architectures and paradigms

    Olivier Faynot | E3S tutorial | July 2015

    KEY MESSAGES

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.

  • THANKS YOU FOR

    YOUR ATTENTION!

    CEA17 rue des Martyrs 38000 –Grenoble

    Cedex 09 FRANCE

    e3s_asstText BoxFor Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.