lftr proliferation concerns

21
LFTR Proliferation Concerns Is a Liquid Fluoride Thorium Reactor proliferation resistant? By David Amerine

Upload: the-e-generation

Post on 03-Apr-2016

219 views

Category:

Documents


1 download

DESCRIPTION

This paper addresses the controversy swirling around the proliferation resistance of a Liquid Fluoride Thorium Reactor

TRANSCRIPT

Page 1: LFTR Proliferation Concerns

LFTR  Proliferation  Concerns  Is  a  Liquid  Fluoride  Thorium  Reactor  proliferation  resistant?  By  David  Amerine  

   

Page 2: LFTR Proliferation Concerns

2   LFTR  PROLIFERATION  CONCERNS    

   

Table  of  Contents  

Abstract  ......................................................................................................................  3  

Background  .................................................................................................................  5  

Controversy  ...............................................................................................................  10  

Conclusions  ................................................................................................................  19  

About  the  Author  .......................................................................................................  20        

Page 3: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   3    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

Abstract  The  LFTR  and  the  Thorium  fuel  cycle  are  highly  proliferation  resistant.  Thorium  and  its  derivative  fuel,  uranium-­‐233  (U-­‐233),  are  highly  unsuitable  for  nuclear  weapons  due  to  inherent  production  of  other  undesirable  isotopes.  LFTR  is  unique  in  its  ability  to  meet  both  energy  generation  and  non-­‐proliferation  mandates.    In  the  traditional  light-­‐water  reactor  uranium-­‐235/238  (U-­‐235/238)  nuclear  reactions  generate  a  byproduct,  pultonium-­‐239  (Pu_239),  a  radioactive  isotope  used  to  make  weapons.    However,  when  thorium  is  consumed  (converted  to  uranium-­‐233)  in  the  LFTR,  much  less  plutonium  is  produced  and  the  vast  majority  of  this  is  Pu-­‐238.    Pu-­‐238  is  highly  valuable  for  use  in  nuclear  batteries  and  is  completely  unsuitable  for  weapons  use.    The  bottom  line  is  that  if  U-­‐233  was  useful  in  making  nuclear  bombs,  nuclear  countries  with  large  deposits  of  Thorium,  like  the  United  States  or  India,  would  have  already  done  it.    However,  none  of  the  thousands  of  warheads  in  the  world's  arsenals  are  based  on  the  thorium  fuel  cycle.  

 The  LFTR  resists  diversion  of  its  fuel  to  nuclear  weapons  in  four  ways:      

1. First,  the  thorium-­‐232  breeds  by  converting  first  to  protactinium-­‐233,  which  then  decays  to  uranium-­‐233.  If  the  protactinium  remains  in  the  reactor,  small  amounts  of  U-­‐232  are  also  produced.  U-­‐232  has  a  decay  chain  product  (thallium-­‐208)  that  emits  powerful,  dangerous  gamma  rays.  These  are  not  a  problem  inside  a  reactor,  but  in  a  bomb,  they  complicate  bomb  manufacture,  harm  electronics,  and  reveal  the  bomb's  location.  

 2. Second,  another  proliferation  resistant  feature  comes  from  the  fact  that  LFTRs  

produce  very  little  plutonium,  around  15  kg  per  gigawatt-­‐year  of  electricity  (this  is  the  output  of  a  single  large  reactor  over  a  year).  This  plutonium  is  also  mostly  Pu-­‐238,  which  makes  it  unsuitable  for  fission  bomb  building,  due  to  the  high  heat  and  spontaneous  neutrons  emitted.    

 3. Third,  a  LFTR  does  not  make  much  spare  fuel.  It  produces  at  most  9%  more  fuel  

than  it  burns  each  year,  and  it  is  even  easier  to  design  a  reactor  that  makes  1%  more  fuel.  With  this  kind  of  reactor,  building  bombs  quickly  will  take  power  plants  out  of  operation,  and  this  is  an  easy  indication  of  national  intentions.    

 4. Finally,  use  of  thorium  can  reduce  or  even  eliminate  the  need  to  enrich  uranium.  

Uranium  enrichment  is  one  of  the  two  primary  methods  by  which  states  have  obtained  bomb-­‐making  materials.  

     

Page 4: LFTR Proliferation Concerns

4   LFTR  PROLIFERATION  CONCERNS    

   

 Addressing  the  proliferation  concerns  from  a  slightly  different  perspective  leads  to  the  same  conclusion:  

1. Thorium  is  generally  accepted  as  proliferation  resistant  compared  to  U-­‐Pu  cycles.  The  problem  with  plutonium  is  that  it  can  be  chemically  separated  from  the  waste  and  perhaps  used  in  bombs.  It  is  publicly  known  that  even  reactor-­‐grade  plutonium  can  be  made  into  a  bomb  if  done  carefully.  By  avoiding  plutonium  altogether,  thorium  cycles  are  superior  in  this  regard.  

 

2. Besides  avoiding  plutonium,  Thorium  has  additional  self-­‐protection  from  the  hard  gamma  rays  emitted  due  to  U-­‐232  as  discussed  above.  This  makes  stealing  Thorium  based  fuels  more  challenging.  Also,  the  heat  from  these  gammas  makes  weapon  fabrication  difficult,  as  it  is  hard  to  keep  the  weapon  pit  from  melting  due  to  its  own  heat.  Note,  however,  that  the  gammas  come  from  the  decay  chain  of  U-­‐232,  not  from  U-­‐232  itself.  This  means  that  the  contaminants  could  be  chemically  separated  and  the  material  would  be  much  easier  to  work  with.  U-­‐232  has  a  70-­‐year  half-­‐life  so  it  takes  a  long  time  for  these  gammas  to  come  back.  

 

3. The  one  hypothetical  proliferation  concern  with  Thorium  fuel  though,  is  that  the  Protactinium  can  be  chemically  separated  shortly  after  it  is  produced  and  removed  from  the  neutron  flux  (the  path  to  U-­‐233  is  Th-­‐232  -­‐>  Th-­‐233  -­‐>  Pa-­‐233  -­‐>  U-­‐233).  Then,  it  will  decay  directly  to  pure  U-­‐233.  By  this  challenging  route,  one  could  obtain  weapons  material.  But  Pa-­‐233  has  a  27-­‐day  half-­‐life,  so  once  the  waste  is  safe  for  a  few  times  this  duration,  weapons  are  out  of  the  question.  So  concerns  over  people  stealing  spent  fuel  are  largely  reduced  by  Th,  but  the  possibility  of  the  owner  of  a  Th-­‐U  reactor  obtaining  bomb  material  is  not.  

Page 5: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   5    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

Background   The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. The main goal is to strengthen the proliferation resistance of the civilian nuclear fuel cycle such that it remains the less preferred route to nuclear weapon development. The primary link between civilian nuclear power and nuclear weapons is nuclear material, i.e. materials, which either are, or could be processed into, weapon-usable material. The general proliferation risks associated with civilian nuclear power systems include:

•  misuse of nuclear materials through its diversion or theft, •  misuse of facilities, equipment, and technology, •  transfer of nuclear skills and technology.

Non-proliferation or “proliferation-resistance” is assessed by analyzing the diversion “barriers” associated with a given nuclear system. The proliferation resistance of a given system is not an absolute value. It is, therefore, important to develop a methodology that can compare existing and proposed reactor/fuel cycle systems with respect to their proliferation resistance. An assessment of proliferation resistance–general approach requires an overall methodology providing an integrated assessment that combines the effectiveness of:

• material/technical features–designated as intrinsic barriers; and • safeguard/institutional measures–designated as extrinsic barriers.

Material barriers are those material qualities that make it difficult to produce a nuclear explosive and may be related to isotopic composition of the material, isotopic separation/processing required, radiation hazard and signature, and detectability and difficulty of movement of the mass/bulk required. Additional intrinsic barriers are related to the elements of the fuel cycle itself, difficulty of gaining access to materials, or misuse of facilities to obtain weapon-usable material. These and other features of a given fuel cycle may be described as attributes of a given system. A systematic accounting of such attributes may serve as a framework for a methodology integrated assessment of the proliferation resistance.

Page 6: LFTR Proliferation Concerns

6   LFTR  PROLIFERATION  CONCERNS    

   

The Nuclear Energy Research Advisory Committee (NERAC) of Department of Energy, USA has summarized the relative importance of various barriers to a selected threat as shown in the Table below.       Sophisticated                Sophisticated   Unsophisticated  Subnat'l         State  -­‐  Overt                State  -­‐  Covert   State  -­‐  Covert                Group    Material  Barriers     Isotopic   Low       Low                High                  High     Chemical   Very  Low     Very  Low              High                  High     Radioligical   Very  Low     Low              Moderate                  High     Mass/Bulk   Very  Low     Low                Low                  Moderate     Detectable   Very  Low     Low                Moderate                  High  Technical  Barriers     Facility   Very  Low     Low              Low                    Moderate     Accessibility   Very  Low     Low              Low                    Moderate     Avail.  Mass            Moderate     Moderate            High                  High     Skills     Low       Low              Moderate                  Moderate     Time     Very  Low     Very  Low            Moderate                    High  Institutional  Barriers     Safeguards   Moderate     High              High                Moderate     Access  &   Very  Low     Low              Moderate                Moderate              Security     Location   Very  Low     Very  Low            Low                  Low    The first two types of barriers (material and technical) are intrinsic and the last barrier (institutional) is extrinsic. The NERAC report suggests several guidelines/comments for implementation of the proliferation resistance assessment methodology:

•  barriers are not absolute, but are engineering challenges that may be overcome by a combination of technology and weapon design, •  barriers do not act independently, and the effect of multiple barriers can be greater than the sum of their individual effects, •  the barriers approach avoids the difficulty of the risk-based method, which requires quantitative (numerical) risk probabilities, •  the barriers approach requires only an assessment of the relative effectiveness of individual barriers, resulting in qualitative and transparent comparisons of various systems concepts and options, •  effectiveness of different barriers can not be aggregated into a single parameter, •  qualitative effectiveness of a barrier is graded in five categories:

1. ineffective or very low – I, 2. low – L, 3. medium or moderate – M, 4. high – H, and

Page 7: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   7    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

5. very high – VH. A consistent comparison of different systems requires consideration of all steps of the fuel cycle. Many of the barriers, related to mining, milling, and conversion, as well as, extrinsic barriers, have similar proliferation resistance characteristics for all fuel cycles, and thus, do not significantly affect relative comparisons of most fuel cycles. To compare different options the comparative effectiveness of each barrier, divided in categories must be considered and graded into one of the five categories listed above. In order to address the impact of introducing Thorium-based fuel cycles, two prevalent factors should be clearly stated:

•  Utilization of Thorium-based fuel will influence mainly the material barriers, •  Material barriers are important for the proliferation threats posed by the covert effort undertaken by an unsophisticated state and a subnational group. This statement is based on the assumption that technical barriers will be less effective for the proliferation threat posed by a sophisticated country.

The light water reactor (LWR) with the once-through fuel cycle is likely to remain the main technology direction in the near term, with heavy water reactors as a secondary route. Thus, the LWR once-through cycle may serve as a “reference” case for assessment of evolutionary improvements in the proliferation resistance of more advanced reactor designs and fuel cycles, such as Thorium-based fuels. The proliferation resistance advantages of the Thorium-based fuels are realized through:

•  extended fuel burnup, which could result in the reduction of the quantity and quality of plutonium (Pu) produced, reduction in the number of refuelings, and the number of spent fuel assemblies, and •  significant reduction in the quantity and quality (isotopic composition) of the discharged fuel as a result of a partial replacement of U-238 by Th-232 as a fertile component of the fuel.

For the proliferation resistance effect of introducing Th–based fuel the fissile material weapon quality is evaluated by considering three properties:

•  The critical mass is different for different isotopic composition of Pu; •  Weapon yield degradation due to pre-initiation caused by spontaneous fission neutrons; •  Weapon stability degradation caused by heat emission.

Thorium-based fuel may be introduced in all reactor systems of current technology and advanced designs. With respect to LWR’s, there are two main design options:

Page 8: LFTR Proliferation Concerns

8   LFTR  PROLIFERATION  CONCERNS    

   

• A homogeneous mixture of ThO2 and UO2 • Several heterogeneous designs, where Th and U parts of the fuel are spatially

separated Several fuel cycle performance parameters related to the proliferation resistance are summarized in Table below. Proliferation resistance parameters PWR Th-Homogeneous Th-Heterogeneous Total Pu Discharged, 250 150 70-90 kg/GW(e)-year Spontaneous Fission Source, (crit.mass-sec)-1 1.6*106 3.0*106 4.0*106

Decay Heat Emission, watts/crit.mass 90 200 350 Note: The data in the table are approximate, representative values derived on the basis of several homogeneous and heterogeneous Th–based designs. As an example, the qualitative assessment of the proliferation barriers presented below is related to the heterogeneous Th–based fuel design (seed blanket). The following Table presents an example of the qualitative comparison of the standard (all–U) fuel cycle with the Thorium– based fuel cycle for the LWR reactor of current technology. Comparison of proliferation resistance of all-Uranium vs. Thorium cycles for LWR (subnational group threat) All-U fuel Th–based fuel Material Barriers Isotopic High Very High Chemical High High Radiological High Very High Mass and Bulk Moderate Moderate Detectability High Very High Thorium produces through a nuclear reaction the fissile isotope U-233. U-233 has been determined to be at least as efficient as U-235 as a weapon material. Therefore, a relatively small amount of natural (or enriched) uranium can be added to thorium in order to dilute the generated U-233 below the proliferation level of 12%, thus creating an effective barrier to diversion of U-233. It should be noted that grading of the all–U case presented in the Table just above is based on the values adopted in the NERAC report and should be considered as a guideline only. The justification of the corresponding values for the Th–based case are discussed below:

• Isotopic barrier grade increased from high to very high,

Page 9: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   9    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

• Amount of fissile material in spent fuel decreased by a factor 2–4, • Critical mass for Pu composition is increased by 30–50%, • Fresh fuel enrichment below 20%, i.e. low enrichment, • Spontaneous neutron generation is increased by a factor of 2–2.5, • Heat-generation rate (Pu-238) is increased by a factor of 2.5–4, • Radiological barrier grade increased from high to very high, • Pu-238 + Pu-240 + Pu-242 content increased by a factor of 1.5–2, • U-232 present only in Th–based fuel, • Detectability barrier grade increased from high to very high, • Passive delectability increased due to an increase in spontaneous fission, • Hardness and uniqueness of the radiation signature increased (U-232).

The objective of thorium fuel cycle should be to ensure ‘proliferation-resistance’ of ‘fissile’ material and at the same time produce minimum quantities of ‘radiotoxic waste’. The radiotoxicity of the waste can be significantly reduced if the bred U-233 is separated and recycled but the disadvantage associated with this strategy is that U-233 is ‘fissile’ and constitutes the proliferation problem. The U-233 can be rendered proliferation-resistant through mixing with U-238 and denaturing. However, on recycling such denatured fuel, a new source of radiotoxicity is introduced in the fuel cycle. The proliferation/toxicity dilemma of thorium based fuel cycle can be resolved in combination with one of the following family of accelerated driven Energy Amplifiers (EA):

• completely thermalized neutron (graphite moderator) #1, • partially thermalized neutron (pressurized water moderator) #2 • fast neutron (lead cooled) #3

U-232 is always present in ‘fissile’ U-233 and has the daughter product Tl-208, which emits highly penetrating 2.6 MeV gamma photons. The fractional quantity (ppm) of U-232 in the recycled uranium from spent thorium fuel as function of burnup is significant. Burnup #1 #2 #3 40 GWd/t 200 ppm 3100 ppm 500 ppm 80 GWd/t 200 ppm 5000 ppm 900 ppm 160 GWd/t not applicable not applicable 2200 ppm

Page 10: LFTR Proliferation Concerns

10   LFTR  PROLIFERATION  CONCERNS    

   

The gamma activity provides adequate barrier to diversion, particularly when the U-232 content is in the higher range. However, the presence of U-232 will pose problem during reprocessing and re-fabrication because of the need of very thick lead shielding to reduce the gamma dose. The lead shielding thickness in cm is necessary to reduce the gamma dose rate. This is not a factor with the LFTR since the fuel and its daughter particles are consumed in the reactor. In contrast to uranium-fuelled reactors (U-238+U-235), where there is no natural denaturant for plutonium isotopes, U-238 is an effective denaturant for the bred U-233 in thorium (Th-232) cycle. A possible solution to safeguard the reactor grade U-233 is to denature with U-238. Denaturing the reactor-grade uranium with a equal quantity of U-238 should be regarded as the lower limit for non-proliferation. The resulting radiotoxicity is a factor 50 lower than that obtained by using U-238 as the breeder fuel. Depending on which system is used, different levels of the isotopes U-232 will be produced. Through its high gamma active Tl-208 daughter product, one will require shielding in any recycling/fabrication stages. However, this gamma activity will also allow one to monitor movements of the material and possible diversion. Th-232 /U-233 offers potentially significant advantages over U-238/U-235/Pu-239, in terms of lesser transuranic actinide waste and adequate proliferation-resistance.

Controversy  In  January  2009,  the  Institute  for  Energy  and  Environmental  Research  (IEER)  and  Physicians  for  Social  Responsibility  (PSR)  issued  a  “fact  sheet”  called  “Thorium  Fuel:  No  Panacea  for  Nuclear  Power.”  The  authors  of  this  sheet  were  Arjun  Makhijani  and  Michele  Boyd:  

Thorium fuel cycles are promoted on the grounds that they pose less of a proliferation risk compared to conventional reactors. However, whether there is any significant non-proliferation advantage depends on the design of the various thorium-based systems. No thorium system would negate proliferation risks altogether. Neutron bombardment of thorium (indirectly) produces uranium-233, a fissile material, which can be used in nuclear weapons (1 Significant Quantity of U-233 = 8kg).

The USA has successfully tested weapon/s using uranium-233 cores. India may be interested in the military potential of thorium/uranium-233 in addition to civil applications. India is refusing to allow safeguards to apply to its entire 'advanced' thorium/plutonium fuel cycle, strongly suggesting a military dimension.

The possible use of highly enriched uranium (HEU) or plutonium to initiate a thorium-232/uranium-233 reaction, or proposed systems using thorium in

Page 11: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   11    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

conjunction with HEU or plutonium as fuel, present risks of diversion of HEU or plutonium for weapons production as well as providing a rationale for the ongoing operation of dual-use enrichment and reprocessing plants. Thorium fuelled reactors could also be used to irradiate uranium to produce weapon grade plutonium.

Kang and von Hippel conclude that "the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented". For example, the co-production of uranium-232 complicates weapons production but, as Kang and von Hippel note, "just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in "target" channels and discharged a few times more frequently than the natural-uranium "driver" fuel."

One proposed system is an Accelerator Driven Systems (ADS) in which an accelerator produces a proton beam, which is targeted at target nuclei (e.g. lead, bismuth) to produce neutrons. The neutrons can be directed to a subcritical reactor containing thorium. ADS systems could reduce but not negate the proliferation risks.

Last  year,  Dr.  Alexander  Cannara  wrote  a  letter  to  IEER/PSR  pointing  out  errors  and  omissions  in  the  “fact  sheet”  and  requesting  IEER/PSR  to  implement  corrections.  To  the  best  of  my  knowledge  no  amendment  or  correction  was  ever  issued.  

This  is  an  extended  rebuttal  of  the  claims  made  about  thorium  by  Makhijani  and  Boyd;  the  entirety  of  their  original  statement  is  included  in  the  rebuttal  and  denoted  by  italics.  

Thorium  “fuel”  has  been  proposed  as  an  alternative  to  uranium  fuel  in  nuclear  reactors.  There  are  not  “thorium  reactors,”  but  rather  proposals  to  use  thorium  as  a  “fuel”  in  different  types  of  reactors,  including  existing  light-­‐water  reactors  and  various  fast  breeder  reactor  designs.  

It  would  seem  that  Mr.  Makhijani  and  Ms.  Boyd  are  unaware  of  the  work  done  at  Oak  Ridge  National  Laboratory  under  Dr.  Alvin  Weinberg  from  1955  to  1974  on  the  subject  of  fluid-­‐fueled  reactors,  particularly  those  that  used  liquid-­‐fluoride  salts  as  a  medium  in  which  to  sustain  nuclear  reactions.  The  liquid-­‐fluoride  reactor  was  the  most  promising  of  these  fluid-­‐fueled  designs,  and  indeed  it  did  have  the  capability  to  use  thorium  as  fuel.  It  was  not  a  light-­‐water  reactor,  nor  was  it  a  fast-­‐breeder  reactor.  It  has  a  thermal  (slowed-­‐down)  neutron  spectrum  that  made  it  easier  to  control  and  vastly  improved  the  amount  of  fissile  fuel  it  needed  to  start.  It  operated  at  atmospheric  pressure  rather  than  the  high  pressure  of  water-­‐cooled  reactors.  It  

Page 12: LFTR Proliferation Concerns

12   LFTR  PROLIFERATION  CONCERNS    

   

was  also  singularly  suited  to  the  use  of  thorium  due  to  the  nature  of  its  chemistry  and  the  chemistry  of  thorium  and  uranium.  

Thorium,  which  refers  to  thorium-­‐232,  is  a  radioactive  metal  that  is  about  three  times  more  abundant  than  uranium  in  the  natural  environment.  Large  known  deposits  are  in  Australia,  India,  and  Norway.  Some  of  the  largest  reserves  are  found  in  Idaho  in  the  U.S.  The  primary  U.S.  company  advocating  for  thorium  fuel  is  Thorium  Power  (www.thoriumpower.com).  Contrary  to  the  claims  made  or  implied  by  thorium  proponents,  however,  thorium  doesn’t  solve  the  proliferation,  waste,  safety,  or  cost  problems  of  nuclear  power,  and  it  still  faces  major  technical  hurdles  for  commercialization.  

Mr.  Makhijani  and  Ms.  Boyd  may  wish  to  update  their  document  since  “Thorium  Power”  is  now  called  “Lightbridge”  and  no  longer  advocates  for  the  use  of  thorium,  whereas  the  community  of  supporters  of  liquid-­‐fluoride  thorium  reactors  (LFTR)  still  maintains  strong  support  for  the  use  of  thorium  because  it  is  indeed  a  solution  to  the  issues  of  proliferation,  waste,  safety,  and  cost  that  accompany  the  present  use  of  solid-­‐fueled,  water-­‐cooled  reactors.  

Thorium  is  not  actually  a  “fuel”  because  it  is  not  fissile  and  therefore  cannot  be  used  to  start  or  sustain  a  nuclear  chain  reaction.  A  fissile  material,  such  as  uranium-­‐235  (U-­‐235)  or  plutonium-­‐239  (which  is  made  in  reactors  from  uranium-­‐238),  is  required  to  kick-­‐start  the  reaction.  The  enriched  uranium  fuel  or  plutonium  fuel  also  maintains  the  chain  reaction  until  enough  of  the  thorium  target  material  has  been  converted  into  fissile  uranium-­‐233  (U-­‐233)  to  take  over  much  or  most  of  the  job.  An  advantage  of  thorium  is  that  it  absorbs  slow  neutrons  relatively  efficiently  (compared  to  uranium-­‐238)  to  produce  fissile  uranium-­‐233.  

On  the  contrary,  thorium  is  very  much  a  fuel  because  in  the  steady-­‐state  operation  of  a  LFTR,  it  is  the  only  thing  that  is  consumed  to  make  energy.  Makhijani  and  Boyd  are  correct  that  any  nuclear  reactor  needs  fissile  material  to  start  the  chain  reaction,  and  the  LFTR  is  no  different,  but  the  important  point  is  that  once  started  on  fissile  material,  LFTR  can  run  indefinitely  on  only  thorium  as  a  feed—it  will  not  continue  to  consume  fissile  material.  That  is  very  much  the  characteristic  of  a  true  fuel.  “Burning  thorium”  in  this  manner  is  possible  because  the  LFTR  uses  the  neutrons  from  the  fissioning  of  uranium-­‐233  to  convert  thorium  into  uranium-­‐233  at  the  same  rate  at  which  it  is  consumed.  The  “inventory”  of  uranium-­‐233  remains  stable  over  the  life  of  the  reactor  when  production  and  consumption  are  balanced.  Today’s  reactors  use  solid-­‐uranium  oxide  fuel  that  is  covalently-­‐bonded  and  sustains  radiation  damage  during  its  time  in  the  reactor.  The  fluoride  fuel  used  in  LFTR  is  ionically-­‐bonded  and  impervious  to  radiation  damage  no  matter  what  the  exposure  duration.  LFTR  can  be  used  to  consume  uranium-­‐235  or  plutonium-­‐239  recovered  from  nuclear  weapons  and  “convert”  it,  for  all  intents  and  purposes,  to  uranium-­‐233  

Page 13: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   13    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

that  will  enable  the  production  of  energy  from  thorium  indefinitely.  Truly  this  is  a  reactor  design  that  can  “beat  swords  into  plowshares”  in  a  safe  and  economically  attractive  way.  

The  use  of  enriched  uranium  or  plutonium  in  thorium  fuel  has  proliferation  implications.  Although  U-­‐235  is  found  in  nature,  it  is  only  0.7  percent  of  natural  uranium,  so  the  proportion  of  U-­‐235  must  be  industrially  increased  to  make  “enriched  uranium”  for  use  in  reactors.  Highly  enriched  uranium  and  separated  plutonium  are  nuclear  weapons  materials.  

Since  so  many  nuclear  weapons  have  already  been  built  and  are  being  decommissioned,  one  might  assume  that  Makhijani  and  Boyd  would  welcome  a  technology  like  LFTR  that  could  safely  consume  these  sensitive  materials  in  an  economically-­‐advantageous  way,  beating  swords  into  plowshares  and  using  material  that  was  once  fashioned  as  a  weapon  as  a  material  that  can  provide  light  and  energy  to  billions.  Enriched  uranium  or  plutonium  can’t  simply  be  “thrown  away”.  LFTR  puts  these  materials  to  productive  use  as  they  are  destroyed  in  the  reactor  and  uranium-­‐233  is  generated.  

In  addition,  U-­‐233  is  as  effective  as  plutonium-­‐239  for  making  nuclear  bombs.  In  most  proposed  thorium  fuel  cycles,  reprocessing  is  required  to  separate  out  the  U-­‐233  for  use  in  fresh  fuel.  This  means  that,  like  uranium  fuel  with  reprocessing,  bomb-­‐making  material  is  separated  out,  making  it  vulnerable  to  theft  or  diversion.  Some  proposed  thorium  fuel  cycles  even  require  20%  enriched  uranium  in  order  to  get  the  chain  reaction  started  in  existing  reactors  using  thorium  fuel.  It  takes  90%  enrichment  to  make  weapons-­‐usable  uranium,  but  very  little  additional  work  is  needed  to  move  from  20%  enrichment  to  90%  enrichment.  Most  of  the  separative  work  is  needed  to  go  from  natural  uranium,  which  has  0.7%  uranium-­‐235  to  20%  U-­‐235.  

In  a  fluoride  reactor,  all  of  the  fuel  processing  equipment  will  be  located  in  a  containment  region  containing  the  reactor  and  its  primary  heat  exchangers,  under  very  high  radiation  fields,  and  under  the  high  heat  needed  to  keep  the  fuel  liquid.  Once  the  system  is  properly  designed  to  direct  uranium-­‐233  created  in  the  outer  regions  of  the  reactor  (the  “blanket”)  to  the  central  regions  of  the  reactor  (the  “core”)  there  will  be  no  possibility  of  redirection  of  the  material  flow.  Such  a  redirection  would  necessitate  a  rebuild  of  the  entire  reactor  and  would  be  vastly  beyond  the  capabilities  of  the  operators.  Furthermore,  the  nature  of  U-­‐233  removal  and  transfer  from  blanket  to  core  involves  the  operation  of  an  electrolytic  cell  that  will  allow  very  precise  control  and  accountability  of  the  material  in  question.  Unlike  solid-­‐fueled  reactors  the  uranium-­‐233  never  needs  to  leave  the  secure  area  of  the  containment  building  or  come  in  contact  with  humans  in  order  to  continue  the  operation  of  the  reactor.  This  is  another  important  point  that  the  authors  have  failed  to  distinguish  as  they  have  ignored  the  existence  or  implications  of  fluid-­‐fueled  

Page 14: LFTR Proliferation Concerns

14   LFTR  PROLIFERATION  CONCERNS    

   

thorium  reactors.  

To  claim  that  uranium-­‐233  is  just  as  effective  as  plutonium-­‐239  for  nuclear  weapons  is  gross  simplification  bordering  on  outright  deception.  They  have  similar  values  for  critical  mass,  but  this  leaves  out  a  very  important  point.  The  nuclear  reactions  that  consume  uranium-­‐233  also  produce  small  amounts  of  uranium-­‐232,  a  contaminant  that  will  later  be  mentioned  by  the  authors  but  ignored  at  this  stage  of  the  criticism.  U-­‐232  has  a  decay  sequence  that  includes  the  hard  gamma-­‐ray-­‐emitting  radioisotopes  bismuth-­‐212  and  thallium-­‐208.  Indeed,  the  half-­‐life  of  U-­‐232  is  short  enough  that  this  decay  chain  begins  to  set  up  within  days  of  the  purification  of  the  uranium,  and  within  a  few  months  that  gamma-­‐ray  flux  from  the  material  is  intense.  These  gamma  rays  destroy  the  electronics  of  a  nuclear  weapon,  compromise  the  chemical  explosives,  and  clearly  signal  to  detection  systems  where  the  fissile  material  is  located.  This  is  one  of  the  key  reasons  why  no  operational  nuclear  weapons  have  ever  been  built  using  uranium-­‐233  as  the  fissile  material.  

It  has  been  claimed  that  thorium  fuel  cycles  with  reprocessing  would  be  much  less  of  a  proliferation  risk  because  the  thorium  can  be  mixed  with  uranium-­‐238.  In  this  case,  fissile  uranium-­‐233  is  also  mixed  with  non-­‐fissile  uranium-­‐238.  The  claim  is  that  if  the  uranium-­‐238  content  is  high  enough,  the  mixture  cannot  be  used  to  make  bombs  without  a  complex  uranium  enrichment  plant.  This  is  misleading.  More  uranium-­‐238  does  dilute  the  uranium-­‐233,  but  it  also  results  in  the  production  of  more  plutonium-­‐239  as  the  reactor  operates.  So  the  proliferation  problem  remains  either  bomb-­‐usable  uranium-­‐233  or  bomb-­‐usable  plutonium  is  created  and  can  be  separated  out  by  reprocessing.  

In  my  opinion,  mixing  uranium-­‐238  with  uranium-­‐233  during  the  normal  operation  of  a  LFTR  is  a  bad  idea  because  it  compromises  the  capability  of  the  reactor  to  “burn”  thorium  to  a  degree  that  it  then  becomes  necessary  to  add  fissile  material  to  keep  the  reactor  running.  This  is  because  uranium-­‐238  will  absorb  many  of  the  neutrons  that  would  otherwise  convert  thorium  into  uranium-­‐233,  instead  converting  uranium-­‐238  into  plutonium-­‐239.  Plutonium-­‐239  is  a  poor  fuel  in  a  LFTR  due  to  the  limited  solubility  of  plutonium  trifluoride  (PuF3)  and  the  poor  performance  of  plutonium  in  a  thermal-­‐neutron  spectrum  (only  2/3  of  the  plutonium-­‐239  will  fission  when  struck  by  a  neutron).  

But  something  is  possible  in  the  fluid  fuel  of  a  LFTR  that  is  impossible  in  the  solid  fuel  of  a  conventional  reactor  with  regards  to  the  “downblending”  of  uranium.  Under  extreme  scenarios,  it  may  be  desireable  to  have  a  separate  supply  of  uranium-­‐238  inside  the  reactor  containment  that  could  be  irreversibly  mixed  with  the  uranium-­‐233  in  the  core.  This  would  have  the  effect  of  making  the  reactor  unable  to  restart,  and  despite  the  contention  of  Makhajani  and  Boyd,  there  is  no  feasible  way  to  isotopically  separate  uranium-­‐233  (contaminated  with  uranium-­‐

Page 15: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   15    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

232)  from  uranium-­‐238  because  of  the  severe  gamma  radiation  that  would  be  emitted  during  any  attempt  to  separate  the  isotopes.  This  approach  to  “just-­‐in-­‐time”  downblending  is  only  possible  with  fluid  fuel,  and  its  absence  of  consideration  in  the  document  again  shows  that  the  authors  are  unaware  of  the  fluid  fuel  option  and  its  implications.  

Further,  while  an  enrichment  plant  is  needed  to  separate  U-­‐233  from  U-­‐238,  it  would  take  less  separative  work  to  do  so  than  enriching  natural  uranium.  This  is  because  U-­‐233  is  five  atomic  weight  units  lighter  than  U-­‐238,  compared  to  only  three  for  U-­‐235.  It  is  true  that  such  enrichment  would  not  be  a  straightforward  matter  because  the  U-­‐233  is  contaminated  with  U-­‐232,  which  is  highly  radioactive  and  has  very  radioactive  radionuclides  in  its  decay  chain.  The  radiation-­‐dose-­‐related  problems  associated  with  separating  U-­‐233  from  U-­‐238  and  then  handling  the  U-­‐233  would  be  considerable  and  more  complex  than  enriching  natural  uranium  for  the  purpose  of  bomb  making.  But  in  principle,  the  separation  can  be  done,  especially  if  worker  safety  is  not  a  primary  concern;  the  resulting  U-­‐233  can  be  used  to  make  bombs.  There  is  just  no  way  to  avoid  proliferation  problems  associated  with  thorium  fuel  cycles  that  involve  reprocessing.  Thorium  fuel  cycles  without  reprocessing  would  offer  the  same  temptation  to  reprocess  as  today’s  once-­‐through  uranium  fuel  cycles.  

Makhijani  and  Boyd  really  betray  a  fundamental  lack  of  understanding  of  the  nature  of  uranium  isotope  separation  facilities  with  their  simplistic  and  cursory  description  of  U-­‐233  separation  from  U-­‐238.  Such  a  process  would  be  so  difficult  due  to  the  presence  of  U-­‐232  that  it  simply  would  not  be  considered,  even  by  the  hypothetical  “suicide”  operators  that  they  postulate.  Anyone  who  had  invested  the  large  sums  of  money  into  a  uranium  isotope  separation  system  would  never  risk  permanently  crippling  its  ability  to  operate  by  introducing  U-­‐232-­‐contaminated  feed  into  the  system.  

Proponents  claim  that  thorium  fuel  significantly  reduces  the  volume,  weight  and  long-­‐term  radiotoxicity  of  spent  fuel.  Using  thorium  in  a  nuclear  reactor  creates  radioactive  waste  that  proponents  claim  would  only  have  to  be  isolated  from  the  environment  for  500  years,  as  opposed  to  the  irradiated  uranium-­‐only  fuel  that  remains  dangerous  for  hundreds  of  thousands  of  years.  This  claim  is  wrong.  The  fission  of  thorium  creates  long-­‐lived  fission  products  like  technetium-­‐99  (half-­‐life  over  200,000  years).  While  the  mix  of  fission  products  is  somewhat  different  than  with  uranium  fuel,  the  same  range  of  fission  products  is  created.  With  or  without  reprocessing,  these  fission  products  have  to  be  disposed  of  in  a  geologic  repository.  

Again,  the  authors  make  blanket  statements  about  “thorium”  but  then  confine  their  examination  to  some  variant  of  solid  thorium  fuel  in  a  conventional  reactor.  In  a  LFTR,  thorium  can  be  consumed  with  exceptionally  high  efficiency,  approaching  completeness.  Unburned  thorium  and  valuable  uranium-­‐233  is  simply  recycled  to  

Page 16: LFTR Proliferation Concerns

16   LFTR  PROLIFERATION  CONCERNS    

   

the  next  generation  of  fluoride  reactor  when  a  reactor  is  decommissioned.  The  fuel  is  not  damaged  by  radiation.  Thus  thorium  and  uranium-­‐233  would  not  enter  a  waste  stream  during  the  use  of  a  LFTR.  

All  fission  produces  a  similar  set  of  fission  products,  each  with  roughly  half  the  mass  of  the  original  fissile  material.  Most  have  very  short  half-­‐lives,  and  are  highly  radioactive  and  highly  dangerous.  A  very  few  have  very  long  half-­‐lives,  very  little  radioactivity,  and  little  concern.  A  simple  but  underappreciated  truth  is  that  the  longer  the  half-­‐life  of  a  material,  the  less  radioactive  and  the  less  dangerous  it  is.  Technetium-­‐99  (Tc-­‐99)  has  a  half-­‐life  of  100,000  years  and  indeed  is  a  product  of  the  fission  of  uranium-­‐233,  just  as  it  is  a  product  of  the  fission  of  uranium-­‐235  or  plutonium-­‐239.  Its  immediate  precursor,  technetium-­‐99m  (Tc-­‐99m),  has  a  half-­‐life  of  six  hours  and  so  is  approximately  150  million  times  more  radioactive  than  Tc-­‐99.  

Nevertheless,  it  might  come  as  a  surprise  to  the  casual  reader  that  hundreds  of  thousands  of  people  intentionally  ingest  Tc-­‐99m  every  year  as  part  of  medical  imaging  procedures  because  it  produces  gamma  rays  that  allow  radiography  technicians  to  image  internal  regions  of  the  body  and  diagnose  concerns.  The  use  of  Tc-­‐99m  thus  allows  physicians  to  forego  thousands  of  exploratory  and  invasive  surgeries  that  would  otherwise  risk  patient  health.  The  Tc-­‐99m  decays  over  the  period  of  a  few  days  to  Tc-­‐99,  with  its  100,000  half-­‐life,  extremely  low  levels  of  radiation,  and  low  risk.  

What  is  the  ultimate  fate  of  the  Tc-­‐99?  It  is  excreted  from  the  body  through  urination  and  ends  up  in  the  municipal  water  supply.  If  the  medical  community  and  radiological  professionals  intentionally  cause  patients  to  ingest  a  form  of  technetium  that  is  150  million  times  more  radioactive  than  Tc-­‐99,  with  the  intent  that  its  gamma  rays  be  emitted  within  the  body,  and  then  sees  no  risk  from  the  excretion  of  Tc-­‐99  into  our  water  supply,  where  is  the  concern?  It  is  yet  another  example  of  fear,  uncertainty,  and  doubt  that  Makhijani  and  Boyd  would  raise  this  issue  as  if  it  represented  some  sort  of  condemnation  of  the  use  of  thorium  for  nuclear  power.  

If  the  spent  fuel  is  not  reprocessed,  thorium-­‐232  is  very-­‐long  lived  (half-­‐life:14  billion  years)  and  its  decay  products  will  build  up  over  time  in  the  spent  fuel.  This  will  make  the  spent  fuel  quite  radiotoxic,  in  addition  to  all  the  fission  products  in  it.  It  should  also  be  noted  that  inhalation  of  a  unit  of  radioactivity  of  thorium-­‐232  or  thorium-­‐228  (which  is  also  present  as  a  decay  product  of  thorium-­‐232)  produces  a  far  higher  dose,  especially  to  certain  organs,  than  the  inhalation  of  uranium  containing  the  same  amount  of  radioactivity.  For  instance,  the  bone  surface  dose  from  breathing  an  amount  (mass)  of  insoluble  thorium  is  about  200  times  that  of  breathing  the  same  mass  of  uranium.  

Page 17: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   17    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

Statements  like  this  really  cause  me  to  wonder  if  Makhijani  and  Boyd  understand  the  nature  of  radioactivity.  Yes,  thorium-­‐232  has  a  14-­‐billion-­‐year  half-­‐life,  which  means  that  the  radioactivity  of  thorium  is  exceptionally  low.  It  will  rise  as  the  decay  chain  of  Th-­‐232  begins  to  form,  but  it  is  still  at  a  very  low  level.  To  be  concerned  with  the  radioactivity  of  thorium  in  spent  fuel,  while  neglecting  to  mention  the  five  billion  kilograms  of  thorium  contained  in  each  meter  of  the  Earth’s  continental  crust  again  appears  to  be  another  example  of  fear,  uncertainty,  and  doubt  levied  unfairly  against  the  use  of  thorium.  The  buildup  of  thorium-­‐228  as  part  of  the  decay  of  thorium  will  happen  on  a  scale  within  the  Earth’s  crust  so  titanically  in  excess  of  any  activity  on  the  part  of  man  so  as  to  render  that  point  utterly  immaterial  to  any  discussion  of  thorium  as  a  nuclear  fuel.  

Since  both  thorium  and  uranium  are  natural  and  common  constituents  of  the  Earth’s  crust,  discussing  a  bone  surface  dose  obtained  by  breathing  insoluble  thorium—a  very  strange  exposure  pathway—and  contrasting  it  with  uranium  is  again  utterly  immaterial  to  the  use  of  thorium  as  a  nuclear  fuel.  Do  Makhijani  and  Boyd  mean  to  say  that  it  would  be  preferable  to  be  breathing  uranium  instead?  The  criticism  seems  to  have  no  structure.  

Furthermore,  LFTR  will  not  reject  thorium  to  a  waste  stream  nor  generate  “spent  fuel”  in  the  conventional  sense.  Thorium  remains  in  the  reactor  until  consumed  for  energy.  At  shutdown,  unconsumed  thorium  is  transferred  to  the  next  generation  of  reactor.  

Finally,  the  use  of  thorium  also  creates  waste  at  the  front  end  of  the  fuel  cycle.  The  radioactivity  associated  with  these  is  expected  to  be  considerably  less  than  that  associated  with  a  comparable  amount  of  uranium  milling.  However,  mine  wastes  will  pose  long-­‐term  hazards,  as  in  the  case  of  uranium  mining.  There  are  also  often  hazardous  non-­‐radioactive  metals  in  both  thorium  and  uranium  mill  tailings.  

Thorium  is  found  with  rare-­‐earth  mineral  deposits,  and  global  demand  for  rare-­‐earth  mining  will  inevitably  bring  up  thorium  deposits.  At  the  present  time,  we  in  the  US  have  the  strange  policy  of  considering  this  natural  material  as  a  “radioactive  waste”  that  must  be  disposed  at  considerable  cost.  Other  countries  like  China  have  taken  a  longer  view  on  the  issue  and  simply  stockpile  the  thorium  that  they  recover  during  rare-­‐earth  mining  for  future  use  in  thorium  reactors.  In  addition,  the  United  States  has  an  already-­‐mined  supply  of  3200  metric  tonnes  of  thorium  in  Nevada  that  will  meet  energy  needs  for  many  decades.  The  issues  surrounding  thorium  mining  are  immaterial  to  its  discussion  as  a  nuclear  energy  source  because  thorium  will  be  mined  under  any  circumstance,  but  if  we  use  it  as  a  nuclear  fuel  we  can  save  time  and  effort  by  avoiding  the  expense  of  trying  to  throw  it  away.  

Page 18: LFTR Proliferation Concerns

18   LFTR  PROLIFERATION  CONCERNS    

   

Research  and  development  of  thorium  fuel  has  been  undertaken  in  Germany,  India,  Japan,  Russia,  the  UK  and  the  U.S.  for  more  than  half  a  century.  Besides  remote  fuel  fabrication  and  issues  at  the  front  end  of  the  fuel  cycle,  thorium-­‐U-­‐233  breeder  reactors  produce  fuel  (“breed”)  much  more  slowly  than  uranium-­‐plutonium-­‐239  breeders.  This  leads  to  technical  complications.  India  is  sometimes  cited  as  the  country  that  has  successfully  developed  thorium  fuel.  In  fact,  India  has  been  trying  to  develop  a  thorium  breeder  fuel  cycle  for  decades  but  has  not  yet  done  so  commercially.  

Thorium/U233  reactors  like  LFTR  produce  sufficient  U-­‐233  to  make  up  for  U-­‐233  consumed  in  the  fission  process.  This  may  be  what  the  authors  meant  by  “breeding  more  slowly”,  but  since  they  consider  plutonium  a  dangerous  substance  and  eschew  the  use  of  nuclear  power,  it  is  a  wonder  why  they  would  consider  a  reactor  that  does  not  produce  plutonium  as  having  some  sort  of  deficiency.  They  neglect  to  elaborate  on  what  sort  of  “technical  complications”  this  very  attractive  feature  would  entail.  

The  thorium  effort  in  India  has  been  centered  around  the  use  of  thorium  in  solid-­‐oxide  form,  and  has  suffered  from  the  deficiencies  of  using  this  approach,  which  are  transcended  through  the  use  of  thorium  in  liquid  fluoride  form.  This  is  further  evidence  that  the  authors  are  unaware  of  the  implications  of  the  liquid-­‐fluoride  thorium  reactor.  

One  reason  reprocessing  thorium  fuel  cycles  haven’t  been  successful  is  that  uranium-­‐232  (U  232)  is  created  along  with  uranium-­‐233.  U-­‐232,  which  has  a  half-­‐life  of  about  70  years,  is  extremely  radioactive  and  is  therefore  very  dangerous  in  small  quantities:  a  single  small  particle  in  a  lung  would  exceed  legal  radiation  standards  for  the  general  public.  U-­‐232  also  has  highly  radioactive  decay  products.  Therefore,  fabricating  fuel  with  U-­‐233  is  very  expensive  and  difficult.  

Previously  I  mentioned  the  implications  of  the  presence  of  uranium-­‐232  contamination  within  uranium-­‐233  and  its  anti-­‐proliferative  nature  with  regards  to  nuclear  weapons.  U-­‐232  contamination  also  makes  fabrication  of  solid  thorium-­‐oxide  fuel  containing  uranium-­‐233-­‐oxide  very  difficult.  In  the  liquid-­‐fluoride  reactor,  fuel  fabrication  is  unnecessary  and  this  difficulty  is  completely  averted.  

Thorium  may  be  abundant  and  possess  certain  technical  advantages,  but  it  does  not  mean  that  it  is  economical.  Compared  to  uranium,  thorium  fuel  cycle  is  likely  to  be  even  more  costly.  In  a  once-­‐through  mode,  it  will  need  both  uranium  enrichment  (or  plutonium  separation)  and  thorium  target  rod  production.  In  a  breeder  configuration,  it  will  need  reprocessing,  which  is  costly.  In  addition,  as  noted,  inhalation  of  thorium-­‐232  produces  a  higher  dose  than  the  same  amount  of  uranium-­‐238  (either  by  radioactivity  or  by  weight).  Reprocessed  thorium  creates  even  more  risks  due  to  the  highly  radioactive  U-­‐232  created  in  the  reactor.  This  makes  worker  protection  more  

Page 19: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   19    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

difficult  and  expensive  for  a  given  level  of  annual  dose.  

The  liquid-­‐fluoride  thorium  reactor  has  an  exceptionally  simple  and  self-­‐contained  fuel  cycle  that  has  every  promise  of  being  less-­‐expensive  than  today’s  wasteful  and  complicated  “once-­‐through”  approach  to  uranium  fuel  utilization.  Makhijani  and  Boyd  try  to  assign  thorium  to  the  wasteful  “once-­‐through”  fuel  cycle,  point  out  deficiencies,  and  then  condemn  thorium  as  having  no  promise.  This  might  analogous  to  putting  diesel  fuel  in  a  gasoline-­‐powered  car  and  then  pointing  out  how  deficient  diesel  fuel  is  when  the  car  will  no  longer  operate.  It  is  disingenuous  and  deceptive,  and  the  kindest  thing  that  can  be  said  is  that  Makhijani  and  Boyd  are  ignorant  of  the  implications  of  the  liquid-­‐fluoride  thorium  reactor  and  its  fuel  cycle,  which  they  should  not  be  if  they  presume  to  issue  a  “position  paper”  such  as  this.  

Finally,  the  use  of  thorium  also  creates  waste  at  the  front  end  of  the  fuel  cycle.  The  radioactivity  associated  with  these  is  expected  to  be  considerably  less  than  that  associated  with  a  comparable  amount  of  uranium  milling.  However,  mine  wastes  will  pose  long-­‐term  hazards,  as  in  the  case  of  uranium  mining.  There  are  also  often  hazardous  non-­‐radioactive  metals  in  both  thorium  and  uranium  mill  tailings.  

This  is  a  repeat  of  the  issue  previously  considered,  as  is  immaterial  as  a  factor  for  or  against  the  use  of  thorium  in  nuclear  powered  reactors  since  thorium  will  be  mined  anyway  during  the  mining  of  rare-­‐earth  minerals.  The  only  question  will  be  whether  the  mined  thorium  will  be  wasted  or  not.  

Conclusions  In  conclusion,  Makhijani  and  Boyd  fail  to  consider  the  implications  of  the  liquid-­‐fluoride  thorium  reactor  on  all  aspects  relating  to  the  benefits  of  thorium  as  a  nuclear  fuel.  They  fail  to  consider  its  strong  benefits  with  regards  to  nuclear  proliferation,  since  no  operational  nuclear  weapon  has  ever  been  fabricated  from  thorium  or  uranium-­‐233.  They  fail  to  consider  how  LFTR  can  be  used  to  productively  consume  nuclear  weapons  material  made  excess  by  the  end  of  the  Cold  War.  They  fail  to  consider  the  reduction  in  nuclear  waste  that  would  accompany  the  use  of  LFTR.  They  fail  entirely  to  account  for  the  safety  features  inherent  in  a  LFTR—how  low-­‐pressure  operation  and  a  chemically-­‐stable  fuel  form  allow  the  reactor  to  have  a  passive  safety  response  to  severe  accidents.  They  fail  to  account  for  the  improvement  in  cost  that  would  be  realized  if  LFTRs  were  to  efficiently  use  thorium,  reduce  the  need  for  mining  fossil  fuels,  and  increase  the  availability  of  energy.  

The  authors  of  the  rebuttal  concluded  with  the  following  statement:  "Mr.  Makhijani  and  Ms.  Boyd  should  retract  this  statement  in  its  entirety  as  flawed  and  deceptive  to  a  public  that  needs  clear  and  accurate  information  about  our  energy  future."  

Page 20: LFTR Proliferation Concerns

20   LFTR  PROLIFERATION  CONCERNS    

   

About  the  Author      

   

David  Amerine    David  Amerine  has  45  years  of  experience  in  the  nuclear  industry.  He  began  his  career  in  the  U.S.  Navy,  after  graduating  from  the  United  States  Naval  Academy  and  obtained  a  Masters  in  Management  Science  from  the  Naval  Post  Graduate  School  while  in  the  Navy.    After  leaving  the  Navy,  he  joined  Westinghouse  at  the  Department  of  Energy  (DOE)  Hanford  Site.    There  he  worked  as  a  shift  operations  manager  and  then  as  the  refueling  manager  for  the  initial  core  load  of  the  Fast  Flux  Test  Facility,  the  nation’s  prototype  breeder  reactor.    Mr.  Amerine  furthered  his  career  in  the  commercial  nuclear  power  industry  throughout  the  1980’s,  first  as  the  Nuclear  Steam  Supply  System  (NSSS)  vendor,  Combustion  Engineering,  Site  Manager  at  the  Palo  Verde  Nuclear  Generating  Station  during  startup  of  that  three-­‐reactor  plant  and  then  as  Assistant  Vice  President  Nuclear  at  Davis-­‐Besse  Nuclear  Power  Station.  There  he  led  special,  interdisciplinary  task  forces  for  complex  problem  resolutions  involving  engineering  and  operations  during  recovery  period  at  that  facility  back  in  the  late  1980’s.        

Page 21: LFTR Proliferation Concerns

LFTR  PROLIFERATION  CONCERNS   21    

THORIUM MOLTEN SALT REACTOR ASSOCIATION

Davis-­‐Besse  was  the  first  of  eight  nuclear  plants  where  he  was  part  of  the  leadership  team  or  the  leader  brought  in  to  restore  stakeholder  confidence  in  management  and/or  operations.  In  the  DOE  Nuclear  Complex  these  endeavor  recoveries  included  the  Replacement  Tritium  Facility,  the  Defense  Waste  Processing  Facility,  and  the  Salt  Waste  Processing  Facility  projects.  In  addition  to  Davis-­‐Besse  in  the  commercial  nuclear  industry,  in  1997  he  was  brought  in  as  the  Vice  President  of  Engineering  and  Services  at  the  Millstone  Nuclear  Power  Station  where  he  was  instrumental  in  leading  recovery  actions  following  the  facility  being  shut  down  by  the  Nuclear  Regulatory  Commission  (NRC).    His  responsibilities  included  establishing  robust  Safety  Conscious  Work  Environments  (SCWE)  programs.    In  2000,  Mr.  Amerine  assumed  the  role  of  Executive  Vice  President  of  Washington  Government,  a  $2.5  billion  business  unit  of  Washington  Group  International  (WGI).  In  this  role,  Mr.  Amerine  was  responsible  for  integrated  safety  management,  conduct  of  operations,  startup  test  programs,  and  synergies  between  the  diverse  operating  companies  and  divisions  that  made  up  WGI  Government.  Mr.  Amerine  was  then  selected  as  the  Executive  Vice  President  and  Deputy  General  Manager,  CH2M  Hill  Nuclear  Business  Group,  where  he  supported  the  President  in  managing  day-­‐to-­‐day  operation  of  the  group,  which  included  six  major  DOE  sites,  three  site  offices,  and  numerous  individual  contracts  in  the  international  nuclear  industry.    He  was  charged  with  improving  conduct  of  operations  and  project  management,  expenditures  and  staffing  oversight,  goal  setting,  performance  monitoring,  and  special  initiatives  leadership.    Mr.  Amerine  came  to  B&W  in  2009  where  he  was  subsequently  selected  as  President  of  Nuclear  Fuel  Services  in  early  2010  after  the  NRC  had  shut  down  that  facility  which  is  vital  to  the  security  of  the  United  States  since  it  is  the  sole  producer  of  fuel  for  our  nuclear  Navy.    He  led  the  restoration  of  confidence  of  the  various  stakeholders  including  the  NRC  and  Naval  Reactors.    The  plant  was  restored  to  full  operation  under  Mr.  Amerine’s  leadership.    He  retired  from  NFS  in  2011.