light nuclei tagging · previous viewnext view road finding (on/off) track fiting (on/off) save...

21
CLAS RTPC for 4 He Experiment & Light Nuclei Tagging S. Stepanyan (JLAB) For CLAS/eg6 group Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

Upload: others

Post on 24-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • CLAS RTPC for 4He Experiment & Light Nuclei Tagging

    S. Stepanyan (JLAB) For CLAS/eg6 group

    Exploring Hadron Structure with Tagged Structure Functions,

    Jefferson Lab, January 16-18, 2014

  • 2

    Outline

    n  Experiments in CLAS/EG6 run – DVCS and meson spectroscopy in coherent scattering

    n  Second generation RTPC n  RTPC calibrations with elastic scattering off 4He n  Preliminary results on coherent DVCS off 4He

    n  New Low-Energy Recoil Detector for CLAS12

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

  • 3

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    CLAS/Eg6 Run n  Meson Spectroscopy and DVCS (coherent and incoherent) on 4He n  Both experiments are making use of zero spin and isospin of the target n  Coherent DVCS on 4He will allow to extract real and imaginary parts of

    Compton amplitude in model independent way from BSA measurment

    ALU =!0 "( )!A

    !1 "( )+!2 "( )!A +!2 "( ) !A2 +!A2( )n  Production of π0η and π0η’ off 4He limits quantum numbers of exchange

    state and simplifies PWA analysis

    n  Both experiments required detection and identification of recoil α-particles q  2nd Generation Radial Time Projection Chamber with 20 cm long, 6 atm, 4He

    gaseous target located inside of the Hall-B superconducting solenoid (used for RTPC momentum analysis and Møller reduction)

    q  Production data with 6.6 GeV polarized electrons, 1 GeV run for RTPC calibration

  • 4

    Target & RTPC assembly for eg6

    New target cell, 6 mm ID & with 27 µm wall thickness, target gas He @ 6 atm. (Bonus run with 50 µm thick target cell)

    He @ 1 atm

    Working gas, NeDME @ 1 atm

    Open geometry (has not been utilized effectively)

    Improved backend readout and increase the trigger rate to 2.5 kHz

    Total material thickness on the way of particles at 90o is ~39 µm

    2 aluminized mylar foils, 2 and 6 µm thick

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

  • 5

    Δ, N*

    Elastic scattering on 4He at 1.2 GeV

    RTPC calibration

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

  • 6

    Selection of elastic events

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    Inclusive electron W-distribution of all events

    W = MHe

    2+ 2!M

    He

    2"Q

    2

    ! = Ee"E

    e'

    Q2= 2E

    eEe'(1" cos#

    e')

    φ- vs. Z-RTPC distribution of elastic electron in CLAS and a track in RTPC

    Difference between measured and calculated from elastic kinematics polar angle of recoil 4He

    Difference between measured and calculated from elastic kinematics polar angle of recoil 4He

  • 7

    Δϕ CLAS-RTPC (°)

    RTPC Efficiency: Detect Elastic 4He n  With electron is selected, look for RTPC track

    with matching vertex and scattering angles q  Each Δ-quantity below has a cut on the others’

    peaks q  Resolutions are roughly 8mm, 2°,3° on z,φ,θ

    n  Test cut sensitivity, particularly Δθ n  Result: ~400K Exclusive Elastic Events

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    ΔZ CLAS-RTPC (cm) Δθ CLAS-RTPC (°)

    W (GeV)

    Pass

    Fail Elastic Cuts

    Inclusive

    e 4He! "e 4He

  • 8

    RTPC Efficiency: Measure Yields

    n  The ration of the number of Exclusive and Inclusive Elastic events ( i.e. with and without 4He detection) will be the RTPC efficiency

    n  Shown here is Gaussian signal and backgrounds q  Physical models of background (quasi-

    elastic) and signal (radiated elastic peak) were also tried

    n  Efficiency is not highly sensitive to yield extraction method so long as it is consistent for exclusive and inclusive final states

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    W (GeV)

    Inclusive

    Exclusive

    Example Fits

  • 9

    RTPC Efficiency: Result

    n  What is the best variable(s)? q  Ideally p,θ,ϕ,z simultaneously q  Very limited p/θ range for elastics (50

    MeV/c, 5°) q  ϕ is tricky due to CLAS+RTPC

    acceptance n  Z-vertex is also important

    q  Calibration is more difficult at ends of the detector

    q  Sensitive to field effects q  We find similar tracking efficiencies

    for LEFT/RIGHT, although we know noise and # dead channels is different

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    Z-Vertex (cm)

    RTP

    C E

    ffic

    ienc

    y

    Q2 (GeV2)

    Yiel

    d

    LEFT

    RIGHT

  • 10

    RTPC gain calibration with elastic events

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    PID in RTPC is based on a track energy loss in the drift volume of the detector – calibration of gains of individual pads are very important Large gain variation from pad-to-pad is due to non-uniformity of space between GEM plains

  • 11

    DVCS Exclusivity Variables: Simulation vs. Data

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    θγX (°)

    Missing PT (GeV) Coplanarity θγγ*He (°)

    M2X (eγ4He) (GeV2)

    EX (eγ4He) (GeV)

    e4He è eγ4He

    Full Exclusivity Cuts |θcop| < 2° |θγX| < 2°

    PtX < 0.2 GeV |M2X| < 0.02 GeV2

  • 12

    BSA in coherent DVCS -

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    0

    ALU =α sinφ

    1 + β cosφ

    n  1-d t-bins n  83.7% beam polarization

    is taken into account n  1-σ MINOS uncertainties

  • 13

    –  Significant trends in t and xB, similar to Guzey’s calculation •  Model from EG6 proposal •  Kinematics are close but not matched to data

    Compton Form Factor HHe, Re and Im parts

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    EG6 Range 1 < Q2 < 2.3 GeV2

    0.05 < -t < 0.2 GeV2 0.1 < xB < 0.25

    GS: Guzey & Strikman, Phys. Rev. C 68 (2003) 015204

  • 14

    Results: BSA and Generalized EMC Ratio Beam Spin Asymmetry @ 90

    q  Significantly non-zero and relatively flat ~25%

    q  Consistent with HERMES ((eγX, no 4He detection)

    n  A. Airapetian et al, Phys. Rev. C 81 (2010) 035202

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    GS: Guzey & Strikman, Phys. Rev. C 68 (2003) 015204 LT: Liuti & Taneja, Phys. Rev. C 72 (2005) 032201

    AHe

    LU

    /A

    p LU

    @90

    AHeLUApLU

    @ 90◦

    Generalized EMC Ratio –  Binning chosen to match published

    e1dvcs kinematics for the denominator –  We only cover eg1dvcs’s lowest t-bin –  A hint of the predicted behavior

  • 15

    New LERD for CLAS12

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    N. Baltzel (ANL)

    •  Low-pressure wire chamber (LPWC), surrounded Si-strip layers, and scintillator fibers

    •  Insensitive to MIP, LPWC provides fast signal for triggering and PID

    •  All inside low-pressure vessel, vessel inside the solenoid (for simulation CLAS12 solenoid at 60% field has been used

    •  Momentum from tracking, PID from energy loss and time information

    Lessons learned from GEM RTPCs: o  big gain variations from pad-to-pad (two mechanically different detector

    designs, in both the main problem is uniformity of diisdance between GEM planes) - limits PID based on dE/dX

    o  no triggering capability, limits trigger rates, target windows have big effect in the trigger

  • 16

    Low energy recoil detector and CLAS12 CD

    Silicon Tracker

    Scintillator Counters, δt=60ps

    5T SC Solenoid Magnet

    Replace CLAS12 barrel tracker with LERD Use CTOF to extend momentum range of LERD

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

  • 17

    Particle ID

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

  • 18

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    Summary q  CLAS experiment for coherent photo- and electro-production on a spin and

    isospin zero target, 4He, run in 2009 (with shorter than PAC approve beam time) q  Second generation RTPC à la Bonus detector has been deployed for detection

    and identification of low energy recoil particles The new RTPC had few improvements – open geometry for a drift volume, lower material budget on a way particles, a much faster trigger rate …

    q  Although Bonus and eg6 RTPCs have very different mechanical design, the non-uniformity of distances between GEM planes remind a main issue for pad gain uniformity and hence was the limiting factor in PID reach

    q  For reliable detection and identification of wide verity of low energy particles - p, d, 3H, 3He, and 4He, a fast timing information from the detector is desirable

    q  Fast timing information can be used in the trigger as well – trigger rate was a limiting factor for high luminosity running in eg6, since with only CLAS trigger the 60% of events did not have RTPC track, and 40% come from target windows

    q  A new detector concept has been developed for CLAS12 based on LPMWC, Si-strips and scintillator fibers, simulations and conceptual design is in progress

  • 19

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

    Backup slides

  • 20

    Forward Central Detector Detector

    Angular range Tracks 50 – 400 350 – 1250 Photons 20 – 400 ---

    Resolution

    δp/p (%) < 1 @ 5 GeV/c < 5 @ 1.5 GeV/c

    δθ (mr) < 1 < 10 - 20

    Δφ (mr) < 3 < 5

    Photon detection Energy (MeV) >150 ---

    δθ (mr) 4 @ 1 GeV --- Neutron detection

    Neff < 0.7 (EC+PCAL) n.a. Particle ID

    e/π

    Full range ---

    π/p

    < 5 GeV/c < 1.25 GeV/c

    π/K < 2.6 GeV/c < 0.65 GeV/c K/p

    < 4 GeV/c < 1.0 GeV/c

    π(η)gγγ

    Full range ---

    CLAS12 – Design Parameters Forward Detector

    Central Detector

    !

    L =1035cm

    "2s"1

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014

  • 21

    hist1_0013

    Entries 8876

    Mean 27.8

    RMS 9.573

    0 20 40 60 80 100 120 1400

    50

    100

    150

    200

    250

    300

    350

    400

    450

    hist1_0013

    Entries 8876

    Mean 27.8

    RMS 9.573

    THETA (deg) itrk0

    hist1_0012Entries 8876

    Mean 1.1

    RMS 0.5973

    0 0.5 1 1.5 2 2.5 30

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    hist1_0012Entries 8876

    Mean 1.1

    RMS 0.5973

    P (GeV) itrk0

    hist1_0015

    Entries 8876

    Mean -58.93

    RMS 20.11

    -100 -80 -60 -40 -20 0 200

    50

    100

    150

    200

    250

    300

    350

    hist1_0015

    Entries 8876

    Mean -58.93

    RMS 20.11

    Zv (cm) itrk0

    hist1_0014Entries 8876

    Mean 167.9

    RMS 102.5

    0 50 100 150 200 250 300 3500

    20

    40

    60

    80

    100

    120

    140

    160

    hist1_0014Entries 8876

    Mean 167.9

    RMS 102.5

    PHI(deg) itrk0

    hist1_0158

    Entries 32

    Mean -55.62

    RMS 24.1

    -1000-800 -600 -400 -200 0 200 400 600 800 10000

    2

    4

    6

    8

    10

    12

    hist1_0158

    Entries 32

    Mean -55.62

    RMS 24.1

    Zv (cm) long range

    hist1_0016Entries 8876

    Mean -0.2179

    RMS 2.507

    -10 -8 -6 -4 -2 0 2 4 6 8 100

    200

    400

    600

    800

    1000

    1200

    hist1_0016Entries 8876

    Mean -0.2179

    RMS 2.507

    Yv (cm) itrk0

    Download

    Prestart

    Go

    End

    Pause Resume

    5 6 7

    Input from ...

    Change Client

    CLAS

    Previous ViewNext View

    Road Finding (ON/OFF)

    Track Fiting (ON/OFF)

    Save Fitting

    Helium bag downstream window (15 µm Al)

    Target downstream window (15 µm Al)

    Target upstream window (φ 4mm, 15 µm thick Al)

    4He at 1 atm

    Target gas

    Passage of 100 nA 6 GeV through 30 cm long “straw” target

    RTPC and high pressure helium target

    S. Stepanyan, Exploring Hadron Structure with Tagged Structure Functions, Jefferson Lab, January 16-18, 2014