limekiln modeling.ppt

Upload: arvdev

Post on 02-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 LimeKiln Modeling.ppt

    1/40

    Modeling Lime Kilns in

    Pulp and Paper Mills

    Process Simulations Ltd.#206, 2386 East Mall, Vancouver, BC, Canada

    www.psl.bc.ca

    August 23, 2006

  • 8/11/2019 LimeKiln Modeling.ppt

    2/40

    Lime Kiln Issues

    Kiln efficiency Lower fuel costs

    Burner characteristics

    Refractory life

    Dams and rings Stable operation

    Primary Air

    Secondary Air Gas/Oil

    FirehoodBurner

    MotorChains

    Limestone CaCO3

    Lime CaO

    DRYING

    ZONE

    CALCINING

    ZONE

    BURNING

    ZONE

    COOLING

    ZONE

  • 8/11/2019 LimeKiln Modeling.ppt

    3/40

    Principle of ConservationMassMomentum

    Energy

    .

    IN = OUT

    IN

    OUT

    OUT

    Computational Modeling

    Build a real size kiln model

    Use computer to solve

    equations

    Simulate processes in kiln

  • 8/11/2019 LimeKiln Modeling.ppt

    4/40

    Mathematical Models for Kiln

    Fully three-dimensional Reynolds-averaged transport equations of mass,

    momentum energy, and chemical species

    Block-structure body-fitted coordinates

    with domain segmentation Two-equation k- turbulence model

    Ray tracing model for 3D radiation heat

    transfer

    Gas combustion model

    Lagrangian solid fuel combustion models

  • 8/11/2019 LimeKiln Modeling.ppt

    5/40

    Refractory and Calcination Models

    Multi-layer refractory heat transfer model

    Heat transfer and lime calcinationCaCO3= CaO + CO2

    Heat absorbed 1.679 MJ/kg CaCO3 @1089K

  • 8/11/2019 LimeKiln Modeling.ppt

    6/40

    Modeling Output:

    Gas Velocity

    0 2 4 6 8 10 1 2 14 1 6 18 2 0 22 2 4 26 2 8 30 3 2 34 3 6 38 4 0 42 4 4 46 4 8 50 5 2 54 5 6 58 6 0

    Vmag[m/s]

    Case 6

  • 8/11/2019 LimeKiln Modeling.ppt

    7/40

    Modeling Output:

    Gas Temperature

    400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

    Tgas[F]

    Case 6

  • 8/11/2019 LimeKiln Modeling.ppt

    8/40

    Modeling Output:

    Gas Species Concentrations

    * Other species include CO, H2O, NOx, etc.

  • 8/11/2019 LimeKiln Modeling.ppt

    9/40

    Modeling Output:

    Flame Shape

    -5

  • 8/11/2019 LimeKiln Modeling.ppt

    10/40

    Modeling Output:

    Refractory Temperature

  • 8/11/2019 LimeKiln Modeling.ppt

    11/40

    Modeling Output:

    Shell Temperature

    Average Shell Temperature

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 30 60 90

    Axial Distance (m)

    T(

    C)

    Model

    Shell Scan

  • 8/11/2019 LimeKiln Modeling.ppt

    12/40

    Modeling Output:

    Kiln Axial Profiles

    Distance from Kiln Hood [m]

    TemperatureofGasandLim

    e[K]

    VolumeFrac

    tionofO2,

    CO2,

    H2OinFlusGas[vol%]

    EmissionofNOinFlueGas[ppmv]

    MassF

    ractionofLimeCompone

    nts[wt%]

    0 20 40 60 80 100

    500

    1000

    1500

    2000

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0

    100

    200

    300

    400

    500

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    FeedEnd

    FireEnd

    Tgas

    CaCO3

    CaO

    Tck

    NO

    CO2

    O2

    H2O

    Predicted Axial Profile Data

  • 8/11/2019 LimeKiln Modeling.ppt

    13/40

    Modeling Output:

    Gas Flow Animation

    http://localhost/var/www/apps/conversion/tmp/scratch_1/Georgetown_air.iv
  • 8/11/2019 LimeKiln Modeling.ppt

    14/40

    Modeling Output:

    Solid Fuel Flow Animation

    http://localhost/var/www/apps/conversion/tmp/scratch_1/Georgetown_fuel.iv
  • 8/11/2019 LimeKiln Modeling.ppt

    15/40

    Value and Benefit of Kiln Modeling

    Optimize burner design Optimize kiln performance

    Evaluate alternative fuels

    Minimize Emissions

    Identify and eliminate thermal hot spots

    that lead to reduced brick lining lifetime

    Identify and fix problems with kilnperformance

    Improve waste gas incineration

  • 8/11/2019 LimeKiln Modeling.ppt

    16/40

    Advantages of Kiln Modeling

    Model provides comprehensive informationthroughout kiln at relatively low cost

    Can evaluate what if scenarios to

    improve operation Supplements operator knowledge of lime

    kiln operations

    Assists mill managers in making decisionsregarding kiln retrofits/replacements

    Assists in optimizing burner and kiln

    designs

  • 8/11/2019 LimeKiln Modeling.ppt

    17/40

    Modeling Application:

    Burning Different Fuels

    Heavy Oil

    Petroleum Coke

    Natural Gas

  • 8/11/2019 LimeKiln Modeling.ppt

    18/40

    Modeling Application:

    Oil/Gas Burner Design

  • 8/11/2019 LimeKiln Modeling.ppt

    19/40

    Modeling Application:

    Coal Burner Design NOx Emission

    R1 R2

    R3

    Swirl Air

    20 vanes

    groove width = 17.7 mm

    slot width =18.8 mm;

    20 degrees

    R0

    R4

    R5

    R6

    Coal

    Transport Air

    Axial Air

    24 holes

    18 mm Dia

    R1

    axial air

    24 slots

    0.0245 (1") wide0.0130 (0.51") deep

    21 degrees inward

    R2

    R4

    R3

    R5

    R0

    Swirl air

    No swirl

    Transport air

  • 8/11/2019 LimeKiln Modeling.ppt

    20/40

    Modeling Application:

    Direct Indirect Coal Combustion

    Axial Air

    Coal Air

    Axial Air

    Coal Air

    Swirl Air

    Swirl Air

    Coal Air

    Coal Air

  • 8/11/2019 LimeKiln Modeling.ppt

    21/40

    Modeling Application:

    Burner with Different Primary Air

    Oil Flame

    @ Primary Air

    Ratio of 22%

    Oil Flame

    @ Primary Air

    Ratio of 60%

  • 8/11/2019 LimeKiln Modeling.ppt

    22/40

    Modeling Application:

    Burning NCG in Kilns

    Case 2: NCG incineration with less HVLC

    Case 3: NCG incineration with more HVLC

    Case 4: No NCG incineration with less natural gas

    Gas temperature on a vertical cross section

    400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

    Case 1: No NCG incineration with more natural gas

    T [K]

  • 8/11/2019 LimeKiln Modeling.ppt

    23/40

    Kiln Modeling Inputs: Overview

    Site Survey andMeasurements

    Mass and Energy Balance

    Calculation

    Kiln Geometry

    Refractory Lining

    Burner Design

    Lime Feed Properties

    Air Supplies

    DCS Data Analysis

  • 8/11/2019 LimeKiln Modeling.ppt

    24/40

    Kiln Modeling Inputs:

    Site Survey and Measurements

    Measured

    streams:

    - air in

    - fuel in

    - flue gas out- mud in

    - product out

    Measured

    parameters:- flow rate

    - temperature

    - composition

  • 8/11/2019 LimeKiln Modeling.ppt

    25/40

    Kiln Modeling Inputs:

    Example of Mass Balance

    Mass In = Mass Out

  • 8/11/2019 LimeKiln Modeling.ppt

    26/40

    Kiln Modeling Inputs:

    Example of Energy Balance

    Energy In = Energy Out

  • 8/11/2019 LimeKiln Modeling.ppt

    27/40

    Kiln Modeling Inputs:

    Kiln Geometry - Fire End

    10' 6" Dia.

    Barrel Tilt = 1.7899 = 3/8" per 12"o

    Burner

    4' 23/4"

    24"24"

    9"

    5' 6"

    2' 9"

    173/4"

    kiln cL

    Z

    X

    Barrel Start

    (non rotated)

  • 8/11/2019 LimeKiln Modeling.ppt

    28/40

    Kiln Modeling Inputs:

    Kiln Geometry - Front View

    Hooddimension, kiln

    diameter and

    length, tilt

    angle, kilnrotation

    Location and

    size of any

    openings

    Location and

    tilt angle of

    burner

    15"

    5' 3"

    6' 7"

    7' 3"

    61/2"

    41/2"

    23/4"

    2' 43/4"

    15"

    24" 12"

    dia=?

    24"

    24"

    2'7/8"

    15o

    20" Dia.

    X

  • 8/11/2019 LimeKiln Modeling.ppt

    29/40

    Kiln Modeling Inputs:

    Kiln Burner Design

  • 8/11/2019 LimeKiln Modeling.ppt

    30/40

    Kiln Modeling Inputs:

    Refractory Lining and Property

    9"

    70% Alumina

    9"

    Magnel RSV

    9"

    70% Alumina

    2-1/2"

    Greenlite HS

    6"

    Clipper DP

    3-1/2"

    Mix Refratherm

    Greenlite

    3"

    Greenlite HS

    6"

    Castable

    6"

    Castable

    0'

    0m 2

    '

    0.6

    096

    9.5

    '

    2.8

    956

    19.5

    '

    5.9

    436m

    39.5

    '

    12.0

    39

    84.5

    '

    25.7

    556

    134.5

    '

    40.9

    956m

    216'

    65.8

    368m

    221'

    67.3

    608m

    226.5

    '

    69.0

    372m

    Burner

    3'

    0.9144m

    6"

    0.1524m

    18"

    0.4572m

    39"

    0.9906m

    102"

    2.5

    908

    10'

    3.0

    48m

    6'7"

    2.0

    066

    97"

    2.4

    638

    102"

    2.5

    908

    108"

    2.7

    432m

    54'

    16.4592m

    Chain

    System

    101"

    2.5

    654

    01

    2

    2

    3

    3

    4

    4

    4

    0

    aTaTaTaTaTaj

    j

    j

    thermal conductivity, W/mk

    T temperature, K

    Material4a 3a 2a 1a 0a

    Greenlite -2.554e-7 7.878e-4 5.248e-2

    Refratherm 150 -3.571e-7 8.021e-4 0.1576

    Magnel RSV 2.394e-12 -1.332e-8 2.771e-5 -0.02586 12.54

    Kruzite - 70 5.908e-7 -0.0013 2.301

    Clipper DP -3.571e-7 8.021e-4 0.1576

  • 8/11/2019 LimeKiln Modeling.ppt

    31/40

    Kiln Modeling Inputs:

    Kiln Lime Mud

  • 8/11/2019 LimeKiln Modeling.ppt

    32/40

    Kiln Modeling Inputs:

    Kiln DCS Data Display

  • 8/11/2019 LimeKiln Modeling.ppt

    33/40

    Kiln Modeling Inputs:

    Kiln Operational Data Analyzer

  • 8/11/2019 LimeKiln Modeling.ppt

    34/40

    Kiln Modeling Inputs:

    Selected Data Windows - 1

  • 8/11/2019 LimeKiln Modeling.ppt

    35/40

    Kiln Modeling Inputs:

    Selected Data Windows - 2

    Kiln Modeling Inputs:

  • 8/11/2019 LimeKiln Modeling.ppt

    36/40

    Computed Secondary Air Area

    Kiln Modeling Inputs:

  • 8/11/2019 LimeKiln Modeling.ppt

    37/40

    Averaged Mill DCS Data

    Parameter Case 19/25/2003 8:30 to

    10/2/2003 14:30

    AIR

    Primary Air Flow (kg/s) 1.28

    Excess O2 (%) 1.34%

    FEED

    Dry Feed rate (kg/s) 6.14Dust Losses (% dry feed) 10.8%

    PRODUCT

    CaO Production Rate (kg/s) 2.99

    CaCO3 Remaining (% of Product) 1.86%

    FUEL OIL

    Fuel flow-crude tall oil (kg/s) 0.444

    MISCELLANEOUS

    Feed end draft (Pa) -535.1

    Firing end draft (Pa) -124.1

    Lime feed solids content 80%

    Inerts (% of Product) 4%

    AVERAGE DCS DATA

    Time period for data average

    SUPPLIED OR ESTIMATED DATA

    Kiln Modeling Inputs:

  • 8/11/2019 LimeKiln Modeling.ppt

    38/40

    Operation Conditions - Lime Fuel

    Production rate 274.42 tpd 3.1761 kg/s

    Total feed rate 663.12 tpd 7.6750 kg/sSolids content 80% 80%

    CaCO3 462.23 tpd 5.3498 kg/s

    Dust 57.29 tpd 0.6631 kg/s

    Inerts 10.98 tpd 0.1270 kg/s

    Moisture 132.62 tpd 1.54 kg/s

    663.12 tpd 7.6750 kg/s

    Oil flow rate 0.4440 kg/s

    Oil composition 100.00%

    Carbon 78.30% 0.3477 kg/s

    Hydrogen 9.88% 0.0439 kg/s

    Oxygen 11.57% 0.0514 kg/s

    Nitrogen 0.00% 0.0000 kg/s

    Sulphur 0.14% 0.0006 kg/s

    Ash 0.11% 0.0005 kg/s

    High heat value 44.7040 MJ/kg

    Density 935.0 kg/m3

    Oil temperature 230 oF 383 K

    Stoichiometric air ratio for oil combustion 12.0178 kgAir/kgOil

    Stoichiometric air for oil combustion 5.3359 kg/s

    Atomizing steam flow rate lb/hr 0.08 kg/s

    Mixture flow rate 0.5240

    Mass fraction of oil in mixture 0.8473

    Total heat input 19.8 MW

    LIME

    FUEL

    Kiln Modeling Inputs:

  • 8/11/2019 LimeKiln Modeling.ppt

    39/40

    Operation Conditions - Air Supply

    Excess air ratio 8.51%

    Stochiometric air flow rate*(1+excess air ratio) 5.7900 kg/s

    PRIMARY AIR

    Primary air flow rate 1.2800 kg/s

    Primary air temperature 298.15 K

    Primary air density 1.1835 kg/m^3

    Primary Axial Air 25.0% 0.3200 kg/s

    Primary Spin Air 75.0% 0.9600 kg/s

    SECONDARY AIR

    Secondary air temperature 298.15 K

    Secondary air density 1.1835 kg/m^3

    Left side flow area 0.2027 m*m

    Right side flow area 0.2027 m*mLeft side open area ratio 5.00%

    Right side open area ratio 5.00%

    Left side flow velocity 13.0334 m/s

    Right side flow velocity 13.0334 m/s

    Left side flow rate 0.1563 kg/s

    Right side flow rate 0.1563 kg/s

    BURNER/HOOD GAP AIR

    Burner/Hood gap air temperature 298.15 K

    Burner/Hood gap air density 1.1835 kg/m^3

    Burner/Hood gap area 0.0488 m*m

    Burner/Hood gap open area ratio 80.00%Burner/Hood gap velocity 13.0334 m/s

    Burner/Hood flow rate 0.6018 kg/s

    DISCHARGE GRATE AIR

    Discharge grate air temperature 450 K

    Discharge grate air density 0.7841 kg/m^3

    Discharge grate area 0.5226 m*m

    Discharge grate open area ratio 54.80%

    Discharge grate velocity 16.0120 m/s

    Discharge grate flow rate 3.5956 kg/s

    Total air flow rate 5.7901 kg/s

    Total air flow rate - stochiometric air flow rate 0.0001 kg/s

    Air

    Kiln Modeling Inputs:

  • 8/11/2019 LimeKiln Modeling.ppt

    40/40

    Flue Gas Calculation

    speciesMolecular

    Weight

    Volume % Mass %

    H2O 2.0098 kg/s 18 31.3% 19.7%

    CO2 3.6287 kg/s 44 23.1% 35.6%

    O2 0.1044 kg/s 32 0.92% 1.02%

    N2 4.4583 kg/s 28 44.6% 43.7%

    SO2 0.0012 kg/s 64 0.005% 0.012%

    Total 10.2024 kg/s 100.0% 100.0%

    speciesMolecular

    WeightVolume % Mass %

    CO2 3.6287 kg/s 44 33.7% 44.3%

    O2 0.1044 kg/s 32 1.33% 1.27%

    N2 4.4583 kg/s 28 65.0% 54.4%

    SO2 0.0012 kg/s 64 0.0% 0.015%

    Total 8.1926 kg/s 100.0% 100.0%

    mass flow

    True Flue Gas Calculation (dry based)

    mass flow

    True Flue Gas Calculation (wet based)

    Gas Constant 287.15

    Ambient Pressure 101325 Pa

    Ambient Temperature 298.15 K

    Loss Coefficient 0.9

    Firing End Draft -124.1 Pa

    kg/s to tpd (metric) 86.4

    28 16 44

    1 CO + 0.5*O2 = CO2

    16 64 44 36

    2 CH4 + 2*O2 = CO2 + 2*H2O2 16 18

    3 H2 + 0.5*O2 = H2O

    12 32 44

    4 C + O2 = CO2

    100 44 56

    5 CaCO3 = CO2 + CaO

    14 16 30

    6 N + 0.5*O2 = NO

    32 32 64

    7 S + O2 SO2

    Species Reactions (with molecular weights)