link.springer.com10.1007/s10956... · web viewtype of question: multiple-choice difficulty: hard...

21
Sample Standardized Test Items for the Gas Laws and Kinetic Molecular Theory National Assessment of Educational Progress Question 1 (molar volume) A 10-liter sample of CO 2 gas contains the same number of molecules as how many liters of O 2 gas at the same temperature and pressure? A. 5 liters B. 10 liters C. 20 liters D. 30 liters Grade 12 Year: 2000 Type of question: multiple-choice Difficulty: Hard (36.36% Correct)

Upload: dinhtu

Post on 04-May-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Sample Standardized Test Items for the Gas Laws and Kinetic Molecular Theory

National Assessment of Educational Progress

Question 1 (molar volume)A 10-liter sample of CO 2 gas contains the same number of molecules as how many liters of O 2 gas at the same temperature and pressure?A. 5 litersB. 10 litersC. 20 litersD. 30 liters

Grade 12Year: 2000Type of question: multiple-choiceDifficulty: Hard (36.36% Correct)

Virginia Standard of Learning 2007 Chemistry Released Test Items

Question 2 (partial pressure law)A mixture of gases with a pressure of 800.0 mm Hg contains 60% nitrogen and 40% oxygen by volume. What is the partial pressure of oxygen in this mixture?F 140.0 mm HgG 320.0 mm HgH 373.0 mm HgJ 480.0 mm Hg

Question 3 (kinetic molecular theory)According to the kinetic-molecular theory of gases, molecules of an ideal gas —F travel in curved lines of motionG undergo elastic collisionsH are separated by small distancesJ have strong forces between them

Question 4 (partial pressure law)

Question 5 (Charles’ Law)

Virginia Standard of Learning 2008 Chemistry Released Test Items

Question 6 (molar volume)A balloon is filled with 3.8 L of helium gas at STP. Approximately how many moles of helium are contained in the balloon?A 0.17 molB 0.26 molC 72 molD 85 mol

Question 7 (Relationship between gas pressure and frequency of collision between gas particles and the walls of container)

Question 8 (partial pressure law)The composition of dry air is approximately 78% nitrogen, 21% oxygen,and 1% other gases. What is the partial pressure of nitrogen at standardatmospheric pressure (101.3 kPa)?A 21.0 kPaB 79.0 kPaC 101.3 kPaD 760.0 kPa

Question 9 (Boyle’s law)A gas has a volume of 100.0 mL at a pressure of 600.0 mm Hg. If the temperature is held constant, what is the volume of the gas at a pressure of 800.0 mm Hg?

F 33.33 mLG 66.67 mLH 75.00 mLJ 133.0 mL

Question 10 (Boyle’s law)

Question 11 (partial pressure law)In a mixture of oxygen and nitrogen gas, 80.0 percent of the total gas pressure is exerted by the nitrogen. If the total pressure is 2.0 atm, what pressure does the oxygen exert?F 0.20 atmG 0.40 atmH 0.80 atmJ 1.6 atm

Virginia Standard of Learning 2009 Chemistry Released Test Items

Question 12 (molar volume)What is the volume occupied by 51.0 g of ammonia gas at STP?F 0.439 LG 22.8 LH 67.2 LJ 91.9 L

Question 13 (partial pressure law)A mixture of gases with a pressure of 800 mm Hg contains 10% oxygen and 90% nitrogen by volume. What is the partial pressure of the oxygen gas in the mixture?A 10 mm HgB 80 mm HgC 700 mm HgD 800 mm Hg

Question 14 (Charles’ Law)

Massachusetts Comprehensive Assessment System 2013 Released Test Items

Question 15 (molar volume)The chemical equation below represents the reaction of 1 mol of hydrogen gas (H2)with 1 mol of chlorine gas (Cl2) in a sealed container at STP. The reaction produces 2 mol of hydrogen chloride gas (HCl) in the sealed container.

What is the pressure in the container at standard temperature after the reaction is complete?

A. 1 atm

B.

2 atm

C. 3 atm

D.

4 atm

 Reporting Category: Properties of Matter and ThermochemistryStandard: 6.2 - Perform calculations using the ideal gas law. Understand the molar volume at 273 K and 1 atmosphere (STP).

Question 16 (gas laws) Some manufacturers place rubber plugs in the bottoms of pressurized aerosol cans to prevent structural failure if the cans are exposed to excessive heat. The normal pressure inside an aerosol can is 2.0 atm at 27°C. When the temperature of the gas in the can is increased to 250°C, the pressure reaches 3.5 atm and the plug pops out.Which of the following graphs best shows the relationship of pressure to the temperature inside the can?A.

B.

C.

D.

 Reporting Category: Properties of Matter and ThermochemistryStandard: 6.1 - Using the kinetic molecular theory, explain the behavior of gases and the relationship between pressure and volume (Boyle's law), volume and temperature (Charles's law), pressure and temperature (Gay-Lussac's law), and the number of particles in a gas sample (Avogadro's hypothesis). Use the combined gas law to determine changes in pressure, volume, and temperature.

 

Question 17 (Molar volume)Reporting Category: Properties of Matter and ThermochemistryStandard: 6.2 - Perform calculations using the ideal gas law. Understand the molar volume at 273 K and 1 atmosphere (STP). The table below provides data about a gas sample.

Volume 1.0 L

Pressure 303.9 kPa

Temperature

323 K

Which of the following can be determined using the data?A. the chemical composition of the gas

B.

the condensation temperature of the gas

C. the number of gas molecules in the sample

D.

the distance between gas molecules in the sample

 

 Question 18 (Charles’ Law)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.1 - Using the kinetic molecular theory, explain the behavior of gases and the relationship between pressure and volume (Boyle's law), volume and temperature (Charles's law), pressure and temperature (Gay-Lussac's law), and the number of particles in a gas sample (Avogadro's hypothesis). Use the combined gas law to determine changes in pressure, volume, and temperature. Three identical balloons each contain one mole of gas. One balloon contains oxygen, one contains nitrogen, and one contains argon. Which of the following changes in volume will happen if the balloons are placed in a warmer room?

A. The balloon with argon will decrease most in volume because argon is a noble gas.

B.

All of the balloons will decrease in volume equally because the temperature increased.

C. The balloon with oxygen will increase most in volume because oxygen has the largest molecules.

D.

All of the balloons will increase in volume equally because they have equal numbers of molecules.

 

 Question 19 (Ideal gas law)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.2 – Perform calculations using the ideal gas law. Understand the molar volume at 273 K and 1 atmosphere (STP). A student has 84.0 g of N2 gas in a sealed 500 L container at 20°C. Which of the following equations should the student use to calculate the gas pressure?

A.

B.

C.

D.

 

 Question 20 (Ideal gas law)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.2 - Perform calculations using the ideal gas law. Understand the molar volume at 273 K and 1 atmosphere (STP). A walk-in cooler has a volume of 1.1 × 104 L. If the temperature inside the cooler is 3°C and the gas pressure is 1.0 atm, how many moles of gas are inside the cooler?

A. 4.9 × 102 mol

B.

4.5 × 104 mol

C. 2.5 × 105 mol

D.

6.0 × 1023 mol

 

 Question 21 (Ideal gas law)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.2 - Perform calculations using the ideal gas law. Understand the molar volume at 273 K and 1 atmosphere (STP). A 0.50 L container at 305 K holds a 0.22 g sample of carbon dioxide gas (CO2). Assuming ideal gas behavior, what is the pressure, in kilopascals, exerted by the gas?

A. 23 kPa

B.

25 kPa

C. 41 kPa

D.

67 kPa

 State Average = 54%

Question 22 (Ideal gas law)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.1 - Using the kinetic molecular theory, explain the behavior of gases and the relationship between pressure and volume (Boyle's law), volume and temperature (Charles's law), pressure and temperature (Gay-Lussac's law), and the number of particles in a gas sample (Avogadro's hypothesis). Use the combined gas law to determine changes in pressure, volume, and temperature. A sample of nitrogen (N2) gas in a 10.0 L container has a pressure of 1.0 atm at 297 K. Assuming ideal gas behavior, what will the pressure be if the same amount of nitrogen gas is put into a 5.0 L container at 297 K?

A. 0.40 atm

B.

0.50 atm

C. 2.0 atm

D.

2.5 atm

 State Average = 54%

 Question 23 (Charles’ Law)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.1 - Using the kinetic molecular theory, explain the behavior of gases and the relationship between pressure and volume (Boyle's law), volume and temperature (Charles's law), pressure and temperature (Gay-Lussac's law), and the number of particles in a gas sample (Avogadro's hypothesis). Use the combined gas law to determine changes in pressure, volume, and temperature. The illustrations below represent the expansion of a gas in a cylinder of an engine. The piston moves as the gas volume changes.

What could have been done to the gas in the cylinder to bring about this change in volume?

A. Half of the molecules were released.

B.

The Kelvin temperature was doubled.

C. The condensation rate for the gas was doubled.

D.

The amount of heat in the gas was reduced by one half.

 State Average = 54%

Question 24 (Ideal gas law)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.2 - Perform calculations using the ideal gas law. Understand the molar volume at 273 K and 1 atmosphere (STP). The four tanks shown in the diagram below contain compressed nitrogen gas. The temperature of the gas is the same in each tank.

Which of the tanks contains the greatest number of gas particles?A. tank

1

B.

tank 2

C. tank 3

D.

tank 4

 

 Question 25 (Relationship between gas pressure and frequency of collision between gas particles and the walls of container)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.1 - Using the kinetic molecular theory, explain the behavior of gases and the relationship between pressure and volume (Boyle's law), volume and temperature (Charles's law), pressure and temperature (Gay-Lussac's law), and the number of particles in a gas sample (Avogadro's hypothesis). Use the combined gas law to determine changes in pressure, volume, and temperature. The diagram below shows gas inside a sealed container before and after force is applied to the container’s movable piston. The temperature inside the container remains the same after the force is applied.

Applying force to the piston results in compression of the gas particles and an increase in gas pressure. Which of the following statements best describes the change in gas particles after compression?

A. The kinetic energy of the gas particles increases.

B.

The kinetic energy of the gas particles decreases.

C. The velocity with which the gas particles hit the container wall increases.

D.

The frequency with which the gas particles hit the container wall increases.

 

 Question 26 (Boyle’s law)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.1 – Using the kinetic molecular theory, explain the behavior of gases and the relationship between pressure and volume (Boyle’s law), volume and temperature (Charles’s law), pressure and temperature (Gay-Lussac’s law), and the number of particles in a gas sample (Avogadro’s hypothesis). Use the combined gas law to determine changes in pressure, volume, and temperature. Which of the following statements explains what happens to the gas inside a balloon as the external pressure on the balloon decreases and the temperature stays constant?

A. The volume increases.

B.

The volume decreases.

C. The molecular speed increases.

D.

The molecular speed decreases.

 

 Question 27 (Ideal gas law)

Reporting Category: Properties of Matter and ThermochemistryStandard: 6.2 - Perform calculations using the ideal gas law. Understand the molar volume at 273 K and 1 atmosphere (STP). What is the volume of 0.25 mol of ammonia gas (NH3) at 1.00 atm and 273 K?

A. 0.33 L

B.

5.6 L

C. 95 L

D.

1530 L