liquid crystal elastomer simulations at the microscale

27
Liquid Crystal Elastomer Simulations at the Microscale Jean-Christophe Lavocat Supervisors : Diederik Wiersma (LENS) - Niek Van Hulst (ICFO) March

Upload: jean-christophe-lavocat

Post on 18-Jul-2015

160 views

Category:

Science


2 download

TRANSCRIPT

Page 1: Liquid Crystal Elastomer Simulations at the Microscale

Liquid Crystal Elastomer Simulations at theMicroscale

Jean-Christophe Lavocat

Supervisors : Diederik Wiersma (LENS) - Niek Van Hulst (ICFO)

March

Page 2: Liquid Crystal Elastomer Simulations at the Microscale

What are LCE ? Macro and Micro Actuators

LCE could be used as light activated motors 1

1 Yamada, et al. Photomobile Polymer Materials: TowardsLight-Driven Plastic Motors (Angewandte Chemie - 2008)

Page 3: Liquid Crystal Elastomer Simulations at the Microscale

What are LCE ? Macro and Micro Actuators

LCE could be used as potential micropumps 1

LCE could be used as potential artificial muscles 2

1 Van Oosten, et al. Printed artificial cilia from liquid-crystal networkactuators modularly driven by light (Nature - 2009)

2 Camacho-Lopez, et al. Fast liquid-crystal elastomer swims into thedark (Nature - 2004)

Page 4: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Table of Content

1 Introduction to Liquid Crystal ElastomersBackground theory on Liquid Crystal ElastomerActuation mechanismsApplications

2 Modeling of light absorbing LCE - StationnaryLight induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

3 Modeling of light absorbing LCE - Time DependentDye concentration lawIsomers concentration evolution

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 3 / 19

Page 5: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Liquid Crystal ElastomerActuation mechanismsApplications

Table of Content

1 Introduction to Liquid Crystal ElastomersBackground theory on Liquid Crystal ElastomerActuation mechanismsApplications

2 Modeling of light absorbing LCE - StationnaryLight induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

3 Modeling of light absorbing LCE - Time DependentDye concentration lawIsomers concentration evolution

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 4 / 19

Page 6: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Liquid Crystal ElastomerActuation mechanismsApplications

Background theory on Liquid Crystal Elastomer

Liquid Crystals Properties

Rod-like molecular structure

Rigid shape

Tuning of the alignment

Nematic alignment of LC

Elastomers Properties

High Elasticity

Low Young’s modulus

High yield strain

Elastomer without and with strain

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 4 / 19

Page 7: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Liquid Crystal ElastomerActuation mechanismsApplications

Background theory on Liquid Crystal Elastomer

LC Elastomers (LCE) are polymernetworks formed by cross linkingliquid crystalline polymers.

LCE network

LCE networks can also includeactive molecules such as Azodyes.

LCE network with Azo dyes

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 5 / 19

Page 8: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Liquid Crystal ElastomerActuation mechanismsApplications

Background theory on Liquid Crystal Elastomer

LC Elastomers (LCE) are polymernetworks formed by cross linkingliquid crystalline polymers.

LCE network

LCE networks can also includeactive molecules such as Azodyes.

LCE network with Azo dyes

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 5 / 19

Page 9: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Liquid Crystal ElastomerActuation mechanismsApplications

Light activation of LCE

It is also possible to excite the material with photons.

Dyes absorb energy. They go from trans-state to cis-state

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 6 / 19

Page 10: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Liquid Crystal ElastomerActuation mechanismsApplications

Light activation of LCE

It is also possible to excite the material with photons.

By absorbing UV photons, the LCE changes shape

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 6 / 19

Page 11: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Liquid Crystal ElastomerActuation mechanismsApplications

Parameters

High Frequency Photodriven Oscillator3

3 White et al. High frequency photodriven polymer oscillator (SoftMatter - 2008)

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 7 / 19

Page 12: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

Table of Content

1 Introduction to Liquid Crystal ElastomersBackground theory on Liquid Crystal ElastomerActuation mechanismsApplications

2 Modeling of light absorbing LCE - StationnaryLight induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

3 Modeling of light absorbing LCE - Time DependentDye concentration lawIsomers concentration evolution

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 8 / 19

Page 13: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

Deformation due to light

In linear elasticity (small deformations), materials follow theHooke law.

σ = Eε

σ : stress tensorE : Young modulus

ε : strain tensor

The strain deforms the material Light induce a strain

ε = ε0 + εlight

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 8 / 19

Page 14: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

Light activation of the dyes - Mechanism

Stationnary

ϕ : concentration of dye in the materialP : photocompliance4

εlight = ϕPI(x)

Time dependent

· · ·

4 Van Oosten, et al. Glassy photomechanical liquid-crystal networkactuators for microscale devices (EPJ E - 2007)

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 9 / 19

Page 15: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

First simulation : Steady state - Beer Law

0 2.5 5

300

600

Light Intensity Profile − Beer Absortpion

Inte

nsity

(W

/m2 )

x (µm)

d = 1µm

d = 6µm

I0=64 mW/cm2

Steady state

I = I0e−xϕ/d

Effect enhanced (light isapplied on the surface)

Intensity gradient changes

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 10 / 19

Page 16: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

First simulation : Steady state - Beer Law

Static bending of an LCE cantilever

I0=64 mW/cm2

d/ϕ=6µmI0=64 mW/cm2

d/ϕ=1µm

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 11 / 19

Page 17: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

Beer Law : Absorption length’s effet

0 1 2 3

2

3

4Uniaxial Alignment − Bending Radius

Absorption Length (µm)

Ben

ding

Rad

ius

(mm

)

Analytical expressionFEM simulation

I0=10 mW/cm2

LC Uniaxial alignement

Depends on the relativeabsorption length

drel=d/ϕdye

Can maximize thebending by adjusting theconcentration of dye

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 12 / 19

Page 18: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

Beer Law : Absorption length’s effet

0 1 2 3

2

4

6Bending Radius : Uniaxial vs Splay

Absorption Length (µm)

Ben

ding

Rad

ius

(mm

)

Uniaxial alignment

Splay alignment

I0=10 mW/cm2

LC Splayed alignement

Orientation of thebending is constant

Bending is modified withlight wavevector

Fabrication complicatedin the nanoscale

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 12 / 19

Page 19: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

EM field - Effect due to absorption

Maxwell equations - I0=30 W/cm2

Steady state

Absorption due to thematerial

Reflexions at the boundaries

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 13 / 19

Page 20: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

EM field - Effect due to absorption

0 1 2 3

2

4Bending Radius in function of absorption length

Absorption Length (µm)

Ben

ding

Rad

ius

(cm

)

TheoreticalFEM Simulation − Maxwell

Maxwell equations - I0=30 W/cm2

Steady state

Absorption due to thematerial

Reflexions at the boundaries

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 13 / 19

Page 21: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Light induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

EM field - Effect due to intensity

0 250 500 750 1000

2.5

Bending Radius in function of intensity

Incoming Intensity (W/m2)

Ben

ding

Rad

ius

(cm

)

TheoreticalFEM Simulation − Maxwell

Maxwell equations -d = 0.5µm

Bending increases withintensity

Asymptotic limit

Effect reduced

Reflexions at the boundaries

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 14 / 19

Page 22: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Dye concentration lawIsomers concentration evolution

Table of Content

1 Introduction to Liquid Crystal ElastomersBackground theory on Liquid Crystal ElastomerActuation mechanismsApplications

2 Modeling of light absorbing LCE - StationnaryLight induced deformationEM Field - Beer Absorption LawEM Field - Maxwell formalism

3 Modeling of light absorbing LCE - Time DependentDye concentration lawIsomers concentration evolution

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 15 / 19

Page 23: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Dye concentration lawIsomers concentration evolution

Light activation of the dyes - Mechanism

Stationnary

ϕ : concentration of dye in the materialP : photocompliance4

εlight = ϕPI(x)

Time dependent

εlight = ϕPnc(I , t)

P depends on the molecular alignment, cross link density andglass-transition temperature

4 Van Oosten, et al. Glassy photomechanical liquid-crystal networkactuators for microscale devices (EPJ E - 2007)

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 15 / 19

Page 24: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Dye concentration lawIsomers concentration evolution

Time dependent : dye excitation

δntδt

= −ΓInt +ncτ

nt : dye fraction oftrans-state molecules

nc : dye fraction ofcis-state molecules

I : Light intensity

Light penetrates the material and isabsorbed by the dye in trans-state.

Photon absorbed : trans → cis(excitation rate Γ)

Change of absorption (k ∝ nt)

Back relaxation : cis → trans(relaxation time τ)

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 16 / 19

Page 25: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Dye concentration lawIsomers concentration evolution

Time dependent - Beer absorption

τ = 0.1s ; Γ = 0.02s α = I0Γτ = 3.55W/m2 drel = 1µm

Time evolution of cis/trans isomersconcentration in the material

Light intensity within the material,in function of x/d. Time varying.

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 17 / 19

Page 26: Liquid Crystal Elastomer Simulations at the Microscale

Introduction to Liquid Crystal ElastomersModeling of light absorbing LCE - Stationnary

Modeling of light absorbing LCE - Time Dependent

Dye concentration lawIsomers concentration evolution

Transient case - Video

Infinite Waving Sheet

Jean-Christophe Lavocat Liquid Crystal Elastomer Simulations at the Microscale 18 / 19

Page 27: Liquid Crystal Elastomer Simulations at the Microscale

Acknowledgement

Hao Zeng

Camilla Parmeggiani

Kevin Vynck

Giacomo Cerretti

Diederik Wiersma

Thank you for yourattention