list of abstracts sesimbra formatted -...

30
Bionanotechnology Recent Advances 1013 July in Sesimbra, Portugal A satellite meeting to the 9th European Biophysics Congress EBSA 2013

Upload: ngokhanh

Post on 19-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

 Bionanotechnology  -­‐  Recent  Advances  

10-­‐13  July  in  Sesimbra,  Portugal    

A  satellite  meeting  to  the  9th  European  Biophysics  Congress  EBSA  2013  

 

 

                                                                                                                                         

 

 

Page 2: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Programme  Wednesday  10th  July  14.00  -­‐  18.00      Registration  18.00  -­‐  18.10      Introduction    18.00  -­‐  19.00      Workshop  Lecture  1:  Anthony  Watts  Nano  and  sub-­‐nano  scale  distances  and  dynamics  from  Solid  State  NMR  in  biology  –  an  Introduction  19.00  -­‐  20.00        Dinner  and  Welcome  Reception  at  the  hotel  Thursday  11th  July  9.30    -­‐  10.30        Workshop  Lecture  2:  Justin  Benesch    Mass  spectrometry  -­‐  weighing  the  evidence  for  protein  structure  and  dynamics  10.30  -­‐  11.00      Coffee  break  Research  Lectures  11.00  -­‐  11.20      Elizabeth  Drolle  11.20  -­‐  11.40      Ilja  Kusters  11.40  -­‐  12.00      Joachim  Piguet  12:00  -­‐  13.00      Workshop  Lecture  3:  Peter  Hinterdorfer  Dynamics  of  Molecular  Recognition:  What  can  we  learn  from  Force  Microscopy/Spectroscopy?        13.00  -­‐  14.30      Lunch  14.30  -­‐  15.30      Workshop  Lecture  4:  Michael  Mayer    Single  Protein  Characterization  Methods  with  Nanopores          15.30  -­‐  17.00      Tea  break    Research  Lectures  17.00  -­‐  17.20      Sandra  Posch  17.20  -­‐  17.40      Melanie  Koehler  17.40  -­‐  18.00      Giovanni  Maglia  Evening  free  for  participants  to  make  their  own  dinner  arrangements.  Friday  12th  July  9.30  -­‐  10.30        Workshop  Lecture  5:  Horst  Vogel  Analysis  of  complex  transmembrane  signaling  networks:  from  single  cells  to  single  molecules  10.30  -­‐  11.00      Coffee  break  Research  Lectures  11.00  -­‐  11.20      Fabiola  Gutierrez    11.20  -­‐  11.40      Anna  Wypijewska  11.40  -­‐  12.00      Patricia  Dijkman  12.00  -­‐  13.00      Workshop  Lecture  6:  David  Klenerman  Principles  of  single  molecule  fluorescence  and  its  application  to  biology  and  biomedicine  13.00  -­‐  14.30      Lunch  14.30  -­‐  15.30      Workshop  Lecture  7:  Dimitrios  StamouSingle  Small  Unilamellar  Vesicles:  tools  for  biophysics  and  technology  15.30  -­‐  17.00      Tea  break    Research  Lectures  17.00  -­‐  17.20      Kata  Hajdu  17.20  -­‐  17.40      Krisztina  Nagy  17.40  -­‐  18.00      Raul  Pacheco-­‐Gomez  Workshop  drinks  and  dinner,  Restaurant  "O  Canhão",  next  to  the  hotel  Saturday  13th  July  9.30  -­‐  10.30        Workshop  Lecture  8:  Helmut  Grubmueller  Forces  and  Conformational  Dynamics  in  Biological  Nanomachines  10.30  -­‐  11.00      Coffee  break  Research  Lectures  11.00  -­‐  11.20      Francesco  Colizzi  11.20  -­‐  11.40      Melinda  Magyar  11.40  -­‐  12.00      Liliana  Lighezan  12.30  -­‐  13.30      Lunch  13.30      Leave  for  Lisbon    

Page 3: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Travel      Travel  to  Sesimbra  Get  the  metro  at  Lisbon  Airport  to  Praça  Espanha  station  (www.metrolisboa.pt/)    At  Praça  de  Espanha  there  are  coaches  going  to  Sesimbra.  The  coach  company  is  “TST  Transportes  Sul  do  Tejo”  bus  number  207  (http://www.tsuldotejo.pt/?idioma=2)    A  timetable  can  be  found  below.  

Travel  from  Sesimbra  to  Lisbon  Travel  from  this  meeting  to  the  main  congress  venue  will  be  organised  for  Saturday  afternoon,  after  lunch  in  Sesimbra.      Sesimbra  Hotel  &  SPA  Address:  Rua  Navegador  Rodrigues  Soromenho    2970-­‐773  Sesimbra    PORTUGAL    Tel.  geral  +351  212  289  800  Tel.  reservas  +351  212  289  803                        Bus  7  Schedule  (Lisbon  to  Sesimbra):  

     

Page 4: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Mass  spectrometry  -­‐  weighing  the  evidence  for  protein  structure  and  dynamics    

Justin  Benesch    

Chemistry  Department,  University  of  Oxford,  UK    Mass  spectrometry  is  a  recognised  approach  for  characterising  proteins  and  the  complexes  they  assemble  into.  This  application  of  a  long-­‐established  physico-­‐chemical  tool  to  the  frontiers  of  structural  biology  has  stemmed  from  experiments  performed  in  the  early  1990s.  While  initial  studies  focused  on  the  elucidation  of  stoichiometry  by  means  of  simple  mass  determination,  developments  in  mass  spectrometry  technology  and  methodology  now  allow  researchers  to  address  questions  of  shape,  inter-­‐subunit  connectivity,  and  protein  dynamics.  Here  we  will  discuss  the  remarkable  rise  of  mass  spectrometry  and  its  application  to  biomolecular  complexes  over  the  last  two  decades.                                                      

               

Page 5: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Forces  and  Conformational  Dynamics  in  Biomolecular  Nanomachines  Helmut  Grubmueller  

Max-­‐Planck  Institute  for  Biophysical  Chemsitry,  Gottingen,  Germany    

Proteins  are  biological  nanomachines.  Virtually  every  function  in  the  cell  is  carried  out  by  proteins  -­‐-­‐  ranging  from  protein  synthesis,  ATP  synthesis,  molecular  binding  and  recognition,  selective  transport,  sensor  functions,  mechanical  stability,  and  many  more.  The  combined  interdisciplinary  efforts  of  the  past  years  have  revealed  how  many  of  these  functions  are  effected  on  the  molecular  level  [1].  Computer  simulations  of  the  atomistic  dynamics  play  a  pivotal  role  in  this  enterprise,  as  they  offer  both  unparalleled  temporal  and  spatial  resolution.  With  state  of  the  art  examples,  this  talk  will  explain  the  basics  of  this  high  performance  computing  method  [2],  the  type  of  questions  that  can  (and  cannot)  be  addressed,  and  its  (current)  limitations.  The  examples  include  aquaporin  selectivity  [3,4],  mechanics  of  energy  conversion  in  F-­‐ATP  synthase  [5,6],  the  mechanical  properties  of  viral  capsids  [7,8],  and  tRNA    translocation  within  the  ribosome.  We  will  further  demonstrate  how  atomistic  simulations  enable  one  to  mimic,  one-­‐to-­‐one,  single  molecule  experiments  such  as  FRET  distance  measurements,  and  thereby  to  enhance  their  accuracy  [9,10].  We  will,  finally,  take  a  more  global  view  on  the  'universe'  of  protein  dynamics  motion  patterns  and  demonstrate  that  a  systematic  coverage  of  this  'dynasome'  allows  to  predict  protein  function  more  reliably  [11].    [1]  Puchner  EM,  Alexandrovich  A,  Kho  AL,  Hensen  U,  Schafer  LV,  Brandmeier  B,  Grater  F,  Grubmuller  H,  Gaub  HE,  Gautel  M.  Mechanoenzymatics  of  titin  kinase.  PNAS  105:  13385-­‐13390  (2008)  [2]  Hess  B,  Kutzner  C,  van  der  Spoel  D,  Lindahl  E.  GROMACS  4:  Algorithms  for  Highly  Efficient,  Load-­‐Balanced,  and  Scalable  Molecular  Simulation.  J.  Chem.  Theory  Comput.  4:  435-­‐447  (2008)  [3]  de  Groot  BL,  Grubmüller  H.  Water  permeation  across  biological  membranes:  Mechanism  and  dynamics  of  Aquaporin-­‐1  and  GlpF.  Science  294:  2353-­‐2357  (2001)  [4]  de  Groot  BL,  Grubmüller  H.  The  dynamics  and  energetics  of  water  permeation  and  proton  exclusion  in  aquaporins.  Curr.  Opin.  Struct.  Biol.  15:  176-­‐183  (2005)  [5]  Böckmann  R,  Grubmüller  H.  Nanoseconds  molecular  dynamics  simulation  of  primary  mechanical  energy  transfer  steps  in  F1-­‐ATP  synthase.  Nature  Struct.  Biol.  9:  198-­‐202  (2002)    [6]  Czub  J  and  Grubmüller  H.  Torsional  elasticity  and  energetics  of  F1-­‐ATPase.  PNAS  108;  7408-­‐7413  (2011)  [7]  Zink  M  and  Grubmüller  H.  Primary  changes  of  the  mechanical  properties  of  Southern  Bean  Mosaic  Virus  upon  calcium  removal.  Biophys.  J.  98:  687-­‐695  (2010)  [8]  Zink  M,  Grubmüller  H.  Mechanical  properties  of  the  icosahedral  shell  of  southern  bean  mosaic  virus:  a  molecular  dynamics  study.  Biophys  J.  96(4):  1350-­‐63  (2009)  [9]  Wozniak  AK,  Schroder  GF,  Grubmuller  H,  Seidel  CA,  Oesterhelt  F.  Single-­‐molecule  FRET  measures  bends  and  kinks  in  DNA.  Proc.  Natl.  Acad.  Sci.  USA  105(47):  18337-­‐42  (2008)  [10]  Hoefling  M,  Lima  N,  Haenni  D,  Seidel  CAM,  Schuler  B,  Grubmüller  H.  Structural  Heterogeneity  and  Quantitative  FRET  Efficiency  Distributions  of  Polyprolines  through  a  Hybrid  Atomistic  Simulation  and  Monte  Carlo  Approach.  PLOS  ONE  6:  e19791  (2011)    [11]  Hensen  U,  Meyer  T,  Haas  J,  Rex  R,  Vriend  G,  Grubmüller  H.  Exploring  Protein  Dynamics  Space:  The  Dynasome  as  the  Missing  Link  between  Protein  Structure  and  Function.  PLoS  ONE  7,  e33931  (2012)  

Page 6: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Dynamics  of  Molecular  Recognition:  What  can  we  learn  from  Force  

Microscopy/Spectroscopy?  

 

Peter  Hinterdorfer  

 Institute  for  Biophysics,  Johannes  Kepler  University  Linz,  Gruberstr.  40,  A-­‐4020  Linz,  

Austria    

In  single  molecule  recognition  force  spectroscopy  (SMRFS),  ligands  are  covalently  attached  to  atomic  force  microscopy  tips  for  the  molecular  recognition  of  their  cognitive  receptors  on  probe  surfaces.  A  ligand-­‐containing  tip  is  approached  towards  the  receptors  on  the  probe  surface,  which  possibly  leads  to  formation  of  a  receptor-­‐ligand  bond.  The  tip  is  subsequently  retracted  until  the  bond  breaks  at  a  certain  force  (unbinding  force).  Varying  the  dynamics  of  the  experiment  reveals  the  dependence  of  the  unbinding  force  from  the  loading  rate.  These  studies  give  insight  into  the  molecular  dynamics  of  the  receptor-­‐ligand  recognition  process  and  yield  information  about  the  binding  pocket,  binding  energy  barriers,  and  kinetic  reaction  rates.  Applications  on  isolated  proteins,  native  membranes,  viruses,  and  cells  will  be  presented.  We  have  also  developed  a  method  for  the  localization  of  specific  binding  sites  and  epitopes  with  nm  positional  accuracy,  termed  topography  and  recognition  (TREC)  imaging.  A  magnetically  driven  AFM  tip  containing  a  ligand  covalently  bound  via  a  tether  molecule  is  oscillated  at  a  few  nm  amplitude  while  scanning  along  the  surface.  In  this  way,  topography  and  recognition  images  are  obtained  simultaneously.  Finally,  we  will  show  how  high-­‐speed  bio-­‐AFM  is  able  to  film  the  dynamics  of  recognition  processes  on  the  nano-­‐scale.                                              

Page 7: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Principles  of  single  molecule  fluorescence  and  its  application  to  biology  and  biomedicine    

Dave  Klenerman    

Department  of  Chemistry,  Cambridge  University      Single  molecule  fluorescence  has  become  a  powerful  biophysical  tool  to  detect  rare  species  and  probe  the  structure  and  dynamics  of  biomolecules  in  solution,  on  surfaces  and  on  and  in   live   cells   over   the   last   15   years.   This   work   has   encouraged   the   active   collaboration   of  physical   scientists   and   biologists   leading   to   the   development   of   new   and   enabling  methodologies  and  providing  new  insights  into  fundamental  biological  processes.     I  will  briefly  review  the  history  of  the  field  and  then  describe  the  key  single  molecule  fluorescence   methods   that   are   currently   available   to   researchers   and   their   principles   of  operation.  Next  some  of  the  landmark  experiments  over  the  past  15  years  will  be  described,  illustrating   how   the  methodology   has   evolved   and   that   problems   of   increasing   biological  complexity   can   now   be   tackled.   Lastly   I   will   show   how   this   approach   can   lead   to   the  development   of   new   and   powerful   technologies   by   describing   the   work   that   lead   to   the  development  of  the  Solexa  next  generation  DNA  sequencing  method.                                                              

Page 8: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Single  Protein  Characterization  Methods  with  Nanopores      

Michael  Mayer  Department  of  Biomedical  Engineering  and  Department  of  Chemical  Engineering  

University  of  Michigan,  Ann  Arbor,  MI,  USA    

Synthetic  and  biological  nanopores  can  be  used  for  fundamental  and  applied  studies  of  individual  biomolecules  in  high  throughput.    By  measuring  resistive  current  pulses  during  the  translocation  of  single  molecules  through  an  electrolyte-­‐filled  nanopore,  this  technique  can  characterize  the  size,  conformation,  assembly,  and  activity  of  hundreds  of  unlabeled  molecules  within  seconds.    Inspired  by  the  olfactory  sensilla  of  insect  antennae,  we  demonstrate  that  coating  nanopores  with  a  fluid  lipid  bilayer  considerably  extends  the  capabilities  of  nanopore-­‐based  assays.    For  instance,  coating  nanopores  with  different  lipids  allows  fine  control  of  the  surface  chemistry  and  diameter  of  nanopores.    Incorporation  of  mobile  ligands  in  the  lipid  bilayer  imparts  specificity  to  the  nanopore  for  targeting  proteins  and  introduces  control  of  translocation  times  for  targeted  proteins  based  on  their  net  electric  charge.    Most  recently,  we  explored  the  potential  of  this  technique  for  determining  the  affinity  constant  of  a  protein-­‐ligand  interaction,  monitoring  the  kinetics  of  binding  of  this  interaction,  characterizing  the  aggregation  state  of  Alzheimer’s  disease-­‐related  amyloid  peptides,  as  well  as  determining  the  molecular  shape,  dipole  moment  and  rotational  diffusion  constant  of  individual  proteins.                                                    

Page 9: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Single  Small  Unilamellar  Vesicles:  tools  for  biophysics  and  technology  

Dimitrios  Stamou  

Nano-­‐Science  Center,  University  of  Copenhagen,  Denmark  

The  functional  nanoscale  architectures  of  cells  are  made  of  lipid  and  proteins  interacting  in  a  highly  coordinated  fashion.  We  are  interested  in  elucidating  mechanisms  driving  nanoscale  membrane   rearrangements  and  also   in  using   this   knowledge   to   create   functional   artificial  biomimetic   architectures   for   synthetic   biology   applications.   Here   I   will   discuss   the   use   of  single  small  unilamellar  vesicles  as  versatile   tools   that  can  be  used  both   in  biophysics  and  synthetic  biology.    

Page 10: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Analysis  of  complex  transmembrane  signaling  networks:  from  single  cells  to  single  molecules  

 Horst  Vogel  

 Ecole  Polytechnique  Fédérale  de  Lausanne  (EPFL),  Lausanne,  Switzerland  

 G-­‐protein-­‐coupled  receptors  (GPCRs)  are  ubiquitous  mediators  of  signal  transduction  across  cell  membranes  and  constitute  a  very  important  class  of  therapeutic  targets.  I  will  present  two  bioanalytical  platforms  to  control,  manipulate  and  investigate  molecular  events  in  GPCR-­‐mediated  signaling  network  at  a  nanometer  and  attoliter  scale.    

The  first  part  concerns  an  approach  enabling  the  study  of  GPCRs  in  their  native  membrane  transferred  inside-­‐out  from  live  cells  to  lectin-­‐coated  beads  [1].  The  access  to  both  sides  of  the  plasma  membrane  and  the  receptor  allows  controlled  supply  of  fluorescent  extracellular  ligands  and  intracellular  G  proteins.  Here,  the  interactions  between  the  different  signaling  partners  during  the  formation  and  subsequent  dissociation  of  the  ternary  signaling  complex  on  single  beads  can  be  observed  in  real  time  using  multicolor  fluorescence  microscopy.  This  method  of  tethering  native  cellular  membranes  from  live  cells  and  access  them  from  both  sides  represent  a  generic  platform  for  investigating  complex  signaling  processes  at  plasma  membranes  at  the  sub-­‐micrometer  scale.  

The  second  part  reports  on  the  investigation  of  GPCR  signalling  in  single,  submicrometer-­‐sized  native  vesicles,  derived  from  living  mammalian  cells  using  chemicals  or  optical  tweezers  [2,  3].  The  vesicles  comprise  parts  of  a  cell’s  plasma  membrane  and  cytosol  and  represent  the  smallest  autonomous  containers  performing  cellular  signaling  reactions,  thus  functioning  like  minimized  cells.  Using  fluorescence  microscopies,  we  measured  in  individual  vesicles  the  different  steps  of  GPCR  signaling  like  ligand  binding  to  receptors,  subsequent  G-­‐protein  activation  and  finally  receptor  deactivation  via  arrestin  translocation.  Observing  cellular  signaling  reactions  in  individual  vesicles  opens  the  door  for  downscaling  bioanalysis  of  cellular  functions  to  the  attoliter  range,  multiplexing  single  cell  analysis,  and  investigating  receptor  mediated  signaling  in  multiarray  format.  

 [1]  S  Roizard,  C  Danelon,  G  Hassaïne,  J  Piguet,  K  Schulze,  R  Hovius,  R  Tampé,  H  Vogel:    Activation  of  G-­‐Protein-­‐Coupled  Receptors  in  native  plasma  membranes  supported  on  beads.  J  Am  Chem  Soc  133,  16868  (2011).  

[2]  L  Grasso,  R  Wyss,  J  Piguet,  M  Werner,  G  Hassaïne,  R  Hovius,  H  Vogel:  Downscaling  the  analysis  of  complex  transmembrane  signaling  cascades  to  closed  attoliter  volumes.  Plos  One  (2013),  in  press.  

[3]  P  Pascoal,  D  Kosanic,  M  Gjoni,  H  Vogel:  Membrane  nanotubes  drawn  by  optical  tweezers  transmit  electrical  signals  between  mammalian  cells  over  long  distances.  Lab  on  Chip  10,  2235  (2010).          

Page 11: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Nano  and  sub-­‐nano  scale  distances  and  dynamics  from  Solid  State  NMR  in  biology  –  an  Introduction  

 Anthony  Watts  

 Department  of  Biochemistry,  University  of  Oxford,  UK  

 NMR   in   biomolecular   sciences   is   familiar   to   most,   but   Solid   State   NMR   is   less   well  represented  at  biophysics  and  structural  biology  meetings,  despite  its  power  to  resolve  very  high  resolution  (sub-­‐nanometre)  distances  to  very  high  degrees  of  certainty  (±0.05nm)  and  dynamics  on  the  ns  –  ps  time  scales.  As  a  complement  to  other  structural  biology  methods,  solid  state  NMR  has  a  lot  to  offer.      Here  the  basics  of  solid  state  NMR  for  use  in  structural  biology  will  be  presented,  to  provide  sufficient  information  for  participants  at  the  main  congress  a  background  for  when  lectures  and  papers  are  presented  in  which  the  method  is  used.    The   nature   of   sample   form,   the  way   in  which   poorly   resolved   spectra   using   conventional  solution   state  NMR   can   be   enhanced,   and  methods   for   obtaining   structural   and   dynamic  data   will   be   presented.   No   previous   quantitative   or   mathematical   background   will   be  assumed,  and  applications  will  be  a  major  focus.  Further  reading  is  given  below.    Suggestions  for  further  reading:    Watts,  A.,  Straus,  S.K.,  Grage,  S.,  Kamihira,  M.,  Lam,  Y.-­‐H.  and  Xhao,  Z.  (2004)  Membrane  

protein  structure  determination  using  solid  state  NMR.  In:  Methods  in  Molecular  Biology  –  Techniques  in  Protein  NMR  Vol.  278  (ed.  K.  Downing),  Humana  Press,  New  Jersey,  pp.  403-­‐474.  

 [this  chapter  describes  sample  form,  how  to  make  various  sample  types,  and  the  methodologies  in  some  detail]    Watts,  A.  (2005)  Solid  state  NMR  in  drug  design  and  discovery  for  membrane  embedded  

targets.    Nature  Reviews  Drug  Discovery,  4,  555-­‐568.    [  this  review  details  how  solid  state  NMR  can  give  new  insights  to  the  dry  design  and  discovery  process.  Most  major  pharma  use  solid  state  NMR  for  chemical  analysis,  but  here  the  level  is  raised  to  ligand-­‐target  interaction  studies]    Levitt,  M.  (2008)  Spin  Dynamics.  Wiley-­‐Blackwell,  Chichester.    [A  comprehensive  NMR  textbook.  Very  readable]    Apperley,  D.,  Harris,  R.,  and  Hodgkinson,  P.  (2012)  Solid  State  NMR:  Basic  Principles  and  

Practise.  Momentum  Press,  New  York.  [  a  practical  guide]      

Page 12: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

               Submitted  Abstracts    (in  alphabetical  order  of  author)    There  are  no  posters.    Please  see  programme  for  those  selected  for  short  oral  presentations.                                              

Page 13: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Symmetry  and  asymmetry  in  the  unwinding  of  nucleic  acids  

Francesco  Colizzi,∗,†  Yaakov  Levy,‡  and  Giovanni  Bussi∗,†  

SISSA   -­‐  Scuola   Internazionale  Superiore  di  Studi  Avanzati,  via  Bonomea  265,  34165  Trieste,  Italy,  and  Department  of  Structural  Biology,  Weizmann  Institute  of  Science,  Rehovot,  Israel  

E-­‐mail:  [email protected];  [email protected]  

The  forming  and  melting  of  complementary  base  pairs  in  RNA  and  DNA  duplexes  are  confor-­‐  mational   transitions   required   to   accomplish   a   plethora   of   biological   functions.   Using   fully  atom-­‐  istic  simulation  we  have  shown  that  RNA  unwinding  occurs  by  a  stepwise  process  in  which  the  probability  of  unbinding  of  the  base  on  the  5  ́   strand   is  significantly  higher  than  that  on  the  3  ́   strand  [Colizzi  and  Bussi   JACS,  2012].  The  asymmetry   in  the  RNA  unwinding  dynamics   is   compliant   with   the   mechanism   of   helicase   activity   shown   by   prototypical  DEx(H/D)  RNA  helicases  and  could  allow  deciphering  the  basis  of  the  evolutionary  pressure  responsible  for  the  unwinding  mechanism  catalyzed  by  RNA-­‐duplex  processing  enzymes.  In  this  spirit  and  from  a  broader  standpoint,  here  we  use  a  topology-­‐based  coarse-­‐grain  model  to   compare   and   characterize   the  mechanism   of   un-­‐  winding   for   both   DNA   and   RNA.   The  (a)symmetric   behavior   of   the   3  -́­‐   and   5  -́­‐strand   could   be   related   to   the   (bi)directionality  observed  in  molecular  machineries  processing  nucleic  acids.  

∗To  whom  correspondence  should  be  addressed  †  SISSA  ‡Weizmann  Institute  of  Science  

                                           

Page 14: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Combining   nanoscale   DEER   distance   measurements,   modelling   and   simulations   to  examine  the  structural  heterogeneity  of  a  peptide  transporter    Patricia   Dijkman1,   Lucy   Forrest2,   Philip   Fowler3,   Jane   Kwok4,   Simon   Newstead4,   Marcella  Orwick-­‐Rydmark1,   Sebastian   Radestock4,   Firdaus   Samsudin1,   Nicolae   Solcan4,   Anthony  Watts1      

1Bio-­‐membrane  structure  unit,  Department  of  Biochemistry,  University  of  Oxford,    Oxford,  UK;  2Computational  Structural  Biology  Group,  Max  Planck  Institute  of  Biophysics,  Frankfurt  am   Main,   Germany;   3Structural   bioinformatics   and   computational   biochemistry   unit,  Department   of   Biochemistry,   University   of   Oxford,   Oxford,   UK;   4Department   of  Biochemistry,  University  of  Oxford,  Oxford,  UK;      Human  PepT1  is  a  peptide  transporter  belonging  to  the  major  facilitator  superfamily  (MFS)  expressed   in   the   gastrointestinal   tract   where   it   is   responsible   for   the   uptake   of   dietary  nitrogen  through  di-­‐  and  tri-­‐peptides.  It  is  of  pharmaceutical  interest  as  it  also  transports  a  wide-­‐range   of   hydrophilic   drugs.   Crystal   structures   of   two   homologous   bacterial   MFS  transporters,   PepTSo   [1]   and   PepTSt   [2],   have   recently   been   determined   in   two  conformational   states,  and  a  model  of   the  outward   facing  state  of  PepTSo  was  generated  using   the   repeat-­‐swapping   method   [3].   In   this   study   we   use   nanoscale   distance  measurements  by  double  electron-­‐electron  resonance  (DEER)  spectroscopy,  modelling  and  computer  simulations  to  examine  the  conformational  heterogeneity  of  PepTSo  in  solution.  As  the  width  of  the  distance  distribution  obtained  from  DEER  not  only  contains  information  on  the  ensemble  of  protein  conformations  sampled,  but  also  a  contribution  from  different  spin   label   rotamers,   this   combined  approach  allows  us   to  disentangle   these   contributions  and  to  tentatively  assign  DEER  measurements  to  known  conformations  of  the  transporter.        1. Newstead  S,  et  al.  (2011)  Crystal  structure  of  a  prokaryotic  homologue  of  the  mamalian  

oligopeptide-­‐proton  symporters,  PepT1  and  PepT2,  EMBO  J  30:417  2. Solcan  N,  et  al.   (2012)  Alternating  access  mechanism  in  the  POT  family  of  oligopeptide  

transporters,  EMBO  J  31:3411  3. Radestock   S   and   Forrest   LR   (2011)   The   alternating-­‐access   mechanism   of   MFS  

transporters   arises   from   inverted-­‐topology   repeats,   J   Mol   Biol   407:698    

                       

Page 15: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Nanotechnology   approaches   to   study   molecular   mechanisms   of   amyloid   toxicity   in  Alzheimer’s  disease.    Elizabeth   Drolle1,2,   Francis   Hane1,   Youngjik   Choi1,   Brenda   Lee1,   Simon   J.   Attwood3,   Arvi  Rauk4,  Antonin  Ollagnier5,  Eric  Finot5  and  Zoya  Leonenko1,2,3.    

1Department   of   Biology,   2Waterloo   Institute   for   Nanotechnology,   3Department   of   Physics  and  Astronomy,  University  of  Waterloo,  Canada;  4Department  of  Chemistry,  University  of  Calgary,  5Laboratoire   Interdisciplinaire   Carnot   de   Bourgogne,   Universite   de   Bourgogne,   Dijon,  France.    Alzheimer’s   disease   is   a   progressive   neurodegenerative   disease   associated   with   amyloid  fibril   formation  in  the  brain.   It   is  now  accepted  that  the  cytotoxicity   is  a  result  of  the  non-­‐specific   interaction   of   toxic   soluble   amyloid   oligomers   with   the   surface   of   plasma  membrane.   We   used   atomic   force   microscopy   (AFM),   atomic   force   spectroscopy   (AFS),  frequency  modulated   Kelvin   probe  microscopy   (FM-­‐KPFM),   Langmuir-­‐Blodgett  monolayer  technique   and   surface   plasmon   resonance   (SPR),   combined   with   microfluidics,   to   study  effect  of  membrane  composition  on  binding  of  amyloid-­‐β  (1-­‐42)  peptide  and  fibril  formation  [1].   We   show   that   cholesterol   induces   electrostatic   domains   in   lipid   membrane   which  creates   a   target   for   amyloid   binding   [2].     Hormone   melatonin,   which   regulates   and  maintains   the   body's   circadian   rhythm,   has   been   shown   to   be   protective   against   AD,   but  molecular  mechanism  of   this  protection   is  not  understood.    We  show  that  melatonin  and  cholesterol  have  the  opposite  effects  of  the  lipid  membrane  properties  which,  in  turn,  affect  amyloid  binding  to  the  lipid  membrane.  We  used  single  molecule  atomic  force  spectroscopy  to   study   single   molecule   amyloid   binding   of   A-­‐beta   (1-­‐42)   [3].   We   studied   the   effect   of  amyloid   inhibitor  SG1  and  demonstrated   that   this   technique  can  be  used   to   test   inhibitor  drugs  for  Alzheimer’s  disease.    

   References:      1. F.Hane,  E.Drolle,  R.Gaikwad,  E.Faught,  Z.Leonenko.  2011.  Journal  of  Alzheimer’s  Disease.  

26:  485-­‐494;    2. E.Drolle,  R.Gaikwad,  Z.Leonenko.  Biophysical  Journal  Letter,  2012,  103(4):  L27-­‐L29.  3. F.Hane,  G.Tran,  S.J.  Attwood,  and  Z.Leonenko.  2013,  PLoS  ONE,  8(3):  e59005.    

 

 

Page 16: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Altering  the  torsional  rigidity  of  proteins  by  surfactants  F.A.  Gutierrez1,  L.J.  van  IJzendoorn,1  M.W.J  Prins1,2  1Eindhoven  University  of  Technology      2Philips  Research  Laboratories,  The  Netherlands    Non-­‐ionic   surfactants   are   widely   used   in   protein   biosensing   technologies   to   improve  sensitivity   and   specificity.   The   surfactants   inhibit   protein   aggregation   and   improve   the  functionalized   surfaces   in   immunoassays.   However,   surfactants   can   also   potentially   alter  protein  conformation,   ligand-­‐receptor  affinity  and  thereby  assay  performance.   In  practice,  the   surfactant   concentration   in   assay   buffers   is   an   empirical   compromise   that   is   reached  without  design  rules  based  on  molecular  understanding.    Recently  we   have   developed   a   torsion   profiling   technique   [1]   based   on  magnetic   particle  labels   to   measure   the   mechanical   properties   of   individual   ligand-­‐receptor   pairs.   Using   a  rotating  magnetic  field,  we  apply  a  controlled  torque  to  a  protein  pair  sandwiched  between  a   functionalized   magnetic   particle   and   a   substrate,   and   thereby   determine   its   torsion  constant.  The  torsion  profiling  method   is  suited  to   investigate  the   influence  of  surfactants  on   individual   ligand-­‐receptor   pairs   in   the   presence   of   different   concentrations   of  surfactants.  Our  data  demonstrate  an  increased  rotational  flexibility  of  individual  proteinG-­‐IgG   pairs   with   increasing   concentration   of   the   surfactant   Tween-­‐20.   These   results  demonstrate  that  the  mechanical  integrity  of  the  protein  pair  is  compromised,  which  is  most  likely  due  to  partial  unfolding  without  breaking  the  ligand-­‐receptor  bond.  Furthermore,  we  investigate  the  reversibility  of  the  effect  of  the  surfactant  on  the  protein  complexes.      [1]  A.  van  Reenen,  F.  Gutiérrez-­‐Mejía,  L.J.  van  IJzendoorn,  M.W.J.  Prins,  Torsion  Profiling  of  Proteins  Using  Magnetic  Particles,  Biophysical  Journal  104,  1073-­‐80  (2013).                                                    

Page 17: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Carbon  nanotube  as  functional  matrix  for  bacterial  photosynthetic  reaction  centers    Kata   Hajdu1,   Tibor   Szabó1,   Dóra   Fejes2,  Melinda  Magyar1,   Zsolt   Szegletes3,   György   Váró3,  Endre  Horváth4,  Arnaud  Magrez4,  Klára  Hernádi2,  László  Forró4,  László  Nagy1  

 1Department  of  Medical  Physics  and  Informatics,  University  of  Szeged,  Szeged,  Hungary  2Department   of   Applied   and   Environmental   Chemistry,   University   of   Szeged,   Szeged,  Hungary  3Institute  of  Biophysics,  Hungarian  Academy  of  Science,  Biological  Research  Center,  Szeged,  Hungary  4Institute   of   Physics   of   Complex   Matter,   Ecole   Polytechnique   Federale   de   Lausanne,  Switzerland    Photosynthetic   reaction   center   protein   (RC)   purified   from   Rhodobacter   sphaeroides   R-­‐26  purple   bacterium   was   immobilized   on   –NH2   and   -­‐COOH   functionalized   and   non-­‐functionalized   carbon   nanotubes   (CNTs)   and   the   optical   and   electric   properties   of   the  complex  was   investigated.  The  RC  binding  was  proved  by  electron  microscopy  and  atomic  force   measurements.   The   kinetics   of   the   absorption   change   after   single   saturating   flash  excitation   shows   that   the   RCs   remain   active   in   the   complex   for   several   weeks.   In   our  experience  the  best  activity  was  measured  when  the  RC  was  bound  physically.  If  the  CNT/RC  complex   was   bound   to   transparent   conductive   electrode   a   light   induced   current  (photocurrent)   was   measured   in   a   specially   designed   electrochemical   cell.   Light   induced  conductivity  of   the  complex  was  also  measured   in  a  dried  complex.  The  special  electronic  properties   of   our   CNT/RC   complexes   open   the   possibility   for   several   directions   new  generation  applications  in  optoelectronics,  e.g.  in  microelectronics  or  energy  conversion.  

         

                               

Page 18: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Investigation   of   the   pH   stability   of   avidins   and   newly   developed   avidin   mutants   with  atomic  force  microscopy  based  on  single  molecule  sensors    Melanie  Koehler1,  Michael  Leitner1,  Vesa  Hytönen2,  Markku  Kulomaa2,  Peter  Hinterdorfer1,  Andreas  Ebner1    1Institute  of   Biophysics,   Johannes  Kepler  University   of   Linz,  Gruberstraße  40,  A-­‐4020   Linz,  Austria  2Institute  of  medical   Technology,  Biokatu  6,   FI-­‐33014  University  of  Tampere  and  Tampere  University  Hospital,  Tampere,  Finland    E-­‐Mail:  [email protected]      The  great  stability  of  (strept)avidin  over  a  wide  pH  range,  particularly  when  combined  with  biotin,  has  been   studied  qualitatively   in   the   last   fifty   years1.   In   the  present   study,   a  more  detailed   investigation  and  evaluation   is  made  by  performing  molecular  recognition  studies  between   the   receptor   and   their   corresponding   ligand,   using   AFM   force   spectroscopy.  Additionally,   the   recently   developed   avidin  mutant   chimericavidin   should   be  more   stable  against  various  harsh  chemical  conditions  compared  to  avidin,  which  is  also  examined  in  this  study.  A  high  stability  of  the  three  proteins  against  pH  treatment  enables  new  applications  in  bio(nano)technology.  Because  of  its  piconewton  and  nanometer  positional  accuracy,  the  AFM   is   a   powerful  method   for   exploring   the   pH   stability   of   the   three   proteins.   The   used  measuring  principle,   so  called  single  molecule   recognition   force  spectroscopy,  enables   the  investigation   of   forces   and   dynamics   of   the   interaction   between   the   proteins   and   a  corresponding   ligand,   either   on   single  molecule   sensors,   during   a   pH   treatment   and  with  different   loading   rates.   Therefore,   the   ligand   (biotin)   is   coupled   via   a   hetero-­‐bifunctional  PEG-­‐crosslinker   on   the   outer   AFM   tip   apex   and   the   receptor   (avidin,   streptavidin   or  chimericavidin)   is   immobilized   via   an   EGS-­‐crosslinker   on   the  probe   surface.   By   repeatedly  approaching   and   withdrawing   of   the   tip   in   z-­‐direction,   receptor-­‐ligand   complexes   are  formed   and   released.   If   this   experiment   is   repeated   at   different   pulling   speeds   (loading  rates)  and  pH  values,  the  energy  landscape  of  such  complexes  under  different  pHs  and  the  pH  stability   itself  of   the  receptors  can  be  examined.  The  measurements  have  been  clearly  shown  that  the  three  examined  proteins  are  stable  over  a  wide  pH  range,  which  means  that  there  were  also  protein-­‐binding  interactions  possible  at  extreme  pH  values.  Chimericavidin  does  not  offer  the  pH  stability  on  single  molecule  level  as  expected.  Moreover,  the  energy  landscape   of   the   receptor-­‐ligand   complexes   and   the   kinetic   parameters   during   the  treatment  with  extreme  pHs  could  be  obviously  clarified.  All  in  all,  the  three  proteins  open  the   possibility   for   more   (pH-­‐dependent)   applications,   like   for   e.g.   in   the   field   of   pH-­‐dependent   regulation   of   protein-­‐structure   and/   or   biotin-­‐binding   as   well   as   for   surface  sensors,  which  are  exposed  extremes  of  pHs.    1NM   Green.   Avidin.   4.   Stability   at   extremes   of   pH   and   dissociation   into   sub-­‐units   by  guanidine  hydrochloride.  Biochemical  Journal,  89(3):609,  1963.          

Page 19: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Membrane-­‐on-­‐a-­‐chip:   Micro-­‐structured   chips   to   measure   membrane   transport   and  membrane  fusion    Ilja   Kusters1,  Marc   Vor   der   Brüggen2,   Sebastian   Giehring2,   Antoine   van  Oijen3   and   Arnold  Driessen1    

1Department   of   Microbiology,   Groningen   Biomolecular   Sciences   and   Biotechnology  Institute,   and   Zernike   Institute   for   Advanced   Materials,   University   of   Groningen,   The  Netherlands  2Nanospot  GmbH,  Münster,  Germany  3Single   Molecule   Biophysics,   Zernike   Institute   for   Advanced   Materials   and   Centre   for  Synthetic  Biology,  University  of  Groningen,  The  Netherlands    Investigation  of  processes  within  biological  membranes  and  their   interfaces  are  hampered  by  the  intrinsic  difficulty  to  immobilize  lipid  bilayers  in  a  functional  state.  For  time  resolved  microscopic   approaches,   immobilization   of   membranes   on   surfaces   is   required   but  interaction   of   lipids   or   incorporated  membrane   proteins  with   the   supporting   surface   can  constrain  their  mobility  and  functionality.  Here,  we  present  the  generation  of  free  standing  lipid   bilayers   with   physiological   relevant   lipid   composition   on   functionalized   micro-­‐structured  Si/SiO2  chips  that  allow  for  both  high  throughput  screening  and  single  molecule  imaging  of  the  membrane.  The  free  standing  bilayers  enable  studies  on  transport  processes  across   the   membrane   and   fusion   processes   with   the   bilayer   at   physiological   salt  concentrations.   Transport   through   the   pore   forming   membrane   protein   hemolysin   and  fusion  of  H3N2  influenza  viruses  are  investigated  as  model  systems.    A              B  

Figure  1:  Free  standing  lipid  bilayer  on  micro-­‐structured  Si/SiO2  chip.  A)  Micro-­‐porous  Si/SiO2  on   a   glass   support   suitable   for   high   resolution   fluorescence  microscopy.   The   cavities   are  topped   by   a   glass   lid  with   1μm   apertures   and   a   Ti/Au   layer   for   surface   functionalization.  Giant  unilamellar  vesicles  are  collapsed  thereby  generating  unilamellar  lipid  bilayers  on  top  of  the  cavities.  B)  Transport  through  the  membrane  spanning  pore  hemolysin  is  monitored  by  efflux  of  small  fluorophores  trapped  inside  the  chip  cavity.  Due  to  the  size  restriction  of  the   pore,   a   larger   fluorophore   remains   in   the   cavity   and   serves   as   control   for  membrane  leakage.        

Page 20: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Thermal  properties  of  the  S-­‐layer  protein  from  Lactobacillus  salivarius    Liliana  Lighezan1,  3,  Ralitsa  Georgieva2,  Adrian  Neagu3  

 1  Faculty  of  Physics,  West  University  of  Timisoara,  Timisoara,  Romania;  2  The  Stephan  Angeloff  Institute  of  Microbiology,  Bulgarian  Academy  of  Sciences,  Sofia,  Bulgaria;  3  Center  for  Modeling  Biological  Systems  and  Data  Analysis,  Department  of  Functional  Sciences,  Victor  Babes  University  of  Medicine  and  Pharmacy,  Timisoara,  Romania;  [email protected],  [email protected],  [email protected]    Surface   layer   (S-­‐layer)   proteins   have   been   identified   in   outermost   structures   of   the   cell  envelope   in  many  organisms,   such  as  bacteria  and  archaea   [1].   They  display   intrinsic   self-­‐assembly   property,   forming  monomolecular   crystalline   arrays   [2,   3].   It   is   assumed   that   S-­‐layer   proteins   act   as   protective   coats,   cell   shape   determinants,   molecular   and   ion   traps,  adhesion   sites   for   exoenzymes   and   structures   involved   in   cell   adhesion   and   surface  recognition   [2,   3].   Isolated   S-­‐layer   proteins   possess   the   unique   ability   to   recrystallize   into  regular  monomolecular  arrays,  on  solid  supports,  on  liquid  surface-­‐interfaces,  on  lipid  films  and  liposomes,  or  in  suspension.  The  ability  to  self-­‐assemble  into  regular  lattices,  with  pores  of  identical  size  and  morphology  (of  about  1  to  10  nm),  facilitates  the  use  of  S-­‐layer  proteins  in  many   biotechnological   applications,   such   as   the   production   of   isoporous   ultrafiltration  membranes   [4]   and   the   construction   of   matrices   for   the   formation   of   ordered   arrays   of  metal   clusters   or   nanoparticles   [5].   Also,   they   are   used   for   drug   targeting   [6]   and  encapsulated  drugs  [7].  

In   this   study,   the  S-­‐layer  protein  has  been   isolated   from  Lactobacillus   salivarius   16  strain   of   human   origin,   and   purified   by   cation-­‐exchange   chromatography.   Using   circular  dichroism  spectroscopy,  we  have   investigated  the  structure  and  the  thermal  properties  of  the   S-­‐layer   protein.   The   far   UV   circular   dichroism   spectra   indicate   that   the   secondary  structure  of   the  S-­‐layer  protein   consists  mainly  of   irregular  motifs,  but   it   can  also   contain  small  fractions  of  α-­‐helices  and  β-­‐sheets.  The  near  UV  circular  dichroism  spectra  show  that  the  tertiary  structure  of  the  S-­‐layer  protein  is  determined  by  a  high  content  of  hydrophobic  amino  acids,  such  as  Trp,  Tyr  and  Phe,  bound  into  a  local  chiral  environment,  which  tend  to  compact   the   protein's   tertiary   structure.   The   thermal   denaturation   of   the   secondary   and  tertiary  structures  of  S-­‐layer  protein  take  place  in  the  temperature  range  between  40  °C  and  80  °C  and  are  partially  reversible.  The  thermal  denaturation  ellipticity  curves  in  the  far  and  near   UV   domains   show   the   existence   of   a   metastable   intermediate   state   in   the   protein  denaturation  pathway.  During  thermal  denaturation,  the  protein  changes  its  secondary  and  tertiary   structure   simultaneously.   After   the   heating   of   the   protein   up   to   90   °C   and,  subsequently,  its  cooling  down  to  10  °C,  the  secondary  and  tertiary  structures  of  the  S-­‐layer  protein   are   partially   recovered,   this   property   being   important   for   bionanotechnological  applications.  References  [1]  Messner  P  and  Sleytr  U  B,  Adv.  Microbiol.  Physiol.  33  (1992)  213-­‐275.  [2]  Sara  M  and  Sleytr  U  B,  S-­‐layer  proteins  J.  Bacteriol.  182  (2000)  859-­‐868.  [3]  Sleytr  U  B  and  Beveridge  T  J,  Trends  Microbiol.  7  (1999)  253-­‐260.  [4]  Neubauer  A,  Pum  D,  Sleytr  U  B,  Biosensors  and  Bioelectronics  11  (1996)  317-­‐325.  [5]  Sleytr  U  B,    Egelseer  E  M,  Nicola  I,  Pum  D  and  Schuster  B,  FEBS  J.  274  (2007)  323-­‐334.  [6]  Schuster  B  and  Sleytr  U  B,  Curr.  Nanosc.  2  (2006)  143-­‐152.  [7]  Habibi  N,  Pastorino  L,  Soumetz  F  C,  Sbrana  F,  Raiteri  R,  Ruggiero  C,  Colloids  and  Surfaces  B:  Biointerfaces  88  

(2011)  366-­‐372.  

Page 21: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Engineering  Biological  Nanopores  in  Nanotechnology  

Giovanni  Maglia  

Department  of  Chemistry,  University  of  Leuven  

Leuven,  3001  

 

Ph:  +32(016)  327  696  Email:  [email protected]  

 

The  use  of  natural  components  as  building  block  in  nanotechnlogy  is  advantageous  because  they  can  be  fabricated  in   large  quantities  and  they  can  effectively   interface  with  biological  systems.  However,  the  redesign  of  a  protein  function  is  difficult  because  its  folding  cannot  be  always  predicted,   and   the  application  of  proteins   in  nanotechnology  has  been   limited.  Proteins   nanopores,   which   recently   emerged   as   powerful   tools   in   single-­‐molecule  investigations,   are   ideally   suited   for   targeted   modification   because   they   have   a   stable  structure  and  a  simple  geometry.  Using  genetic  engineering,  target  chemical  modifications  and  directed  evolution  approaches  we  can  manipulate  the  size  and  transport  properties  of  biological   nanopores,   and   we   can   infer   novel   functions   for   desired   nanotechnology  applications.  Examples   include  building  a  chimeric  Anfinsen  cage  to  study  the  chaperonian  mediated   protein   folding   at   the   single-­‐molecule   level,   fabricating   a   selective   sensor   for  protein  analytes,  and  designing  an  artificial  biological  system  for  the  vectorial   transport  of  specific  nucleic  acids  across  biological  membranes.                                                

Page 22: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Photocurrent   generated   by   photosynthetic   reaction   centers/carbon   nanotube/ITO   bio-­‐nanocomposite  

 

Melinda   Magyar1   –   Tibor   Szabó1–   Balázs   Endrődi2   –   Kata   Hajdu1–   Csaba   Visy2–   Zsolt  Szegletes3   –   György   Váró3   –Endre   Horváth4   –   Arnaud   Magrez4   –   Klára   Hernádi5   –   László  Forró4  –  László  Nagy1  1  Department   of   Medical   Physics   and   Informatics,   University   of   Szeged,   H-­‐6720   Szeged,  Hungary  

2  Department   of   Physical   Chemistry   and   Materials   Science,   University   of   Szeged,   H-­‐6720  Szeged,  Hungary  

3  Institute  of  Biophysics,  Hungarian  Academy  of  Science,  Biological  Research  Center,  Szeged,  Hungary  4   Institute   of   Physics   of   Complex  Matter,   École   Polytechnique   Federale   de   Lausanne,   CH-­‐1015  Lausanne,  Switzerland  

5   Department   of   Applied   and   Environmental   Chemistry,   University   of   Szeged,   H-­‐6720  Szeged,  Hungary    Intensive   studies   are   focusing   recently   on   possible   directions   of   applications   of  photosynthetic   proteins   purified   from   plants   (PS-­‐I   and   PS-­‐II)   and   from   purple   bacteria   in  nanotechnology.   Different   sample   preparations   and   experimental   conditions   are   used   to  find   the  most   efficient   and  most   stable   energy   converting   systems.   Besides   the   different  biological   systems   various   inorganic   carrier   matrices   (e.g.   indium   tin   oxide   (ITO),   carbon  nanotubes  (CNTs),  silicon  nanostructures)  are  used  in  different  laboratories.  Reaction  center  proteins   (RC)   purified   from   purple   bacterium   Rhodobacter   sphaeroides   were   bound  successfully   to   –NH2   and   –COOH   functionalized   multiwalled   carbon   nanotubes   (MWNTs)  immobilized  onto  the  surface  of   ITO   in  our  studies.  Electron  microscopy  and  AFM   images,  flash   induced   absorption   change   and   conductivity   have   shown   that   RCs   can   be   bound  effectively   to   the   carbon   nanotubes   (CNT).   A   special   electrochemical   cell   with   three  electrodes   was   designed   for   measuring   the   photocurrent   generated   by   this   composite.  Several   hundreds   of   nA   photocurrent   was   measured   with   fully   active   RCs   in   this   system  which  was  sensitive  to  the  conditions  that  fulfil  conditions  of  the  RC  photo  turnover.                                  

Page 23: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Bacterial  chemotaxis  in  chemical  gradients  created  in  a  flow-­‐free  microfluidic  device    Krisztina  Nagy,  Orsolya  Haja,  Ádám  Kerényi,  Sándor  Valkai,  Pál  Ormos,  Péter  Galajda    Institute  of  Biophysics,  Biological  Research  Centre  of   the  Hungarian  Academy  of   Sciences,  Szeged,  Hungary    Motility   helps   bacteria   explore   spatially   heterogeneous   environments.   By   chemotaxis  bacteria   constantly   detect   the   concentration   gradient   of   chemoeffectors   and   make  „decisions”   on   the   net   direction   of   movement   (either   migrate   towards   high   attractant  concentrations  or  away  from  repellents).  

The   technology   of   microfluidics   is   suitable   for   precise   manipulation   of   liquids   in  microscopic  dimensions  in  creating  devices  to  generate  stable  and  well-­‐controlled  chemical  gradients.  We  have   fabricated  and  experimentally   characterized  a  microfluidic  device   that  creates  temporally  stable  chemical  concentration  gradient  in  a  flow-­‐free  environment.  The  majority   of   concentration   gradient   generating   devices   are   based   on   mixing   of   chemical  species   by   the   help   of   laminar   flow,   our   design   is   a   novel   conception   eliminating   the  disturbance   of   fluid   flow.   Thus   bacteria   in   our   devices   swim   in   a   static   but   chemically  heterogeneous  environment.    

The   device   was   fabricated   of   poly(dimethylsiloxane)   using   photolithography   and   soft  lithography.   It  consists  of  two   large  reservoirs  and  a  narrow  observation  channel  between  them  separated  by  a  porous  membrane.  Diffusion  of  molecules  from  the  reservoirs  to  the  central   channel   (where   bacteria   swim)   creates   the   gradient   across   the   channel.   Although  the  gradients  established   in  this  case   is   less  steep  than   in  the  popular   flow  based  devices,  such  gradients  are  more  than  enough  to  observe  bacterial  chemotaxis.  

We  have  studied  the  chemotactic  response  of  Escherichia  coli  to  several  substances.  We  tested  some  well-­‐known  attractants  and  repellents,  such  as  L-­‐aspartate  and  NiSO4.  We  also  measured   the   effect   of   „conditioned”  media,   cell-­‐cell   signaling  molecules   and   even   some  antibiotics.  The  buffers  in  the  reservoirs  may  be  changed  in  seconds  to  test  the  cell  response  to  an  altered  condition.  

One  of  the  main  advantages  of  our  device  is  that  cells  may  be  exposed  to  the  gradient  for  extended  period  of   time,  so   the  behavior  of   the  same  population  can  be  observed   for  long  time   (~  24  h),   therefore  we  can  study  small  variations   in  chemotaxis.  We  are  able   to  detect   how   cells   change   the   chemical   composition   of   their   environment   (consuming  nutrients  and  releasing  metabolites)  and  how  they  react  to  these  changes.                

Page 24: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Developing  a  detection  system  using  M13  bacteriophage  and  Linear  Dichroism    

R.  Pacheco-­‐Gómez,  S.  Sandhu,  M.  Hicks  &  T.  Dafforn  School  of  Biosciences,  University  of  Birmingham  

 Biomolecular   detection   has   depended   on   a   small   number   of   established   methodologies  many  of  which  rely  on  the  detection  of  a  ligand:antibody  complex  using  an  optical  technique  e.g.  using  chemiluminescence.   In   these   systems,   the   ligand:antibody  complex  needs   to  be  separated  from  bulk  contaminants  before  a  measurement  can  be  made  making  the  process  slow,  complex  and  expensive.    This   project   demonstrates   how   a   nanoparticle   can   provide   the   basis   for   a   homogeneous  assay  that  requires  no  immobilisation  or  separation  steps.  This  homogeneous  assay  involves  the   use   of   M13   bacteriophage   and   linear   dichroism.  M13  is  a  filamentous  bacteriophage  with  a  high  aspect  ratio.  This  makes  it  easy  to  align  in  flow,  allowing  it  to  be  detected  using  linear  dichroism.  This  property  of  M13  bacteriophage  has  been  exploited  for  use  in  a  new  in-­‐vitro  diagnostic  technique  that  can  be  used  to  detect  pathogens   and   could   be   used   to   detect   small   molecules   and   DNA.                                                          

Page 25: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Deciphering   the   trafficking  of  NK1   receptor   in   the  membrane  of   living-­‐cells  using  single-­‐molecule  microscopy    Joachim  Piguet1,  Luc  Veya1,  and  Horst  Vogel1    1   Laboratory   of   Physical   Chemistry   of   Polymers   and   Membranes,   Ecole   Polytechnique  Fédérale  de  Lausanne,  CH-­‐1015  Lausanne,  Switzerland    The   tachykinin   receptor   1   (NK1R)   is   a   ubiquitous   7TM   receptor   (GPCR)   involved   in  

numerous   functions   of   the   nervous   system,   particularly   in   nociception,   inflammation   and  emesis.  It  is  a  very  potent  target  in  treatment  of  depression  and  attenuation  of  side  effects  of  cancer  therapy.  Here,  we  present  an  extensive  study  on  the  mobility  distribution  patterns  of  single  receptors  in  the  plasma  membrane  of  living  cells.    In  the  resting  state  (no  activation),  NK1R  shows  two  major  populations:  (i)  freely  diffusing  

receptors  with  a  narrow  distribution  of  diffusion   coefficients  around  0.023  µm2/s,   and   (ii)  receptors   diffusing   in   confined   membrane   domains   of   150   to   600   nm   size   with   a   broad  distribution   of   diffusion   coefficients   and   mobility   parameters   confirming   significant  confinement.  After  activating  the  receptor  by  an  agonist,  two  successive  phases  occur.  In  the  first  10  to  

30   seconds   after   agonist   binding,   the   fraction   of   freely   diffusing   receptors   strongly  decreases   and   a   third   mobility   population   appears,   comprising   immobile   receptors   with  diffusion   coefficients   <10-­‐3   µm2/s   and   mobility   parameters   characteristic   of   immobile  individuals.  30  minutes  later,  the  number  of  freely  diffusing  receptors  increases  again  and  a  fourth  mobility  population  appears  comprising  fast  diffusing  receptors   in  circular  domains.  These   receptors   show   diffusion   coefficients   >0.1   µm2/s,   close   to   ideal   diffusion   in   lipid  bilayers,  and  stable  symmetrical  domains  of  300  to  600  nm  size.  Receptors   diffusing   in   confined   domains   are   directly   related   to   clathrin-­‐mediated  

endocytosis  (CME).  Addition  of  drugs  inhibiting  different  steps  of  CME  like  PitStop2,  Dyngo  4a   or   Dynasore,   leads   to   an   accumulation   of   NK1R   in   confined   regions.   This   membrane  related  event  correlates  with  a  reduction  of  the  activity  of  the  NK1R  mediated  Gαq  pathway.  On   the   other   hand,   depolymerisation   of   actin   and   microtubules   does   not   significantly  

modify  the  population  of  free-­‐diffusing  receptors,  indicating  absence  of  direct  interaction  of  NK1R  with  the  cytoskeleton.  Nevertheless,  actin  depolymerisation  triggers  the  apparition  of  fast  diffusing  receptors  in  circular  domains  even  in  the  absence  of  activation.  This  effect   is  correlated   with   cell   membrane   blebs   formation.   Microtubule   depolymerisation   also  significantly  increases  the  population  of  receptors  slowly  diffusing  in  domains.  This  increase  in  confinement  is  potentially  linked  to  inhibition  of  early  endocytosis.  In   summary,   the   mobility   pattern   of   NK1R   in   the   plasma   membrane   of   living   cells   is  

accurately  described  by  four  modes.  Depending  on  the  receptor’s  activity  state  and  the  level  of  modulation  of  both  CME  and  cytoskeleton,  the  distribution  of  receptors  in  these  mobility  modes   significantly   changes   in   a   reproducible   manner.   Our   results   point   to   the   central  importance   of   clathrin,   not   only   in   receptor   endocytosis   and   turnover   but   also   in   NK1R  membrane  homeostasis  and  fine  regulation  of  its  activity.          

Page 26: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Biophysical  properties  of  VWF  in  single  molecule  force  spectroscopy    Authors:   Sandra   Posch1,   Maria   A.   Brehm2,   Tobias   Obser2,   Robert   Tampé3,   Reinhard  Schneppenheim2,  Peter  Hinterdorfer1    1  Institute  of  Biophysics,  Johannes  Kepler  University,  Linz,  Austria    2  University  Medical  Center  Hamburg-­‐Eppendorf,  Department  of  Pediatric  Hematology  and  Oncology,  Hamburg,  Germany  3   Institute   of   Biochemistry,   Biocenter,   Goethe-­‐University   Frankfurt,   Frankfurt/Main,  Germany    E-­‐Mail:  [email protected]    Von   Willebrand   factor   (VWF)   is   a   huge   multimerizing   protein   playing   a   key   role   in  hemostasis.  VWF  binds  to  the  injured  vessel  wall  (collagen),  recruits  platelets  and  probably  leukocytes  to  the  site  of  injury  and  binds  factor  VIII  (important  coagulation  factor).  Sites  for  collagen  binding  as  an  initial  event  are  located  in  domains  A1  and  A3.  [1]    We  performed  Molecular  Recognition  Force  Spectroscopy  (MRFS)  measurements  of  VWF’s  specific  binding  domains  to  relevant  substrates  so  as  to  classify  the  forces  and  the  dynamics  of  these  interactions.      We   tested   several   sample  preparation  methods.  When   collagen  was   adhered   to  different  surfaces  (MICA,  uncoated  glass,  silicon)  or  bound  via  EGS-­‐linker  or  Acetal-­‐PEG-­‐NHS-­‐linker,  it  showed  a  high  adhesive  behavior  and  was  therefore  not  usable  for  MRFS.  However,  with  a  sample  preparation  procedure  using  a  PEG800-­‐diamine   layer,   unspecific   adhesion  between  tip  and  sample  was  low,  most  likely  probably  due  to  PEG-­‐PEG  repulsion.    We   quantified   intermolecular   forces,   unbinding-­‐length,   binding   probabilities,   effective  spring  constants  as  well  as  xβ  and  koff  between  collagen  III  on  the  sample  surface  and  rvWF  A1-­‐A2-­‐A3-­‐His  bound  to  the  tip  as  well  as  between  collagen  VI  (sample)  and  rvWF  A1-­‐A2-­‐A3-­‐His  (tip)  and  collagen  VI  (sample)  and  rvWF  A1-­‐A2-­‐His  (tip).          [1]  http://www.shenc.de/,  25.04.2013                    

Page 27: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Structural   basis   for  molecular   recognition   of   the  mRNA   cap   by   decapping  DcpS   enzyme  determined  using  cap  analogs  with  single  atom  modifications    Anna   Wypijewska1,   Marius   D.   Surleac2,   Joanna   Kowalska1,   Maciej   Lukaszewicz1,   Jacek  Jemielity1,3,  Martin  Bisaillon4,  Richard  E.  Davis5,  Edward  Darzynkiewicz1,  Adina  L.  Milac2  and  Elzbieta  Bojarska1    1  Division  of  Biophysics,   Institute  of  Experimental  Physics,   Faculty  of  Physics,  University  of  Warsaw,  Warsaw,  Poland  2  Department  of  Bioinformatics  and  Structural  Biochemistry,  Institute  of  Biochemistry  of  the  Romanian  Academy  (IBAR),  Bucharest,  Romania  3  Centre  of  New  Technologies,  University  of  Warsaw,  Warsaw,  Poland  4  Department  of  Biochemistry,  University  of  Sherbrooke,  Sherbrooke,  Canada  5  Department   of   Biochemistry   and  Molecular  Genetics,  University   of   Colorado,     School   of  Medicine,  Aurora,  USA    The   cap   structure   (m7GpppG)   existing   at   the   5’   end   of   mRNA   plays   a   key   role   in   the   post-­‐transcriptional   regulation  of  gene  expression.   It  allows   for  specific   recognition  of   the  mRNA  5’  end  by  multiple  proteins  responsible  for  mRNA  metabolism  and  protects  mRNA  transcripts  from  degradation   by   exonucleases.   When   cellular   role   of   mRNA   is   accomplished,   the   cap   is  hydrolyzed  by  mRNA  decapping  DcpS  or  Dcp2  enzymes,   involved   in  the  3’→5’  or  5’→3’  mRNA  decay,   respectively.  We   report   the   structural   basis   for  molecular   recognition   of   the   cap   by  C.  elegans   DcpS   (CeDcpS)   determined   by   merging   experimental   binding   affinity   studies   of   cap  analogs  with  single  atom  modifications  introduced  into  the  phosphate  chain  with  computational  modeling  of  CeDcpS  structure  and  docking  of  representative  cap  analogs  to  CeDcpS  active  site.  Two   types   of   cap  modifications   were   examined,   where   (1)   bridging   oxygen   atom   or   (2)   non-­‐bridging  oxygen  atom  was  replaced  by  CH2/NH  or  S,  respectively.  

The  modeled  structure  of  CeDcpS-­‐m7GpppG  revealed  binding  mode  of  a  cap  similar   to  human   DcpS   (HsDcpS),   well-­‐known   from   crystal   structure.   In   both   cases,   cap   occupies   the  pocket  containing  the  histidine  triad  (HIT)  motif,  that  is  narrow  in  the  region  responsible  for  the  m7Guo-­‐binding   and   extended   in   the   region   involved   in   the   stabilization   of   the   second  nucleoside.   Thus,  methylation   of  m7Guo   2’O   or   3’O   position,   increasing   the   steric   hindrance,  destabilizes  DcpS-­‐cap   complex   formation,   as   revealed   in  our  experiments  with  ARCA-­‐type   cap  analogs.   Additionally,   it   aborts   hydrogen   bonds   with   proximal   CeDcpS   residues,   conserved   in  HsDcpS.   We   found   a   significant   differences   of   a   cap   binding   with   respect   to   the   type   of   a  modification.  m7GpNHppG  prone  to  hydrogen  bond  formation  with  CeDcpS  Ser246  (conserved  in  HsDcpS)  has  association  constant  one  order  of  magnitude  higher  compared  to  m7GpCH2ppG,  which  shifts  away  from  the  HIT  triad  as  CH2  is  void  of  hydrogen  bonding  ability.  The  numerous  interactions  of  CeDcpS  with  the  second  nucleoside  of  a  cap  clarify  the  higher  binding  affinity  for  dinucleotide  m7GpSppG  D2  in  comparison  to  mononucleotide  m7GpSpp  D2.  

Due   to   the   variety   of   potential  medicinal   applications   of  DcpS   inhibitors,   like   in   spinal  muscular  atrophy  (SMA)  treatment  or   in  the  anticancer  therapy,  the  comprehensive  structural  basis  for  cap  recognition  by  DcpS  are  of  potential  interest  for  future  designing  of  DcpS  inhibitors  based  on  the  natural  cap  structure.    Supported   by   the  National   Centre   for   Research   and  Development   (02/EuroNanoMed/2011   to  E.D).    

Page 28: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

List  of  Participants    

Speakers    

Cees  Dekker  Delft  University  of  Technology  ,  Kavli  Institute  of  Nanoscience  Lorentzweg  1,  Delft,  2628  CJ,  The  

Netherlands.  [email protected]

Helmut  Grubmueller   Max  Planck  Institute  for  biophysical  Chemistry,  Am  Fassberg  11,  Goettingen,  37077,  Germany.   [email protected]

Peter  Hinterdorfer   Institute  Biophysics  Johannes  Kepler  University,  Gruberstr.  40,  Linz,  4020,  Austria.   [email protected]

David  Klenerman  University  of  Cambridge,  Department  of  Chemistry,  Room  B52,  Lensfield  Road,  Cambridge,  CB2  1EW,  

United  Kingdom.  [email protected]

Michael  Mayer   University  of  Michigan,  Dept.  of  Biomedical  Engineering,  1101  Beal  Ave,  Ann  Arbor,  48109,  U.S.A..   [email protected]

Dimitrios  Stamou   University  of  Copenhagen,  Department  of  Chemistry,  Universitetsparken  5,  Copenhagen,  2100,  Denmark.   [email protected]

Horst  Vogel  Ecole  polytechnique  fédérale  de  Lausanne,  EPFL  SB  ISIC  LCPPM  CH  B3  494  (Bât.  CH)  Station  6,  Lausanne,  

CH-­‐1015,  Switzerland.  [email protected]

Anthony  Watts   University  of  Oxford,  Department  of  Biochemistry,  South  Parks  Road,  Oxford,  OX1  3QU,  United  Kingdom.   [email protected]

   

Participants    

Roslin  Adamson   University  of  Oxford,  Department  of  Biochemistry,  South  Parks  Road,  Oxford,  OX1  3QU,  United  Kingdom.   [email protected]

Mohammadreza  Alizadehheidari  

Chalmers  University  of  Technology,  Kemivägen  10,  Gothenburg,  41296,  Sweden.   [email protected]

Loic  Arm   EPFL,  ISIC-­‐LCPPM/Station  6,  Lausanne,  1015,  Switzerland.   [email protected]

Juan  Bolivar   University  of  Oxford,  32  Westbury  Crescent,  Oxford,  OX4  3RZ,  United  Kingdom.  

[email protected]

Francesco  Colizzi   SISSA  -­‐  Scuola  Superiore  di  Studi  Avanzati,  Via  Bonomea  265,  Trieste,  34136,  Italy.   [email protected]

Tomás  Dias   INESC-­‐MN,  Rua  Alves  Redol,  9  ,  Lisboa,  1000-­‐029,  Portugal.   [email protected]

Patricia  Dijkman   University  of  Oxford,  South  Parks  Road,  Oxford,  OX1  3QU,  United  Kingdom.  

[email protected]

Elizabeth  Drolle   University  of  Waterloo,  200  University  Ave  W,  Waterloo,  N2L  3G3,  Canada.   [email protected]

Ana  Fernandes   IST/INESC-­‐MN,  Azinhaga  da  Cidade,  Torre  B,  1ºC,  Lisboa,  1750-­‐065,  Portugal.   [email protected]

Mykhailo  Girych   V.N.  Karazin  Kharkiv  National  University,  Tankopiya  str.,  19/2,  app.  47,  Kharkiv,  61022,  Ukraine.   [email protected]

Semire  Uzun  Göçmen  Mustafa  Kemal  University  Medical  Faculty,,  Head  of  Biophysics  Dept.  Serinyol  Antakya,  Hatay,  31120,  

Turkey.  [email protected]

Iryna  Goncharova   Institute  of  Chemical  Technology,  Prague,  Technicka  5,  Prague  6,  166  28,  Czech  Republic.   [email protected]

Fabiola  Gutierrez  Eindhoven  University  of  Technology,  Den  Dolech  2    MBx  App.  Physics  Group,  Eindhoven,  5612AZ,  The  

Netherlands.  [email protected]

Kata  Hajdu   University  of  Szeged,  Rerrich  Bela  square  1.,  Szeged,  6720,  Hungary.   [email protected]

Mathew  Horrocks   Deparment  of  Chemistry,  University  of  Cambridge,  Lensfield  Road  ,  Cambridge,  CB21EW,  United  Kingdom.   [email protected]

Peter  Judge   University  of  Oxford,  New  Biochemistry,  South  Parks  Road,  Oxford,  OX1  3QU,  United  Kingdom.   [email protected]

Daniel  Klose   University  of  Osnabrück,  Department  of  Physics,  Barbarastr.  7,  Osnabrück,  49076,  Germany.   [email protected]

Page 29: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

Melanie  Koehler   JKU  Linz,  Institute  of  Biophysics,  AFM-­‐Group,  Gruberstraße  40,  Linz,  4020,  Austria.   [email protected]

Ilja  Küsters   Groningen  Biomolecular  Sciences  and  Biotechnology  ,  Nijenborgh  7,  Groningen,  9747  AG,  The  Netherlands.   [email protected]

Zoya  Leonenko   University  of  Waterloo,  University  Avenue  West,  Waterloo,  N2L  3G1,  Canada.   [email protected]

Liliana  Lighezan   West  University  of  Timisoara,  Bd.  Vasile  Parvan  nr.  4,  Timisoara,  300223,  Romania.   [email protected]

Giovanni  Maglia   University  of  Leuven,  Celestijnenlaan  200G,  Leuven,  3001,  Belgium.  

[email protected]

Melinda  Magyar   University  of  Szeged,  Rerrich  Bela  square  1.,  Szeged,  6720,  Hungary.   [email protected]

Anna  Mathesz   Biological  Research  Centre,  HAS,  Temesvári  krt.  62.  ,  Szeged,  6726,  Hungary.   [email protected]

Tim  Meyer   Max  Planck  Institute  for  Biophysical  Chemistry,  Am  Fassberg  11,  Goettingen,  37077,  Germany.   [email protected]

Hendrik  Mohrmann   Freie  Universität  Berlin,  Arnimallee  14,  Berlin,  14195,  Germany.   [email protected]

Vasyl  Mykuliak   Taras  Shevchenko  National  University  of  Kyiv,  64,  Volodymyrs'ka  str.,  Kyiv,  1601,  .   [email protected]

Krisztina  Nagy   Biological  Research  Centre,  HAS,  Temesvári  krt.  62.,  Szeged,  6726,  Hungary.   [email protected]

Ashley  Nord   University  of  Oxford,  Parks  Road,  Oxford,  OX1  3PU,  United  Kingdom.   [email protected]

Lena  Nyberg   Chalmers  University  of  Technology,  Kemivägen  10,  Gothenburg,  41296,  Sweden.   [email protected]

Elena  Omarova   Belozersky  Inst.  of  Physico-­‐Chemical  Biology,  MSU,  Leninskie  gory  1,  bld.40,  Moscow,  119992,  Russia.   [email protected]

Raul  Pacheco-­‐Gomez   University  of  Birmingham,  School  of  Biosciences,  Edgbaston,  Birmingham,  B15  2TT,  United  Kingdom.   [email protected]

Joachim  Piguet   EPFL,  ISIC-­‐LCPPM/Station  6,  Lausanne,  1015,  Switzerland.   [email protected]

Marc-­‐Philipp  Pfeil   University  of  Oxford,  St  Edmund  Hall,  Queens  Lane,  Oxford,  OX1  4AR,  United  Kingdom.  

[email protected]

Sandra  Posch   JKU  Linz,  Institute  of  Biophysics,  AFM  group,  Gruberstrasse  40,  Linz,  4020,  Austria.   [email protected]

Thierry-­‐Johann  Robin   Université  Technologique  de  Compiègne,  Rue  Roger  Couttolenc  CS  60319,  Compiegne  ,  60203,  France.   [email protected]

Manikam  Sadasivam  Saravanan  

Utrecht  University,  Padualaan  8,  Utrecht,  3584CH,  The  Netherlands.   [email protected]

Sandeep  Sandhu   University  of  Birmingham,  School  of  Biosciences,  Edgbaston,  Birmingham,  B15  2TT,  United  Kingdom.   [email protected]

Oleksandr  Savytskyi   Institute  of  Molecular  Biology  and  Genetics,  NASU,  150,  Zabolotnogo  Str.,,  Kyiv,  3680,  Ukraine.   [email protected]

Judit  Somkuti   Semmelweis  University,  Tuzolto  utca  37-­‐47.,  Budapest,  1094,  Hungary.   [email protected]

Agata  Szuba   B  CUBE,  TU  Dresden,  Arnoldstrasse  18,  Dresden,  1307,  Germany.   [email protected]

Garrick  Taylor   University  of  Oxford,  New  Biochemistry,  South  Parks  Road,  Oxford,  OX1  3QU,  United  Kingdom.   [email protected]

Marta  Urbanska   B  CUBE,  TU  Dresden,  Arnoldstrasse  18,  Dresden,  1307,  Germany.  

[email protected]

Rémi  Veneziano   Institut  Charles  Gerhardt  UMR  5253,  15  avenue  Charles  Flahault  BP  14491,  Montpellier,  34093,  France.   [email protected]

Luc  Veya   EPFL,  ISIC-­‐LCPPM/Station  6,  Lausanne,  1015,  Switzerland.   [email protected]

Anna  Wypijewska   Division  of  Biophysics,  University  of  Warsaw,  Zwirki  &  Wigury  93,  Warsaw,  02-­‐089,  Poland.   [email protected]

   

Page 30: List of abstracts SESIMBRA Formatted - Weeblybionanotechnology.weebly.com/uploads/1/3/5/3/13532275/list_of... · Forces!and!Conformational!Dynamics!in!Biomolecular!Nanomachines! HelmutGrubmueller%

List  of  Participants  giving  Research  Lectures    Elizabeth  Drolle      

Ilja  Kusters    Joachim  Piguet    Sandra  Posch    Melanie  Köhler      Giovanni  Maglia    Fabiola  Gutierrez    

Anna  Wypijewska    Patricia  Dijkman    Kata  Hajdu    Krisztina  Nagy    Raul  Pacheco-­‐Gomez    Francesco  Colizzi    Melinda  Magyar    Liliana  Lighezan