liu turbulence sas modeling

Upload: nish

Post on 25-Feb-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 LiU Turbulence SAS Modeling

    1/41

    2011 AN, I. M 9, 20141

    Scale-AdaptiveSimulation (SAS)Turbulence Modeling

    F.R. MenterANSYS Germany GmbH

    Torbjrn VirdungANSYS Sweden AB

  • 7/25/2019 LiU Turbulence SAS Modeling

    2/41

    2011 AN, I. M 9, 20142

    Unsteady RANS Based Models

    URANS (Unsteady Reynolds averaged

    Navier Stokes) Methods URANS gives unphysical single mode unsteadybehavior

    Some improvement relative to steady state (RANS)but often not sufficient to capture main effects

    Reduction of time step and refinement of mesh donot benefit the simulation

    SAS (Scale-Adaptive Simulation) Method

    Extends URANS to many technical flows Provides LES-content in unsteady regions Produces information on turbulent spectrum Can be used as basis for acoustics simulations

    URANS

    SAS-URANS

  • 7/25/2019 LiU Turbulence SAS Modeling

    3/41

    2011 AN, I. M 9, 20143

    Assumptions Two-Equation

    Models

    Largest eddies are most effective in mixing

    Two scales are minimum for statistical description oflarge turbulence scales

    Two model equations of independent variables define

    the two scales Equation for turbulent kinetic energy is representing the large scale

    turbulent energy

    Second equation ( , , kL) to close the system Each equation defines one independent scale

    Both - and -equations describe the smallest (dissipate) eddies Rotta developed an exact transport equation for the large turbulent

    length scales. This is a much better basis for a term-by-term modelling

    approach

  • 7/25/2019 LiU Turbulence SAS Modeling

    4/41

    2011 AN, I. M 9, 20144

    Classical Derivation 2 Equation Models

    ( ) ( )

    +=

    +

    jk

    t

    j

    k

    j

    j

    x

    k

    xkcP

    x

    kU

    t

    k

    ( ) ( ) ( )

    +

    =

    +

    j

    t

    j

    k

    j

    j

    xxk

    kP

    kxU

    t

    k

    t=

    The k-equation: Can be derived exactly from the

    Navier-Stokes equations

    Term-by-term modelling

    The - (-) equation: Exact equation for smallest

    (dissipation) scales Model for large scales not based

    on exact equation

    Modelled in analogy to k-

    equation and dimensionalanalysis

    Danger that not all effects areincluded

  • 7/25/2019 LiU Turbulence SAS Modeling

    5/41

    2011 AN, I. M 9, 20145

    Source Terms Equilibrium k- Model

    Only one Scale in Sources (S~1/T)

    Turbulence ModelInput S

    Output

    Output k

    O ?

    ( )

    ( )

    2 2

    2 2

    1 2

    ( )( )

    ( )( )

    j tt

    j j k j

    j t

    j j j

    U kk kS c

    t x x x

    Uc S c

    t x x x

    + = +

    + = +

  • 7/25/2019 LiU Turbulence SAS Modeling

    6/41

    2011 AN, I. M 9, 20146

    Determination of L in k-Model

    k-equation:

    +=

    +

    y

    kk

    ycS

    k

    x

    kU

    t

    k

    k

    k

    )(

    )()( 22

    +=

    kkccS

    k 1)(0 22

    2

    2~0

    kcSc +=

    D

    F

    C

    N ,

    22~ Sk

    S~ from -equation

    2 2

    ~ ~ ~tk S

    LS

  • 7/25/2019 LiU Turbulence SAS Modeling

    7/41

    2011 AN, I. M 9, 20147

    Rottas Length Scale Equation

    To avoid the problem that the () equation is an equation

    for the smallest scales, an equation for the large (integral)

    scales is needed.

    This requires first a mathematical definition of an integral

    length scale, L.

    In Rottas (1968) approach this definition is based on two-pointcorrelations

    Based on that definition of L, an exact transport equation can

    be derived from the Navier-Stokes equations (the actual

    equation is based on kL) This exact equation is then modelled term-by-term

    R, J.C.: M B ,

    A G, R. 69 A14, (1968).

  • 7/25/2019 LiU Turbulence SAS Modeling

    8/41

    2011 AN, I. M 9, 20148

    Two-Point Velocity Correlations

    Measurement of velocity fluctuations with two probesat two different locations

    For small r, all eddies contribute

    For large r, only large scales contribute

    For r > L, correlation goes to zero

    Integral vs. rproportional to size of large eddies L

    rr

    Fixed Probe

    Shifted Probe

    ijR~

    1

    r

    L

    Eddies

    ),('),('

    ),('),('~

    txutxu

    trxutxuR

    ji

    ji

    ij rr

    rrr+

    =

    rr

  • 7/25/2019 LiU Turbulence SAS Modeling

    9/41

    2011 AN, I. M 9, 20149

    Rottas k-kL Model

    Integral Length Scale:( , ) ( , , )

    iiL x t c R x t r dr

    = %

    , , .

    N.

    E ( , ..) .

    ry

    1

    L

    Rii

    rr

  • 7/25/2019 LiU Turbulence SAS Modeling

    10/41

    2011 AN, I. M 9, 201410

    Exact Transport Equation Integral

    Length-Scale (Rotta)Exact transport equations for =kL (boundary layer form):

    ( )( )

    ( ) ( ) ( )

    ++

    +

    +

    +

    =

    +

    yvpvpR

    y

    drrr

    RdrRR

    r

    drRy

    rxUdrRy

    xU

    x

    U

    t

    ii

    y

    kk

    iiyikiiik

    k

    y

    y

    y

    k

    k

    ''1

    16

    3

    8

    3

    16

    3

    )(

    16

    3)(

    16

    3)()(

    2

    2

    )(

    1221

    I :

    )(xkL=with

    y

    yidrR

    y

    rxU12

    )(

    16

    3

    +

  • 7/25/2019 LiU Turbulence SAS Modeling

    11/41

    2011 AN, I. M 9, 201411

    Expansion of Gradient Function

    Important term:

    R:

    22 3

    y yy2 3

    U ( x r ) r U ( x ) U ( x ) U ( x )r ...y y y y 2

    + = + + +

    +

    +

    +

    yyyyyy

    ydrRr

    y

    xUdrRr

    y

    xUdrR

    y

    xUdrR

    y

    rxU

    12

    2

    3

    3

    122

    2

    1212

    )(

    2

    1)()()(

    0)(

    122

    2

    =

    yy drRr

    y

    xU

    D R

    ry

    1Rij

  • 7/25/2019 LiU Turbulence SAS Modeling

    12/41

    2011 AN, I. M 9, 201412

    I 3=0 N N

    Transport Equation Integral

    Length-Scale (Rotta)Transport equations for kL:

    ( )

    +

    +

    =

    +

    yyqcc

    yxUL

    yxULuv

    xU

    t

    tL

    ii

    k

    k

    2/32

    3

    33

    32

    )()()()(

    E :

    33

    3

    2

    /

    /

    yU

    yUccL l

    =

    P 3 :

    N

    N 03=

  • 7/25/2019 LiU Turbulence SAS Modeling

    13/41

    2011 AN, I. M 9, 201413

    Virtual Experiment 1D Flow

    ?

    Logarithmic layer Lt=y

    2

    122 0y y

    Ur R dr

    y

    =

    )(~

    )(~

    1212 y

    II

    y

    IrRrR

    rr