local stability analysis of a coaxial jet at low reynolds ... group/presentazione_gallino... ·...

20
Local stability analysis of a coaxial jet at low Reynolds number Giacomo Gallino supervisor: Alessandro Bottaro supervisor: Franc ¸ois Gallaire Genova, 20 Marzo 2013 Giacomo Gallino (Universit` a di Genova-EPFL) Coaxial injectors 1 / 20

Upload: truongnhu

Post on 17-Feb-2019

220 views

Category:

Documents


0 download

TRANSCRIPT

Local stability analysis of a coaxial jetat low Reynolds number

Giacomo Gallino

supervisor: Alessandro Bottarosupervisor: Francois Gallaire

Genova, 20 Marzo 2013

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 1 / 20

Goal of the project: explain the transition between dripping and jetting

Dripping and jetting regime, experimental study by Guillot

Local stability analysis in the developing regionGiacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 2 / 20

Mathematical formulation of the problemRe = 0

No gravity terms

Axisymmetric domain

Axisymmetric flow

Stationary flow

∇ · u = 0,

∇p− µ∇2u = 0,

with no-slip conditions at the wall and symmetry at the axis.

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 3 / 20

Interface conditionsContinuity of velocities at the interface

u1(xint) = u2(xint).

Continuity of tangential stress and balance of normal stress

tT(σ2 − σ1)n = 0, nT(σ2 − σ1)n = κγ n,

κ being the curvature in the meridian plane.

Impermeability condition

ur cosα− uz sinα = U⊥ = 0 =⇒ ur − uz∂R0

∂z= 0.

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 4 / 20

Boundary elements method

Formulation of the Stokes equations in term of boundary integral equations(Pozrikidis 1992)

u(x0) = − 18πµ

∮lG(x, x0)f(x)dl(x) +

18π

∮lu(x)T(x, x0)n(x)dl(x),

G and T are the Green’s functionsf is a vector representing the stresses and u the velocities

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 5 / 20

Boundary integral equation of a domain with interface

8πµ2u(x0) = −∫

lG(x0, x)f(x)dl + µ1

∫l1

u(x) · T(x0, x) · n(x)dl+

µ2

∫l2

u(x) · T(x0, x) · n(x)dl−∫

intG(x0, x) ·∆f(x)dl+

(µ2 − µ1)

∫int

u(x) · T(x0, x) · n(x)dl.

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 6 / 20

Discretization

Converge when urint < 10−3 and u⊥(int) < 10−3.

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 7 / 20

MOVIE 1

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 8 / 20

MOVIE 2

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 9 / 20

FreeFem simulation

Pressure field and axial velocity fieldGiacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 10 / 20

Local stability analysis

Base flow taken at a given axial coordinate

Non dimensional number: Q = Q1Q2

, λ = µ1µ2

, Ka = dzpR2γ .

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 11 / 20

Linearize the equations adding small perturbations at the the base flow

P2P1Ur1

Uz1

Ur2

Uz2

R0

=

P2 + εp2P1 + εp10 + εur1

Uz1 + εuz1

0 + εur2

Uz2 + εuz2

R + εη

ε� 1

∇ · u = 0,

∇p− µ∇2u = 0.

Boundary conditionswall: ur2 = uz2 = 0,

axis: ur = 0,∂uz

∂r= 0,

∂p∂r

= 0.

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 12 / 20

Linearize the continuity of velocities condition at the interface

Uz1(R0 + εη) + εuz1(R0 + εη) = Uz2(R0 + εη) + εuz2(R0 + εη)

flattening hypothesis, Taylor expansion around R0

uz1(R0) +∂Uz1

∂r

∣∣∣∣R0

η = uz2(R0) +∂Uz2

∂r

∣∣∣∣R0

η

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 13 / 20

Modal expansion u = u(r)ei(kz−ωt), p = p(r)ei(kz−ωt), η = ηei(kz−ωt).

Aϕ = 0

where

A =

[domain1] [

0][

0] [

domain2]

interface conditions

ϕ =

(ur1 uz1 p1 ur2 uz2 p2 η

)T

Non trivial solution if det(A) = 0, this leads to an eigenvalue problem for ω.

ω = ωr(k) + iωi(k)

or in a non dimensional form

ω =16µ2R2

γ, k = kRout.

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 14 / 20

Local stability analysis performed in different sections z

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

7

8

k

ωr

z=0.1z=0.25z=0.5z=1z=2

0 0.2 0.4 0.6 0.8 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

i

z=0.1z=0.25z=0.5z=1z=2

Real and imaginary part of ω for Q = 0.7, λ = 0.5, Ka ≈ 1 and R1 = 0.5The dispersion relation can be written as in Guillot study

ω = α(z)k + iA(z)((k/b(z))2 − (k/b(z))4).

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 15 / 20

Absolute instability criterion

Velocity of the back front of the perturbation

v−(z) = α(z)− A(z)(√

7 + 512b(z)2 −

√7 + 5

36b(z)4

)√24b(z)2√

7− 1

Labs > λmin, where λmin = 2π/kmax

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−1

0

1

2

3

4

z

v −

Labs ≈ 0.125 < λminGiacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 16 / 20

Region of convective and absolute instability

0 0.2 0.4 0.6 0.8 110

−6

10−4

10−2

100

102

interface position

Ka

case analyzedthreshold

absolute regime

convective regime

Analytical solution and experimental data presented by Guillot

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 17 / 20

Results

0 0.5 1 1.5 2 2.5 31

2

3

4

5

6

z

v −

Numerical results for Q = 0.5636, λ = 0.2, Ka = 1, R1 = 0.2

Experimental study by GuillotGiacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 18 / 20

ConclusionsBetter agreement with the experimental results respect to previousstudies

Change in the behavior of the perturbations from the developing regionrespect to the fully developed flow

Future developmentsGlobal stability analysis

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 19 / 20

Thank you,Questions?

Giacomo Gallino (Universita di Genova-EPFL) Coaxial injectors 20 / 20