localization goldenberg defense template

Upload: mattijn-van-hoek

Post on 06-Jul-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Localization Goldenberg Defense Template

    1/56

    Fine-Grained

    Localization in Sensorand Ad-Hoc Networks

    David GoldenbergDissertation Advisor: Y. Richard Yang

    Committee Members: Jim Aspnes, A. Stephen Morse,Avi Silberschatz, itin !aid"a #$%$C&

    Ph.D. Dissertation Defense

  • 8/17/2019 Localization Goldenberg Defense Template

    2/56

    '

    Overview 

     (his dissertation provides a theoretical basis)or the localization problem, demonstratingconditions )or its solvability  and de*ning its

    computational complexity . +e appl" or )ndamental reslts on

    localization to identi)" conditions nder-hich the problem is efciently solvable andto develop localization algorithms )or abroader class o) net-ors than previosapproaches cold localize.

  • 8/17/2019 Localization Goldenberg Defense Template

    3/56

    /

    Collaborators (2003-

    2006) 0rian D.1. Anderson #Astralia ational $niversit" and %C(A&  James Aspnes 2.. 0elhmer #Colmbia $niversit"& 2ascal 0ihler Ming Cao  (olga 3ren  Jia 4ang Arvind 5rishnamrth"  Jie #Archer& 6in +esle" Maness A. Stephen Morse 0rad Rosen Andreas Savvides +alter +hitele" #Yor $niversit"&  Y. Richard Yang Anthon" Yong

  • 8/17/2019 Localization Goldenberg Defense Template

    4/56

    7

    Outline

    %ntrodction to 6ocalization

    Conditions )or $ni8e 6ocalization

    Comptational Comple9it" o)6ocalization

    6ocalization in Sparse et-ors

  • 8/17/2019 Localization Goldenberg Defense Template

    5/56

     Why are Locations

    Important +ireless ad;hoc net-ors are an important emergingtechnolog" Small, lo-;cost, lo-;po-er, mlti;)nctional sensors -ill soon be a realit". Accrate locations o) individal sensors are se)l )or man" applications

    “Sensing data -ithot no-ing the sensor location is meaningless.” 

  • 8/17/2019 Localization Goldenberg Defense Template

    6/56

    !"ample# $reat %uc& Islan'

    ensor etwor&  Monitoring breeding o) 6eachBs

    Storm 2etrels -ithot hmanpresence.

    minte hman visit leads to '=oEspring mortalit".

    Sensors need to be small toavoid disrpting bird behavior.

  • 8/17/2019 Localization Goldenberg Defense Template

    7/56

    F

    $reat %uc& Islan' %eployment

    $oals 1ccpanc" pattern o) nests 3nvironmental changes arond

    the nests over time 3nvironmental variation across

    nests Correlation -ith breeding

    sccess

    6ight, temperatre, in)rared, andhmidit" sensors installed.

    %n)rared sensors detect presenceo) birds in nests.

    10m

    Single hop weatherSingle hop burrowMulti hop weatherMulti hop burrow

    Sensor locations critical to interpreting data. 6ocations determined b" manal

    con*gration, bt this -ill not be possible inthe general case.

  • 8/17/2019 Localization Goldenberg Defense Template

    8/56

    H!"ample# *ebraet ensoretwor& 

    0iologists -ant to trac animals to std":

    %nteractions bet-een individals. %nteractions bet-een species. %mpact o) hman development.

    Crrent tracing technolog": !I4 collar transmitters +ishlist:

    '7@F position, data, and interaction logs. +ireless connectivit" )or mobilit". Data storage to tolerate an intermittent base station.

    ebraet: Mobile sensor net -ith intermittent base station. Records position sing G2S ever" / mintes. Records Sn@shade in)o. Detailed movement in)ormation #speed, movement

    signatre& / mintes each hor. 4tre: head p@head do-n, bod" temperatre, heart

    rate, camera. Goal, )ll ecos"stem monitoring #zebras, h"enas,

    lionsL&.

  • 8/17/2019 Localization Goldenberg Defense Template

    9/56

    +ilitary ,pplications %ntelligence gathering #troop movements, events o)

    interest&. Detection and localization o) chemical, biological,

    radiological, nclear, and e9plosive materials. Sniper localization. Signal Namming over a speci*c area.

    !isions )or sensor net-or deplo"ment: Dropped in large nmbers )rom $A!. Mortar;6anched.

    !

  • 8/17/2019 Localization Goldenberg Defense Template

    10/56

  • 8/17/2019 Localization Goldenberg Defense Template

    11/56

    ine-$raine' Localiation(avvi'es1 200) 2h"sicall":

    et-or o) n nodes, m o) -hich have known location, e9isting inspace at locations: O9CL9m,9mPC,L,9nQ.

    Set o) some pair;-ise inter;node distance measrements. $sall" bet-een pro9imal nodes #iE d r in unit disk networks&.

    Abstraction

    Given: Graph G, O9C,...,9mQ, and , the edge -eight )nction. 4ind: Realization o) the graph.

    5

    4

    1

    2

    3 1

    2

    3

    4

    5

    {x1,x2,x3}

    {x4, x5}

    Beacons: nodes with known position

    Regular nodes: nodes with unknown position

    {d14, d24, d25, d35, d45}

  • 8/17/2019 Localization Goldenberg Defense Template

    12/56

    '

    an4in4 ystems  (DoA T (ime DiEerence o) Arrival

    $ses ltrasond and radio signalsto determine distance.

    Range o) meters, cm accrac".

    2ossible to increase sensingrange b" increasing transmissionpo-er.

    M%( cricet mote

    $C6A medsa mote #'==&

    $C6A medsa mote ' #'=='&

     Yale 3A6A0 UY Motes

  • 8/17/2019 Localization Goldenberg Defense Template

    13/56

    /

    Our Contributions Graph;theoretic conditions or the unique solvability o) the

    localization problem in the plane.

    2roo) that the problem is !"complete even )or the idealizedcase o) nit;dis net-ors.

    #onstructive characterization o) classes o) ni8el" localizableand easil" localizable net-ors )or the plane and /D.

    A localization algorithm that localizes a -ider class o)

    net-ors than -as possible -ith e9isting approaches.

    %n;depth std" o) the localizability properties o randomnetworks: e- adaptive localizabilit";optimizing deplo"ment strategies. %mpact o) non;ni8el" localizable nodes on net-or

    per)ormance.

  • 8/17/2019 Localization Goldenberg Defense Template

    14/56

    7

    Outline

    %ntrodction to 6ocalization

    Conditions )or $ni8e 6ocalization

    Comptational Comple9it" o)6ocalization

    6ocalization in Sparse et-ors

  • 8/17/2019 Localization Goldenberg Defense Template

    15/56

    5niue Localiability 

    et-or is uniquely localizable i) there is e9actl"one set o) points O9mPC,L,9nQ consistent -ith G,O9C,L,9mQ and :3 to R.

    Can -e determine localizabilit" b" graphproperties alone #as opposed to the properties o)).

    %n the plane, "es #more or less&. 2roperties o) thegraph determine solvabilit" in the generic case. 2robabilit" )or randoml" generated node locations.

  • 8/17/2019 Localization Goldenberg Defense Template

    16/56

    %e4enerate Cases ool ,bstraction

    2

    1

    3

    4

    2

    1

    3

    4

    {x1, x2, x3}

    {d14, d24, d34}

    probability 1 case:

    probability 0 case:

    first case: {x4}

    second case: ???

    2

    1

    3

    ?

    ?

    In general, this netor! is"ni#"ely locali$able%

    In degenerate case, it is not:

    &he constraints are red"ndant%

    4

    2

    13

  • 8/17/2019 Localization Goldenberg Defense Template

    17/56

    F

    Continuous on-5niueness

    Continos non;ni8eness: Can move points )rom one con*gration to another -hile

    respecting constraints. 39cess degrees o) )reedom present in con*gration. A )ormation is RIGID i) it cannot be continosl" de)ormed.

  • 8/17/2019 Localization Goldenberg Defense Template

    18/56

    H

    Con'ition 7or i4i'ity 

    2rel" combinatorial characterizationo) generic rigidit" in the plane.

    'n;/ edges necessar" )or rigidit", and:

    'a(an)s condition:'a(an)s condition: * graph + ith 2n3 edges is rigid in to di(ensions * graph + ith 2n3 edges is rigid in to di(ensions

    if and only if no s"bgraph +) has (ore than 2n)3 edges-%if and only if no s"bgraph +) has (ore than 2n)3 edges-%- here n) is the n"(ber of .ertices in +)- here n) is the n"(ber of .ertices in +)

    'a(an)s condition is a state(ent that any rigid graph ith n .ertices ("st ha.e a set

    of 2n3 well-distributed  edges%

    /ot eno"gh edges no"gh edges b"t not ell distrib"ted "st right

    n  o  t    r  i    g  i   d   !       n   o    t 

       r    i   g     i   d    !

    Rigid!

  • 8/17/2019 Localization Goldenberg Defense Template

    19/56

  • 8/17/2019 Localization Goldenberg Defense Template

    20/56

    '=

    5niue $raphealiation

    a

    e

    b

    c

    d

    a

    c

    b

    e

    d

    Solution:

    + ("st be 3connected%

    + ("st be redundantly rigid:It ("st re(ain rigid "pon

    re(o.al of any single edge%

    + ("st be rigid.

    A graph has a unique realization in the plane if it is

    redundantly rigid and 3-connected (globally rigid  ).Iendricson, V7

  • 8/17/2019 Localization Goldenberg Defense Template

    21/56

    '

    Is .he etwor& 5niuelyLocaliable

    2roblem: 0" looing onl" at the ph"sical connectivit" strctre, -e-old neglect or a priori no-ledge o) beacon positions. Soltion: (he distances bet-een beacons are implicitl" no-nW

    y adding all edges !et"een !eacons to G#$ "e get theGrounded Graph o% the net"or&  , "hose propertiesdetermine net"or& localiza!ility.

    Theorem' A net"or& is generically uniquely localizable ifits grounded graph is glo!ally rigid and it contains at least

    three !eacons.

    0" agmenting graph strctre in this -a", -e )ll" e9press allavailable constraint in)ormation in a graph.

    5

    4

    1

    2

    3

    Is this locali$able?1

    2

    3

    4

    5

  • 8/17/2019 Localization Goldenberg Defense Template

    22/56

    ''

    !"amples o7 $ 4raphs -Constructions 3ver" globall" rigid graph has a spanning sbgraph that is minimall" globall" rigid. 3ver" minimall" globall" rigid graph can be constrcted indctivel" starting )rom 5 7 

    b" a series o) extensions #0erg;Jordan ‘=&: e- node w and edges uw and " replace edge uv $ 3dge wx  added )or some node x  distinct )rom u, v $

    Minimal globall" rigid graphs have %n"% edges.

    1

    3 4

    2 1

    3 4

    2

    5

    1

    3 4

    2

    5

    1

    3 4

    2

    5

    1

    3 4

    2

    5

    6ight edges are those sbdivided b" the e9tension operation.

  • 8/17/2019 Localization Goldenberg Defense Template

    23/56

    '/

    !"amples o7 $lobal i4i'it

    Random net-or T avg node degree . Reglarized random net-or T avg node degree 7.

    +lobally rigid co(ponents in green%

  • 8/17/2019 Localization Goldenberg Defense Template

    24/56

    '7

    Construction 5sin4.rilateration

    A position is ni8el" determined b" three distances to three non;collinear

    re)erences. Minimal trilateration graphs )ormed b" trilateration e9tension:

    e- node w and edges uw, vw, xw added, )or u, v , x distinct. Minimal trilateration graphs are globall" rigid. Minimal trilateration graphs have &n"' edges.

    1

    3 4

    2 1

    3 4

    2

    5

    1

    3 4

    2

    5

    1

    3 4

    2

    5

    1

    3 4

    2

    5

      …

    6ight edges are those removed in e9tension )or minimall" GR graph bt not in trilate

  • 8/17/2019 Localization Goldenberg Defense Template

    25/56

    '

    .rilateration $raphs

     A trilateration graph G is one -ith an trilateratie ordering:an ordering o) the vertices ,..$,n sch that the complete graphon the initial & vertices is in ( and )rom ever" verte9  ) * &, thereare at least & edges to vertices earlier in the se8ence.

     (rilateration graphs are globall" rigid.

    Iand;made trilateration T avg degree .  (rilateration graph )rom mobile net-or T avg degree .

  • 8/17/2019 Localization Goldenberg Defense Template

    26/56

    '

    8.riple'9 Connecte' $raphsare .rilateration $raphs

    Theorem:6et G X #!,3& be a connected graph.

    6et G/ X #!,3∪ 3'∪ 3/& be the graph )ormed )rom Gb" adding an edge bet-een an" t-o vertices

    connected b" paths o) ' or / edges in 3. (hen G/ is a trilateration graph.

    xa(ple here

    + is a path%

  • 8/17/2019 Localization Goldenberg Defense Template

    27/56

    'F

    8%ouble'9 2-connecte' $raphsare$lobally i4i' in 2% Theorem:6et G be a ';connected graph.

     (hen G' is globall" rigid.

    xa(ple here

    + is a cycle%

    Minimall" GR graphb" e9tension:

    Dobled c"cle:

    Dobled c"cles al-a"shave t-o edges morethan a minimall" GRgraph, so the" aregloball" rigid.

    +ne gets (% by doubling sensing radiusor measuring angles between ad)acentedges$

    'H

  • 8/17/2019 Localization Goldenberg Defense Template

    28/56

    'H

    8.riple'9 :iconnecte'

    $raphs are $lobally i4i'in 3% (here is no no-n generic

    characterization o) global rigidit" in/D, bt or reslt on dobled graphse9tends to /D.

    Theorem:

    6et G be a ';connected graph.

     (hen G/ is globall" rigid in /D.

    '

  • 8/17/2019 Localization Goldenberg Defense Template

    29/56

    '

    ummary o7 ConstructiveCharacteriation o7 $lobally

    i4i' $raphs 'D /;connectivit" necessar" )or GR. G' GR i) G ';connected. G/ GR i) G connected.

    /D G/ GR in /D i) G ';connected. G7 GR in /D i) G connected.

    $ni8e localizabilit" b" increasing sensing range,given initial connectivit".

    Conditions nder -hich additional in)ormation canhelp.

    /=

  • 8/17/2019 Localization Goldenberg Defense Template

    30/56

    /=

    Outline

    %ntrodction to 6ocalization

    Conditions )or $ni8e 6ocalization

    Comptational Comple9it" o)

    6ocalization

    6ocalization in Sparse et-ors

    /

  • 8/17/2019 Localization Goldenberg Defense Template

    31/56

    /

    Localiation

    7

    '

    /

    '

    /

    7

    Decision problem Search problem

    Rigidit"theor"

    Does this have a

    ni8e realization

     Yes@o

      G  r o  ,  n

     d e d

     g  r a  p  h

    '

    /

    7

    O9,9',9/Q

    Od7, d'7, d', d/, d7Q

     (his graph has ani8e realization.

    +hat is it

    O97,9Q

     (his problem isin general 2;hard.

    /'

  • 8/17/2019 Localization Goldenberg Defense Template

    32/56

    /'

    Computational

    Comple"ity 

    Sppose all edgedistances no-n

    )or smalltriangles.

    6ocalization goes-oring ot )roman" beacon.

     (rianglereectionpossibilities gro-e9ponentiall"L.

    Land reection

    possibilities are onl"sorted ot -hen onegets to anotherbeacon.

    %ntitivel", reection possibilities are lined-ith comptational comple9it"

    //

  • 8/17/2019 Localization Goldenberg Defense Template

    33/56

    //

    Comple"ity o7 $ $raphealiation

    %) a net-or is localizable, ho- does one go abotlocalizing it %t is 2;hard to localize a net-or in R' even -hen it is

    no-n to be ni8el" localizable.

    +e -ill se t-o tools in or argment:  (he 2;hard set;partition problem.  (he globall" rigid -heel graph +n.

    &he set partition problem:

    Inp"t: * set of n"(bers S%6"tp"t: 7an S be partitioned into to s"bsets A 

    and S-A s"ch that the s"( of n"(bers

    in each s"bset is e#"al?

    /7

  • 8/17/2019 Localization Goldenberg Defense Template

    34/56

    /7

    /-har'ness o7 ealiationTheorem:

    Realization of globally rigid weighted graphs that are realizable is NP-hard

    8roof s!etch:

     *ss"(e e ha.e algorith(  X  that ta!es as inp"t a reali$able globally rigid

    eighted graph and o"tp"ts its "ni#"e reali$ation%

    e ill find the setpartition of the partitionable set S scaled %l%o%g so that thes"( of ele(ents in S is less than π 92 by "sing calls to  X.

    "ppose e ha.e S;{s1,s2,s3,s4} ith a setpartition% 7onstr"ct a graph + along

    ith its edge eights for  X :

    0

    1

    23

    4 s1s3

    s4s2

    s1 s 1 9 2 ? 

    s i n > s 1 9 2 ? 

    /

  • 8/17/2019 Localization Goldenberg Defense Template

    35/56

    /

    Localiation Comple"ity 7or parseetwor&s

    2roblem -ith previos reslt is that edges e9ist arbitraril". Graphs sed in previos proo) nliel" to arise in practice.

    %n realistic net-ors, edges are more liel" to e9ist bet-een closenodes, and do not e9ist bet-een distant nodes. $nit Dis Graphs: edge present i) distance bet-een nodes less than

    parameter r .  (here)ore: i) edge absent, distance bet-een nodes is greater than r .

    Does this in)ormation help s solve the localization problem

    0

    1

    23

    4

    Red edge -old e9ist in nit dis graph, sonit dis graph localization -old not solveSet 2artition.

    /

  • 8/17/2019 Localization Goldenberg Defense Template

    36/56

    /

    Comple"ity o7 Localiin4 5nit%is& $raphs

    heorem: 6ocalization )or sparse sensor net-ors is 2;hard. Method:

    Redction )rom #ircuit -atis.ability  to /nit 0isk (raph Reconstruction.

    Redction is b" constrction o) a )amil" o) graphs that represent 0ooleancircits.

    Rigid bodies in the graph represent -ires. Relative position o) rigid bodies in the graph represent signals on -ires. 1( and AD gates bilt ot o) constraints bet-een these bodies e9pressed in

    the graph strctre.  (here is a pol"nomial;time redction )rom #ircuit -atis.ability  to /nit 0isk (raph

    Reconstruction, in -hich there is a one;to;one correspondence bet-een satis)"ingassignments to the circit and soltions to the reslting localization problem.

    /nit 0isk (raph Reconstruction 1decision problem2%npt: Graph G along -ith a parameter r , and thes8are o) each edge length 1luv  2

    % #to avoid irrational

    edge lengths&.

    1tpt: Y3S iE there e9ists a set o) points in R% sch

    that distance )rom u to v  is luv  i) uv  is an edge in ( and greater than r  other-ise.

    #ircuit -atis.ability 1 2;hard 2:%npt: A boolean combinatorialcircit.Composed o) AD, 1R, and 1(gates

    1tpt: Y3S iE the circit issatis*able.

    /F

  • 8/17/2019 Localization Goldenberg Defense Template

    37/56

    /F

    Localiation in.rilateration $raphs

    As one adds more edges, localization becomes easier: (here are classeso) globall" rigid graph -hich are eas" to localize.

     (rilateration graphs are localizable in pol"nomial time. Remember: 1ne gets a trilateration graph )rom a connected net-or b"

    tripling the sensing radis.

    Algorithm: %) initial / vertices no-n,

    localize vertices one at a timentil all vertices localized.

    3lse starting -ith each triangle in

    the graph, proceed as aboventil all localized.

    1#Z!Z'& or 1#Z!Z&.

    /H

  • 8/17/2019 Localization Goldenberg Defense Template

    38/56

    /H

     (he )ollo-ing garantees Gn#r& is;connected -ith high probabilit")or some constant c largeenogh and constant k :

    2enrose, Vr

    Connectivity in an'ometwor&s

     (he random geometric graph (n1r2 is therandom graph associated -ith )ormations-ith n vertices -ith all lins o) length lessthan r, -here the vertices are points in 'generated b" a t-o dimensional 2oissonpoint process o) intensit" n$

    cn

    nr 

    n  =

    ∞→ loglim

    2

    ote: eed nr % 31log n2 * c, )or some c,to garantee even connectivit".

    heorem: %) nr % 31log n2 * 4, -ith highprobabilit", Gn#r& is a trilateration graph.

     (his identi*es conditions nder -hicha simple iterated trilaterationalgorithm -ill scceed in localization.

    /.rilateration in an'om

  • 8/17/2019 Localization Goldenberg Defense Template

    39/56

    /.rilateration in an'ometwor&s

    Loalized mode:@roadcast position%

    !nloalized mode:

    'isten for broadcast%

    if  broadcast fro( >x,y heard,

      Aeter(ine distance to >x,y%  if  three broadcasts heard

      Aeter(ine position

      itch to locali$ed (ode

    Iterati.e &rilaterationIterati.e &rilateration

    @"t ho

    fast?

    Sensors have ' modes.

    Sensors determine distance )rom heardtransmitter. All sensors are pre;placed and plgged in

    7=

  • 8/17/2019 Localization Goldenberg Defense Template

    40/56

    7=

     ,symptotics o7 .rilateration in an'ometwor&s

      0eacons Sensingradis

      3

    )log( n nO

    )log(   nO)log(n

    nO

    )log(n

    nO

    )log( nn

    O

    )log(

    n

    nO

    )(nO )1(O

    )1(O

    B"nning ti(es to co(plete locali$ation "sing trilateration for different beacon densities%

    7

  • 8/17/2019 Localization Goldenberg Defense Template

    41/56

    7

    /-har'ness o7

    Localiation 5ine"grained localization is !"hard de to 2;hardness o) realizing globall" rigid graphs.

     (his means that localization o) net-ors incomplete generalit" is nliel" to be e?cientl"solvable.

    Motivates search )or reasonable special cases and

    heristics. 39plains hit;or;miss character o)previos approaches. Changing sensing radis can predictabl" convert

    connectedness to global rigidit" and trilateration.

    7'

  • 8/17/2019 Localization Goldenberg Defense Template

    42/56

    7'

    Outline

    %ntrodction to 6ocalization

    Conditions )or $ni8e 6ocalization

    Comptational Comple9it" o)

    6ocalization

    6ocalization in Sparse et-ors

    7/

  • 8/17/2019 Localization Goldenberg Defense Template

    43/56

    7/

    +otivation

    0eing able to precisel" localize onl"trilateration net-ors is nsatis)"ing. (rilateration net-ors contain signi*cantl"

    more constraints than necessar" )or ni8elocalizabilit".

    Can -e localize net-ors -ith closer to theminimal nmber o) constraints

    1

    3 4

    2

    5

    1

    3 4

    2

    5

     (rilateration graph Globall" rigid sbgraph

    Red edgesnnecessar" )orni8e localizabilit".

    77

  • 8/17/2019 Localization Goldenberg Defense Template

    44/56

    77

    :ilateration $raphs  A bilateration graph G is one -ith a !ilateration

    ordering: an ordering o) the vertices ,..$,n sch that thecomplete graph on the initial & vertices is in ( and )romever" verte9  ) * &, there are at least 2 edges to verticesearlier in the se8ence.

    Theorem: 0ilateration graphs are rigid #bt not globall"rigid&.

    Theorem: 6et G X #!,3& be a connected graph. (hen G' is a bilateration graph.

    0ilateration graphs are nitely localiza!le in 1#'Z!Z& time.

    Algorithm: %) initial / vertices no-n, *nitel" localizevertices one at a time b" compting all

    possible positions consistent -ith neighborpositions ntil all vertices *nitel" localized.

    3lse starting -ith each triangle in the graph,proceed as above ntil all *nitel" localized.

    0

    1

    2

    33)

    4

    4) 4))

    4)))

    55)

    ))

    )

    7

    L li i i % bl '

  • 8/17/2019 Localization Goldenberg Defense Template

    45/56

    7

    Localiation in %ouble'Cycles

    0ased on *nite localization o) bilaterationgraphs, localization is uniquely comptable)or globall" rigid dobled c"cles.

    Completes in 1#'Z!Z& time. Assmes nodes in general position$

    0

    1

    2

    33)

    4

    4) 4))

    4)))

    55)

    ))

    )

    CS-eepD Algorithm: 4i9 the position o) three vertices.

    $ntil no progress made: 4initel" localize each verte9connected to t-o *nitel" localizedvertices.

    Remove possibilities -ith noconsistent descendants.

    7

  • 8/17/2019 Localization Goldenberg Defense Template

    46/56

    Localiation in %ouble' 2-connecte' $raphs ';connected graphs are a nion o) c"cles #the" have an 3ar Decomposition&.

     (he ear decomposition gives a ordering in -hich c"cles ma" be localizedsing previos algorithm.

    ote: (his means i) -e have angles, -e can localize ';connected net-ors.

    0iconnected net-or -ith its ear decomposition. Dobled biconnected net-or.

    7F

    L li ti $ l

  • 8/17/2019 Localization Goldenberg Defense Template

    47/56

    Localiation on $eneral parseetwor&s +orst;case e9ponential time algorithm )or

    localization in sparse net-ors:

    4or -hich t"pes o) net-or does s-eep localization -or

    Theorem: Shell s-eep *nitel" localizes bilateration net-ors. Theorem: Shell s-eep ni8el" localizes globall" rigid bilateration

    net-ors$

    %) G is connected, -hen rn on G', shell s-eep prodces all possiblepositions )or each node. %) G' globall" rigid, gives the ni8e positions.

    ue!tion: Io- man" globall" rigid net-ors are also bilaterations

    3

    1

    2

    4

    5

    0

    4)

    5)

    3

    1

    2

    4

    5

    03)

    )

    7H

  • 8/17/2019 Localization Goldenberg Defense Template

    48/56

     ("pical random graph. Starting nodes

    randoml" chosen. Shell s-eep ni8el"

    localizes localizableportion.

    Also non;ni8el"localizes nodes rigidl"connected to localizedregion.

    hell weepon an'om

    etwor& 

    7

  • 8/17/2019 Localization Goldenberg Defense Template

    49/56

    == node graph -ithconsiderableanisotrop" and 7.

    average degree. Shell s-eep

    comptes in seconds[ -ith nointermediate positionset e9ceeding 'H.

    /er7ormance on

    Lar4eetwor& 

    [ As a JA!A applet on a zoonode -ith a dal '.HGIz C2$and 'G0 RAM

    =

  • 8/17/2019 Localization Goldenberg Defense Template

    50/56

    ailin4Case

    Globall" rigid net-or.

    Connection bet-eenclsters nbridgeableb" bilateration.

    !"tent o7 weep

  • 8/17/2019 Localization Goldenberg Defense Template

    51/56

    !"tent o7 weepLocaliation

    S-eeps localizes more nodes thantrilateration, and almost all localizable nodesW

    %n reglar net-ors, s-eeps localizessigni*cantl" more nodes than trilateration.

    Most incremental localization algorithms aretrilateration based.

    *ey point' 6any globally rigid randomgeometric graphs are bilateration graphs$

    S-eeps in Random et-or S-eeps in Reglar et-or

    '

    7 L li ti % it

  • 8/17/2019 Localization Goldenberg Defense Template

    52/56

    ummary o7 Localiation %ensitypectrum 6ocalization is 2;hard in general, bt there are classes o) graphs

    that are eas" to localize. Complete graphs.  (rilateration graphs.

    Graphs that -e no- ho- to localize in -orst;case e9ponentialtime: Dobled biconnected graphs.

    0asic idea: more edges mae localization easier. Goal: to nderstand -hich net-ors can be localized and -hich are

    problematic.

    "onsider all possible networ#s on n sensors

    Some networ#s an be

    loalized in $%&'&():

    &rilateration graphs ith "n!non

    ordering

    !nloalizableSome networ#s an be

    loalized in e*ponential

    time:

    Ao"bled biconnected graphs

    +lobally rigid bilateration graphs

    Some networ#s an be

    loalized in $%&'&+) time:

    &rilateration graphs ith !non

    ordering

    /

  • 8/17/2019 Localization Goldenberg Defense Template

    53/56

     When %oes Localiation:ecome !asy

    parse

    Aense

    Ensol.able

    asy

    +lobally Bigid /8hard

    &rilateration +raph8olyno(ial ti(e

    Number of edges "omple*ity of 

      realization

    7o(plete +raph

    3connected r  3

    3r 1

    2r 2

    Sensing radius in ,n

    %r)

    0

    1

    xponential@ilateration +raph

    7

  • 8/17/2019 Localization Goldenberg Defense Template

    54/56

    Conclusion an' uture

     Wor&  4ormalized the localization problem and itssolvabilit". Sho-ed that the problem is )ndamentall"

    comptationall" hard. Constrctivel" characterized easil" localizable

    net-ors. 2rovided algorithm that localizes more nodes than

    previos incremental algorithms.

    e9t: 6ocalization sing maps. 6ocalization sing anglar order in)ormation. 6ocalization in net-ors o) mobile nodes. 6ocalization in /D or on /D sr)aces. 4ll s"stem )rom deplo"ment to localization.

  • 8/17/2019 Localization Goldenberg Defense Template

    55/56

    Our Wor& in the iel' \Rigidity$ +omputation$ and Randomization in #et"or& ,ocalization] ;

    Comptational comple9it" reslts.

    \A 0heory o% #et"or& ,ocalization] ; Algorithm )or localization in sparse ad;hoc net-ors.

    \,ocalization in 1artially ,ocaliza!le #et"or&s] ; 6ocation;a-are controlled node;mobilit" algorithm )or sensor net-or

    optimization.

  • 8/17/2019 Localization Goldenberg Defense Template

    56/56

     ,c&nowle'4ements % -old lie to than all m" collaborators, -ithot -hom this -or -old

    not have been possible.

    0rian D.1. Anderson #Astralia ational $niversit" and %C(A&  James Aspnes 2.. 0elhmer #Colmbia $niversit"&

    2ascal 0ihler Ming Cao  (olga 3ren  Jia 4ang Arvind 5rishnamrth"  Jie #Archer& 6in +esle" Maness A. Stephen Morse 0rad Rosen Andreas Savvides +alter +hitele" #Yor $niversit"&  Y. Richard Yang Anthon" Yong

     (IA5 Y1$ 41R 6%S(3%GAY ^$3S(%1S