lorentz and drude models - university of texas at el pasoemlab.utep.edu/ee5390em21/lecture 2 --...

36
9/19/2016 1 ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E‐Mail: Dr. Raymond C. Rumpf A‐337 (915) 747‐6958 [email protected] Electromagnetic Properties of Materials – Part I Lorentz and Drude Models Lecture #2 Lecture 2 1 Lecture Outline High level picture of dielectric response Resonance Lorentz model for dielectrics Lorentz model for permeability Drude model for metals Generalizations Other materials models Lecture 2 2

Upload: ngokien

Post on 09-Mar-2018

239 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

1

ECE 5322 21st Century Electromagnetics

Instructor:Office:Phone:E‐Mail:

Dr. Raymond C. RumpfA‐337(915) 747‐[email protected]

Electromagnetic Properties of Materials – Part I

Lorentz and Drude Models

Lecture #2

Lecture 2 1

Lecture Outline

• High level picture of dielectric response

• Resonance

• Lorentz model for dielectrics

• Lorentz model for permeability

• Drude model for metals

• Generalizations

• Other materials models

Lecture 2 2

Page 2: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

2

High Level Picture of Dielectric

Response

Lecture 2 4

Dielectric Slab

We wish to understand why a dielectric exhibits an electromagnetic response.

Page 3: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

3

Lecture 2 5

Atoms at Rest

Without an applied electric field, the electron “clouds” around the nuclei are symmetric and at rest.

Lecture 2 6

Applied Wave

The electric field of a electromagnetic wave pushes the electrons away from the nuclei producing “clouds” that are offset.

Page 4: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

4

Lecture 2 7

Secondary Waves

The motion of the charges emits secondary waves that interfere with the applied wave to produce an overall slowing effect on the wave.

Resonance

Page 5: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

5

Visualizing Resonance –Low Frequency

• Can push object to modulate amplitude

• Displacement is in phase with driving force

• DC offset

Lecture 2 9

Visualizing Resonance –on Resonance

• Can push object to large amplitude

• Displacement and driving force are 90° out of phase

• Peaks of push correspond to nulls of displacement

Lecture 2 10

Page 6: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

6

Visualizing Resonance – High Frequency

• Vanishing amplitude• Displacement is 180°out of phase

Lecture 2 11

A Harmonic Oscillator

Amplitude P

hase

 Lag

180°

0° 0

> 0

>> 0

res

90°

Lecture 2 12

Page 7: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

7

Impulse Response of a Harmonic Oscillator

Amplitude

Time, t

Excitation Ball Displacement

Damping loss

Lecture 2 13

Moving Charges Radiate Waves

outward travelling wave

Lecture 2 14

Page 8: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

8

Lorentz Modelfor Dielectrics

Lorentz Oscillator Model

Lecture 2 16

Page 9: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

9

Maxwell’s Equations with Material Polarization

Lecture 2 17

0D E P Material polarization is incorporated into the constitutive relations.

0 0 0rD E E E

Response of material

Response of free space

Constitutive relation in terms of relative permittivity and susceptibility.

0 0 0 0

0 0

1 1r r

D E P E E P E

D E E

Comparing the above equations, we see that

Equation of Motion

2202

r rm m m r qEt t

electric force

frictional force restoring force

acceleration force0

K

m

naturalfrequency

em m mass of an electron

damping rate (loss/sec)

Lecture 2 18

Page 10: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

10

Fourier Transform

2202

r rm m m r qEt t

2 20m j r m j r m r qE

2 20m j m m r qE

Fourier transform

Simplify

Lecture 2 19

Displacement

2 20e

Eqr

m j

r

2 20m j m m r qE

Lecture 2 20

Page 11: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

11

Dipole Moment

qr

r

Definition of Dipole Moment:

** Sorry for the confusing notation, but μ here is NOT permeability.

2

2 20e

Eq

m j

Lecture 2 21

chargedistance from center

Lorentz Polarizability,

E

Definition of Polarizability:

** Sorry for the confusing notation, but  here is NOT absorption.

2

2 20

1

e

q

m j

() is a tensor quantity for anisotropic materials.  For simplicity, we will use the scalar form.This is the Lorentz polarizability for a single atom.

Lecture 2 22

Page 12: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

12

Polarization per Unit Volume

1i

V

PV

Definition:Average dipole moment over all atoms in a material.All billions and trillions of them!!!

P N

There is some randomness to the polarized atoms so a statistical approach is taken to compute the average.

Number of atoms per unit volume

Statistical average

N

Unpolarized Polarized with some randomness Equivalent uniform polarization

Lecture 2 23

AppliedE‐Field

AppliedE‐Field

Susceptibility (1 of 2)

0

2

2 20

1

e

P N E

E

q

m j

Recall the following:

This leads to an expression for the susceptibility:

2

2 20 0 0

1

e

N Nq

m j

Lecture 2 24

Page 13: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

13

Susceptibility (2 of 2)

Susceptibility of a dielectric material:

2

2 20

p

j

22

0p

e

Nq

m

•Note this is the susceptibility of a dielectric which has only one resonance.• The location of atoms is important because they can influence each other.  We ignored this.

• Real materials have many sources of resonance and all of these must be added together.

plasma frequency

19

120

31

1.60217646 10 C

8.8541878176 10 F m

9.10938188 10 kge

q

m

Lecture 2 25

The Dielectric Function

Recall that,

2

2 20

1 pr j

22

0p

e

Nq

m

0 0 0 0 0 1rD E E P E E E

Therefore,

1r

The dielectric function for a material with a single resonance is then,

The ~ symbol indicates the quantity is complex

Lecture 2 26

vacuum material

Page 14: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

14

1. We wrote the equation of motion by comparing bound charges to a mass on a spring.

2. We performed a Fourier transform to solve this equation for r.

3. We calculated the electric dipole moment of the charge displaced by r.

4. We calculated the volume averaged dipole moment to derive the material polarization.

5. We calculated the material susceptibility.

6. We calculated the dielectric function.

Summary of Derivation

2202e e e

r rm m m r qE

t t

2 20e

Eqr

m j

2

2 20e

Eq

m j

1iVP N

2 2

22 20 0

pp

e

Nq

j m

2

2 20

1 pr j

Lecture 2 27

Real and Imaginary Parts of ε

2 2

22 20 0

1 pr p

e

Nq

j m

Split into real and imaginary parts

2 220

2 2 2 20 0

2 202

22 2 2 20

2 22 20

2 22 2 2 2 2 2 2 20 0

1

1

1

pr r r

p

p p

jj

j j

j

j

2 22 20

2 22 2 2 2 2 2 2 20 0

1 r p r p

Lecture 2 28

Page 15: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

15

Complex Refractive Index ñ

Refractive is like a “density” to an electromagnetic wave.  It quantifies the speed of an electromagnetic wave through a material.  Waves travel slower through materials with higher refractive index.

1 1r r m en n j

rn n j For now, we will ignore the magnetic response.

Converting between dielectric function and refractive index.

2

2 2

2 2 2

r r

r r

r r

r r

n j j

n j j

n jn jn j

n j n j

2 2

2r

r

n

n

ñε

ε ñ

r rn j j

ordinary refractive index

extinction coefficient

n

Lecture 2 29

Absorption Coefficient (1 of 2)

From Maxwell’s equations, a plane wave in a linear, homogeneous, isotropic (LHI) medium as…

0jkzE z E e

0 00

2 k k n k

The wave number is

Substituting the complex refractive index into this equation leads to…

0 0 00 0

jk n j z k z jk nzE z E e E e e

Oscillatory termenvelope term

The absorption coefficient  is defined in terms of the field intensity.

0zI z I e

Lecture 2 30

Page 16: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

16

Absorption Coefficient (2 of 2)

The field intensity is related to the field amplitude through

2I z E z

0 0

0

0

2

2

0 0

2 20 0

2

02

k z jk nzz

k zz

k zz

I z E z

I e E e e

I e E e

e e

k

Substituting expressions from the previous slide, the absorption coefficient can be calculated from 

00

22k

c

Lecture 2 31

Reflectance (normal incidence)

The amplitude reflection coefficient r quantifies the amplitude and phase of reflected waves.

The power reflection coefficient (reflectance) is always positive and between 0 and 1 (for materials without gain).

1

1

n jr

n j

2 2

*2 2

1

1

nR r r

n

incident reflected

transmitted

air

material

Lecture 2 32

Loss contributes to reflections!

Page 17: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

17

Kramers-Kroenig Relations (1 of 3)

The susceptibility is essentially the impulse response of a material to an applied electric field.

0 t E t

P t

0

0

eP t E t d

P E

Causality requires that (t=0)=P(t=0)=0

From linear system theory, if (t) is a causal, than the real and imaginary parts of its Fourier transform are Hilbert transform pairs.

j

1

1

d

d

This means that ’ and ’’ are not independent.  If we can measure one, we can calculate the other.

But how do we measure at negative frequencies? 

Lecture 2 33

Kramers-Kroenig Relations (2 of 3)

From Fourier theory, if (t) is purely real then

is an even function

is an odd function

Applying this symmetry principle to the relations on the previous page leads to

2 20

2 20

2

2

d

d

These equations can be applied to measurements taken over just positive frequencies.

Lecture 2 34

Page 18: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

18

Kramers-Kroenig Relations (3 of 3)

For dilute media with weak susceptibility (’ and ’’ are small), the complex refractive index can be approximated from the susceptibility as…

1 1 12 2

n j j

Comparing the real and imaginary components of ñ and  leads to the Kramers‐Kroenigrelations for the refractive index and absorption coefficient.

02 2

0

02 2

0

1

1

cn d

ncd

For dilute media

Lecture 2 35

Summary of Properties

2 22 20

2 22 2 2 2 2 2 2 20 0

1 r p r p

Dielectric Function• The dielectric function is most fundamental to Maxwell’s equations.• Imaginary part only exists if there is loss.  When there is loss, the real part contributes.• Perhaps more difficult to extract physical meaning from the real and imaginary parts.

Refractive Index• The refractive index is more closely related to wave propagation.  It quantifies both velocity and loss.

• Real part is solely related to phase velocity.• Imaginary part is solely related to loss.• In many ways, refractive index is a more physically meaningful parameter.

1 1r r m en n j

Lecture 2 36

Page 19: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

19

Typical Lorentz Model for Dielectrics

04 2 0.1p

r r

n

R

Lecture 2 37

Example – Salt Water

M. R. Querry, R. C. Waring, W. E. Holland, M. Hale, W. Nijm, “Optical Constants in the Infrared for Aqueous Solutions of NaCl,” J. Opt. Soc. Am. 62(7), 849–855 (1972)

Lecture 2 38

Page 20: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

20

TART

Transmissive

Absorptive

Reflective

Transmissive

0 2

0 02 2

0 2 p

p

04 2 0.1p

r r

n

RT TRA

The TART regions are most distinct for small  and large pLecture 2 39

Dispersion

Re Im

Frequency 

Complex dielectric function 

0

Anomalous and negative dispersion

Lecture 2 40

Page 21: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

21

Observation #1

Loss is very high near resonance.

04 2 0.1p

Lecture 2 41

Observation #2

Damping rate determines width of resonance.

04 2 0.1p

r r

Lecture 2 42

Page 22: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

22

Observation #3

Far from resonance, loss is very low.

04 2 0.1p

Lecture 2 43

Observation #4

Material has no response at frequencies far above resonance.

04 2 0.1p

r r

Lecture 2 44

Materials, including metals, tend to become transparent at very high frequencies (e.g. x‐rays).

Page 23: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

23

Observation #5

Dielectric constant has a DC offset below resonance.

04 2 0.1p

r r

Lecture 2 45

At frequencies well below the resonance, we can replace the Lorentz equation with just a simple constant.

2

20

0 1 pr

Observation #6

Dielectric constant can be negative and/or less than one.

04 2 0.1p

r r

Lecture 2 46

Page 24: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

24

Observation #7

Refractive index can be less than one.

04 2 0.1p

Lecture 2 47

Lorentz Modelfor Permeability

Page 25: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

25

Magnetic Response of Ordinary Materials

Equilibrium State Polarized StateB

NucleusElectron

Magnetic Dipole

Slide 49Lecture 2

Lorentz Model for Permeability

Lecture 2 50

2mp

2 2m0 m

1r j

mp

m0

m

magnetic plasma frequency

magnetic resonant frequency

magnetic damping rate

Boardman, Allan D., and Kiril Marinov, "Electromagnetic energy in a dispersive metamaterial," Phys. Rev. B, Vol. 73, No.16, pp. 165110, 2006.

Page 26: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

26

Drude Modelfor Metals

Drude Model for Metals

In metals, most electrons are free because they are not bound to a nucleus.  For this reason, the restoring force is negligible and there is no natural frequency.

We derive the Drude model for metals by assuming 0=0.

2

20

1 pr

2 j

22

0p

e

Nq

m

2

21 p

r j

Lecture 2 52

Note, N is now interpreted as electron density Ne.  

me is the effective mass of the electron.

Page 27: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

27

Conductivity (1 of 2)

When describing metals, it is often more meaningful to put the equation in terms of the “mean collision rate” .  This is also called the momentum scattering time.

1

2

2 11 p

r j

This can be written in terms of the real and imaginary components.

2 2 2

2 2 2 21

1 1p p

r j

Lecture 2 53

Conductivity (2 of 2)In practice, metals are usually described in terms of a real‐valued permittivity and a conductivity.  These can be defined from above using Ampere’s circuit law.

0

Ampere's Law with r

rH j E

0

Ampere's Law with and r

rH E j E

Comparing the two sets of Maxwell’s equations leads to

0 0r rH j E E j E

0

r r j

Substituting the Drude equation into this result leads to expressions for the conductivity and the real‐valued permittivity.

2 220

0 02 2 2 21

1 1p

r p

0 DC conductivity Lecture 2 54

Page 28: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

28

Typical Drude Response

Lecture 2 55

Observation #1

At very high frequencies above the plasma frequency, loss vanishes and metals become transparent!

Note: more accurately stated as weakly absorbing

This is why we use x‐rays to image through things.Lecture 2 56

Page 29: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

29

Observation #2

The plasma frequency for typical metals lies in the ultra‐violet.

Metal Symbol

Aluminum Al 82.78 nm 3624 THz

Chromium Cr 115.35 nm 2601 THz

Copper Cu 114.50 nm 2620 THz

Gold Au 137.32 nm 2185 THz

Nickel Ni 77.89 nm 3852 THz

Silver Ag 137.62 nm 2180 THz

Plasma Wavelength Plasma Frequency

Lecture 2 57

Observation #3

Below the plasma frequency, the dielectric constant is mostly imaginary and metals behave like good 

conductors. 

Lecture 2 58

Page 30: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

30

Observation #4

Near the plasma frequency, both the real and imaginary parts of permittivity are significant and 

metals are very lossy. 

This is a big problem for optics and currently the #1 limitation for optical metamaterials.Lecture 2 59

Low Frequency Properties of Metals

Most applications use frequencies well below ultraviolet so the behavior in this region is of particular interest.

For very low frequencies,                     the Drude model reduces to…

1p

0

1r

01r j

The complex refractive index is then

012

n j

0202c

Lecture 2 60

Page 31: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

31

Skin Depth (at Low Frequencies)

Now that we know the complex refractive index, we can see how quickly a wave will attenuate due to the loss.

Skin depth is defined as the distance a wave travels where its amplitude decays by 1/e from this starting amplitude.  This is simply the reciprocal of the absorption coefficient.

We see that higher frequencies experience greater loss and decay faster.  For this reason, metallic structures are perform better at lower frequencies.

20

0

21 cd

Lecture 2 61

Generalizations

Page 32: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

32

Real Atoms

Real atoms have up to tens of electron levels so there are many possibilities for electron resonances.

In addition, there are many sources of resonances other than electron transitions.  (Spectrometry)

Lecture 2 63

Accounting for Multiple ResonancesAt a macroscopic level, all resonance mechanisms can be characterized using the Lorentz model.  This allows any number of resonances to be accounted for through a simple summation.

22 2

1 0,

Ni

pi i i

f

j

th

th0,

th

Number of resonators

Oscillator strength of the resonator

Natural frequency of the resonator

Damping rate of the resonato

i

i

i

N

f i

i

i r

r

Overall trend of decreasing dielectric constant.

Dielectric constant almost always increasing with frequency.

Lecture 2 64

Page 33: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

33

Suppose we are only interested in obtaining r() within this span of frequencies.

Lecture 2 65

r()

Frequency

r

In this frequency range, the high frequency resonances only contribute a combined DC offset that we write as r().

It is not necessary to resolve their Lorentz shape in this case and so we account for them solely through r().

Generalized Lorentz-DrudeModel of Arbitrary OrderA very general equation for modeling complicated dielectrics and metals is the following:

22 2

1 0,

Mm

r r pm m m

f

j

This is used to account for the offset produced by resonances at frequencies higher than where you care about.

Parameter Ag Au Cu Al Be Cr Ni Pd Pt Ti Wwp 9.010 9.030 10.830 14.980 18.510 10.750 15.920 9.720 9.590 7.290 13.220f0 0.845 0.760 0.575 0.523 0.084 0.168 0.096 0.330 0.333 0.148 0.206G0 0.048 0.053 0.030 0.047 0.035 0.047 0.048 0.008 0.080 0.082 0.064w0 0 0 0 0 0 0 0 0 0 0 0f1 0.065 0.024 0.061 0.227 0.031 0.151 0.100 0.649 0.191 0.899 0.054G1 3.886 0.241 0.378 0.333 1.664 3.175 4.511 2.950 0.517 2.276 0.530w1 0.816 0.415 0.291 0.162 0.100 0.121 0.174 0.336 0.780 0.777 1.004f2 0.124 0.010 0.104 0.050 0.140 0.150 0.135 0.121 0.659 0.393 0.166G2 0.452 0.345 1.056 0.312 3.395 1.305 1.334 0.555 1.838 2.518 1.281w2 4.481 0.830 2.957 1.544 1.032 0.543 0.582 0.501 1.314 1.545 1.917f3 0.011 0.071 0.723 0.166 0.530 1.149 0.106 0.638 0.547 0.187 0.706G3 0.065 0.870 3.213 1.351 4.454 2.676 2.178 4.621 3.668 1.663 3.332w3 8.185 2.969 5.300 1.808 3.183 1.970 1.597 1.659 3.141 2.509 3.580f4 0.840 0.601 0.638 0.030 0.130 0.825 0.729 0.453 3.576 0.001 2.590G4 0.916 2.494 4.305 3.382 1.802 1.335 6.292 3.236 8.517 1.762 5.836w4 9.083 4.304 11.180 3.473 4.604 8.775 6.089 5.715 9.249 19.430 7.498f5 5.646 4.384G5 2.419 2.214w5 20.290 13.320

Min n: 0.130 0.080 0.100 0.033 1.350 0.310 0.860 0.720 0.730 0.760 0.490

LORENTZ-DRUDE PARAMETERS (eV)

The first resonance is not actually a resonance.  Setting 0=0 defaults to the Drude model.

Lecture 2 66

Page 34: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

34

Isolated Absorbers in a Transparent HostThe overall material polarization is a superposition of the host and the absorber.

total host absorberP P P

The overall dielectric function is then2

host 2 20

1 pr j

At very low frequencies relative to the absorber, this becomes

2

20

0 pr r

At very high frequencies relative to the absorber, this becomes

host1r

2

20

0 pr r

This provides a neat way to measure the plasma frequency.

Lecture 2 67

Other Material Models

Page 35: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

35

Cole-Cole Models

Lecture 2 69

Cole‐Cole models are physics‐based compact representations of wideband frequency‐dependent dielectric properties or polymers and organic materials.

1

0

0

0

1

0 1j j

is an empirical parameter that accounts for the observed broad distribution of relaxation time constants.

0.1

DC or average response

Dispersive response

K. S. Cole, R. H. Cole, “Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics,” J. of Chem. Phys. 9, 341 (1941).

Cauchy Equation

Lecture 2 70

This is an empirical relationship between refractive index and wavelength for transparent media at optical frequencies.

0 free space wavelength in micrometers μm

0 2 40 0

C Dn B

B, C, D, etc. are called Cauchy coefficients.

For most materials, only B and C are needed.

0 20

Cn B

Material B C (μm2)

Fused silica 1.4580 0.00354

Borosilicate glass BK7 1.5046 0.00420

Hard crown glass K5 1.5220 0.00459

Barium crown glass BaK4 1.5690 0.00531

Barium flint glass BaF10 1.6700 0.00743

Dense flint glass SF10 1.7280 0.01342

Page 36: Lorentz and Drude Models - University of Texas at El Pasoemlab.utep.edu/ee5390em21/Lecture 2 -- Lorentz and Dr… ·  · 2016-09-19Lorentz and Drude Models Lecture #2 Lecture 2 1

9/19/2016

36

Sellmeier Equation

Lecture 2 71

This is an empirical relationship between refractive index and wavelength for transparent media at optical frequencies.

0 free space wavelength in micrometers μm

2 2 2

2 1 0 2 0 3 00 2 2 2

0 1 0 2 0 3

1B B B

nC C C

B1, B2, B3, C1, C2, and C3 are called Sellmeier coefficients.

Each term represents the contribution of a different resonance to refractive index.  Bi is the strength of the resonance while Ci is the wavelength of the resonance in micrometers.

Coefficient Value

B1 1.03961212

B2 0.231792344

B3 1.01046945

C1 6.00069867×10−3

C2 2.00179144×10−2

C3 1.03560653×102

Crown Glass (BK7)

The Sellmeier exists in other forms to account for additional physics.

2

2 00 2

0

i

i i

Bn A

C

2A n

There are other forms that account for temperature, pressure, and other parameters.