the drude model - uni-osnabrueck.de · the drude model peter hertel overview model dielectric...

137
The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday effect Hall effect The Drude Model Peter Hertel University of Osnabr¨ uck, Germany Lecture presented at APS, Nankai University, China http://www.home.uni-osnabrueck.de/phertel October/November 2011

Upload: others

Post on 16-Oct-2020

15 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

The Drude Model

Peter Hertel

University of Osnabruck, Germany

Lecture presented at APS, Nankai University, China

http://www.home.uni-osnabrueck.de/phertel

October/November 2011

Page 2: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Paul Drude, German physicist, 1863-1906

Page 3: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Overview

• The Drude model links optical and electric properties of amaterial with the behavior of its electrons or holes

• The model

• Dielectric permittivity

• Permittivity of metals

• Conductivity

• Faraday effect

• Hall effect

Page 4: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Overview

• The Drude model links optical and electric properties of amaterial with the behavior of its electrons or holes

• The model

• Dielectric permittivity

• Permittivity of metals

• Conductivity

• Faraday effect

• Hall effect

Page 5: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Overview

• The Drude model links optical and electric properties of amaterial with the behavior of its electrons or holes

• The model

• Dielectric permittivity

• Permittivity of metals

• Conductivity

• Faraday effect

• Hall effect

Page 6: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Overview

• The Drude model links optical and electric properties of amaterial with the behavior of its electrons or holes

• The model

• Dielectric permittivity

• Permittivity of metals

• Conductivity

• Faraday effect

• Hall effect

Page 7: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Overview

• The Drude model links optical and electric properties of amaterial with the behavior of its electrons or holes

• The model

• Dielectric permittivity

• Permittivity of metals

• Conductivity

• Faraday effect

• Hall effect

Page 8: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Overview

• The Drude model links optical and electric properties of amaterial with the behavior of its electrons or holes

• The model

• Dielectric permittivity

• Permittivity of metals

• Conductivity

• Faraday effect

• Hall effect

Page 9: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Overview

• The Drude model links optical and electric properties of amaterial with the behavior of its electrons or holes

• The model

• Dielectric permittivity

• Permittivity of metals

• Conductivity

• Faraday effect

• Hall effect

Page 10: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Overview

• The Drude model links optical and electric properties of amaterial with the behavior of its electrons or holes

• The model

• Dielectric permittivity

• Permittivity of metals

• Conductivity

• Faraday effect

• Hall effect

Page 11: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibriumposition

• external electric field strength E = E(t)

• m(x + Γx + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, springconstant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x = qE

• solution is

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

Page 12: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibriumposition

• external electric field strength E = E(t)

• m(x + Γx + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, springconstant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x = qE

• solution is

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

Page 13: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibriumposition

• external electric field strength E = E(t)

• m(x + Γx + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, springconstant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x = qE

• solution is

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

Page 14: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibriumposition

• external electric field strength E = E(t)

• m(x + Γx + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, springconstant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x = qE

• solution is

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

Page 15: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibriumposition

• external electric field strength E = E(t)

• m(x + Γx + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, springconstant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x = qE

• solution is

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

Page 16: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibriumposition

• external electric field strength E = E(t)

• m(x + Γx + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, springconstant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x = qE

• solution is

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

Page 17: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibriumposition

• external electric field strength E = E(t)

• m(x + Γx + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, springconstant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x = qE

• solution is

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

Page 18: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibriumposition

• external electric field strength E = E(t)

• m(x + Γx + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, springconstant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x = qE

• solution is

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

Page 19: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibriumposition

• external electric field strength E = E(t)

• m(x + Γx + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, springconstant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x = qE

• solution is

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

Page 20: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is p = qx

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ• there are N typical electrons per unit volume

• polarization is P = Nqx = ε0χE

• susceptibility is

χ(ω) =Nq2

ε0m

1

Ω2 − ω2 − iωΓ• in particular

χ(0) =Nq2

ε0mΩ2> 0

• . . . as it should be

Page 21: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is p = qx

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ• there are N typical electrons per unit volume

• polarization is P = Nqx = ε0χE

• susceptibility is

χ(ω) =Nq2

ε0m

1

Ω2 − ω2 − iωΓ• in particular

χ(0) =Nq2

ε0mΩ2> 0

• . . . as it should be

Page 22: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is p = qx

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

• there are N typical electrons per unit volume

• polarization is P = Nqx = ε0χE

• susceptibility is

χ(ω) =Nq2

ε0m

1

Ω2 − ω2 − iωΓ• in particular

χ(0) =Nq2

ε0mΩ2> 0

• . . . as it should be

Page 23: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is p = qx

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ• there are N typical electrons per unit volume

• polarization is P = Nqx = ε0χE

• susceptibility is

χ(ω) =Nq2

ε0m

1

Ω2 − ω2 − iωΓ• in particular

χ(0) =Nq2

ε0mΩ2> 0

• . . . as it should be

Page 24: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is p = qx

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ• there are N typical electrons per unit volume

• polarization is P = Nqx = ε0χE

• susceptibility is

χ(ω) =Nq2

ε0m

1

Ω2 − ω2 − iωΓ• in particular

χ(0) =Nq2

ε0mΩ2> 0

• . . . as it should be

Page 25: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is p = qx

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ• there are N typical electrons per unit volume

• polarization is P = Nqx = ε0χE

• susceptibility is

χ(ω) =Nq2

ε0m

1

Ω2 − ω2 − iωΓ

• in particular

χ(0) =Nq2

ε0mΩ2> 0

• . . . as it should be

Page 26: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is p = qx

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ• there are N typical electrons per unit volume

• polarization is P = Nqx = ε0χE

• susceptibility is

χ(ω) =Nq2

ε0m

1

Ω2 − ω2 − iωΓ• in particular

χ(0) =Nq2

ε0mΩ2> 0

• . . . as it should be

Page 27: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is p = qx

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ• there are N typical electrons per unit volume

• polarization is P = Nqx = ε0χE

• susceptibility is

χ(ω) =Nq2

ε0m

1

Ω2 − ω2 − iωΓ• in particular

χ(0) =Nq2

ε0mΩ2> 0

• . . . as it should be

Page 28: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion I

• decompose susceptibility χ(ω) = χ ′(ω) + iχ ′′(ω) intorefractive part χ ′ and absorptive part χ ′′

• Introduce R(ω) = χ(ω)/χ(0), s = ω/Ω and γ = Γ/Ω asnormalized quantities.

• refraction

R ′(s) =1− s2

(1− s2)2 + γ2s2

• absorption

D ′′(s) =γs

(1− s2)2 + γ2s2

• limiting cases: s = 0, s = 1, s→∞, small γ

Page 29: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion I

• decompose susceptibility χ(ω) = χ ′(ω) + iχ ′′(ω) intorefractive part χ ′ and absorptive part χ ′′

• Introduce R(ω) = χ(ω)/χ(0), s = ω/Ω and γ = Γ/Ω asnormalized quantities.

• refraction

R ′(s) =1− s2

(1− s2)2 + γ2s2

• absorption

D ′′(s) =γs

(1− s2)2 + γ2s2

• limiting cases: s = 0, s = 1, s→∞, small γ

Page 30: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion I

• decompose susceptibility χ(ω) = χ ′(ω) + iχ ′′(ω) intorefractive part χ ′ and absorptive part χ ′′

• Introduce R(ω) = χ(ω)/χ(0), s = ω/Ω and γ = Γ/Ω asnormalized quantities.

• refraction

R ′(s) =1− s2

(1− s2)2 + γ2s2

• absorption

D ′′(s) =γs

(1− s2)2 + γ2s2

• limiting cases: s = 0, s = 1, s→∞, small γ

Page 31: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion I

• decompose susceptibility χ(ω) = χ ′(ω) + iχ ′′(ω) intorefractive part χ ′ and absorptive part χ ′′

• Introduce R(ω) = χ(ω)/χ(0), s = ω/Ω and γ = Γ/Ω asnormalized quantities.

• refraction

R ′(s) =1− s2

(1− s2)2 + γ2s2

• absorption

D ′′(s) =γs

(1− s2)2 + γ2s2

• limiting cases: s = 0, s = 1, s→∞, small γ

Page 32: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion I

• decompose susceptibility χ(ω) = χ ′(ω) + iχ ′′(ω) intorefractive part χ ′ and absorptive part χ ′′

• Introduce R(ω) = χ(ω)/χ(0), s = ω/Ω and γ = Γ/Ω asnormalized quantities.

• refraction

R ′(s) =1− s2

(1− s2)2 + γ2s2

• absorption

D ′′(s) =γs

(1− s2)2 + γ2s2

• limiting cases: s = 0, s = 1, s→∞, small γ

Page 33: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion I

• decompose susceptibility χ(ω) = χ ′(ω) + iχ ′′(ω) intorefractive part χ ′ and absorptive part χ ′′

• Introduce R(ω) = χ(ω)/χ(0), s = ω/Ω and γ = Γ/Ω asnormalized quantities.

• refraction

R ′(s) =1− s2

(1− s2)2 + γ2s2

• absorption

D ′′(s) =γs

(1− s2)2 + γ2s2

• limiting cases: s = 0, s = 1, s→∞, small γ

Page 34: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

0 0.5 1 1.5 2 2.5 3−5

0

5

10

Refractive part (blue) and absorptive part (red) of thesusceptibility function χ(ω) scaled by the static value χ(0).The abscissa is ω/Ω. Γ/Ω = 0.1

Page 35: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion II

• For small frequencies (as compared with Ω) thesusceptibility is practically real.

• This is the realm of classical optics

• ∂χ/∂ω is positive – normal dispersion

• In the vicinity of ω = Ω absorption is large. Negativedispersion ∂χ/∂ω is accompanied by strong absorption.

• For very large frequencies again absorption is negligible,and the susceptibility is negative with normal dispersion.This applies to X rays.

• χ(∞) = 0 is required by first principles . . .

Page 36: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion II

• For small frequencies (as compared with Ω) thesusceptibility is practically real.

• This is the realm of classical optics

• ∂χ/∂ω is positive – normal dispersion

• In the vicinity of ω = Ω absorption is large. Negativedispersion ∂χ/∂ω is accompanied by strong absorption.

• For very large frequencies again absorption is negligible,and the susceptibility is negative with normal dispersion.This applies to X rays.

• χ(∞) = 0 is required by first principles . . .

Page 37: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion II

• For small frequencies (as compared with Ω) thesusceptibility is practically real.

• This is the realm of classical optics

• ∂χ/∂ω is positive – normal dispersion

• In the vicinity of ω = Ω absorption is large. Negativedispersion ∂χ/∂ω is accompanied by strong absorption.

• For very large frequencies again absorption is negligible,and the susceptibility is negative with normal dispersion.This applies to X rays.

• χ(∞) = 0 is required by first principles . . .

Page 38: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion II

• For small frequencies (as compared with Ω) thesusceptibility is practically real.

• This is the realm of classical optics

• ∂χ/∂ω is positive – normal dispersion

• In the vicinity of ω = Ω absorption is large. Negativedispersion ∂χ/∂ω is accompanied by strong absorption.

• For very large frequencies again absorption is negligible,and the susceptibility is negative with normal dispersion.This applies to X rays.

• χ(∞) = 0 is required by first principles . . .

Page 39: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion II

• For small frequencies (as compared with Ω) thesusceptibility is practically real.

• This is the realm of classical optics

• ∂χ/∂ω is positive – normal dispersion

• In the vicinity of ω = Ω absorption is large. Negativedispersion ∂χ/∂ω is accompanied by strong absorption.

• For very large frequencies again absorption is negligible,and the susceptibility is negative with normal dispersion.This applies to X rays.

• χ(∞) = 0 is required by first principles . . .

Page 40: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion II

• For small frequencies (as compared with Ω) thesusceptibility is practically real.

• This is the realm of classical optics

• ∂χ/∂ω is positive – normal dispersion

• In the vicinity of ω = Ω absorption is large. Negativedispersion ∂χ/∂ω is accompanied by strong absorption.

• For very large frequencies again absorption is negligible,and the susceptibility is negative with normal dispersion.This applies to X rays.

• χ(∞) = 0 is required by first principles . . .

Page 41: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Discussion II

• For small frequencies (as compared with Ω) thesusceptibility is practically real.

• This is the realm of classical optics

• ∂χ/∂ω is positive – normal dispersion

• In the vicinity of ω = Ω absorption is large. Negativedispersion ∂χ/∂ω is accompanied by strong absorption.

• For very large frequencies again absorption is negligible,and the susceptibility is negative with normal dispersion.This applies to X rays.

• χ(∞) = 0 is required by first principles . . .

Page 42: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation I

• χ(ω) must be the Fourier transform of a causal responsefunction G = G(τ)

• as defined in

P (t) = ε0

∫dτG(τ)E(t− τ)

• check this for

G(τ) = a

∫dω

e−iωτ

Ω2 − ω2 − iωΓ• poles at

ω1,2 = − iΓ

2± ω where ω = +

√Ω2 − Γ2/4

• Indeed, G(τ) = 0 for τ < 0

• for τ > 0

G(τ) =Nq2

ε0m

sin ωτ

ωe−Γτ/2

Page 43: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation I

• χ(ω) must be the Fourier transform of a causal responsefunction G = G(τ)

• as defined in

P (t) = ε0

∫dτG(τ)E(t− τ)

• check this for

G(τ) = a

∫dω

e−iωτ

Ω2 − ω2 − iωΓ• poles at

ω1,2 = − iΓ

2± ω where ω = +

√Ω2 − Γ2/4

• Indeed, G(τ) = 0 for τ < 0

• for τ > 0

G(τ) =Nq2

ε0m

sin ωτ

ωe−Γτ/2

Page 44: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation I

• χ(ω) must be the Fourier transform of a causal responsefunction G = G(τ)

• as defined in

P (t) = ε0

∫dτG(τ)E(t− τ)

• check this for

G(τ) = a

∫dω

e−iωτ

Ω2 − ω2 − iωΓ• poles at

ω1,2 = − iΓ

2± ω where ω = +

√Ω2 − Γ2/4

• Indeed, G(τ) = 0 for τ < 0

• for τ > 0

G(τ) =Nq2

ε0m

sin ωτ

ωe−Γτ/2

Page 45: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation I

• χ(ω) must be the Fourier transform of a causal responsefunction G = G(τ)

• as defined in

P (t) = ε0

∫dτG(τ)E(t− τ)

• check this for

G(τ) = a

∫dω

e−iωτ

Ω2 − ω2 − iωΓ

• poles at

ω1,2 = − iΓ

2± ω where ω = +

√Ω2 − Γ2/4

• Indeed, G(τ) = 0 for τ < 0

• for τ > 0

G(τ) =Nq2

ε0m

sin ωτ

ωe−Γτ/2

Page 46: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation I

• χ(ω) must be the Fourier transform of a causal responsefunction G = G(τ)

• as defined in

P (t) = ε0

∫dτG(τ)E(t− τ)

• check this for

G(τ) = a

∫dω

e−iωτ

Ω2 − ω2 − iωΓ• poles at

ω1,2 = − iΓ

2± ω where ω = +

√Ω2 − Γ2/4

• Indeed, G(τ) = 0 for τ < 0

• for τ > 0

G(τ) =Nq2

ε0m

sin ωτ

ωe−Γτ/2

Page 47: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation I

• χ(ω) must be the Fourier transform of a causal responsefunction G = G(τ)

• as defined in

P (t) = ε0

∫dτG(τ)E(t− τ)

• check this for

G(τ) = a

∫dω

e−iωτ

Ω2 − ω2 − iωΓ• poles at

ω1,2 = − iΓ

2± ω where ω = +

√Ω2 − Γ2/4

• Indeed, G(τ) = 0 for τ < 0

• for τ > 0

G(τ) =Nq2

ε0m

sin ωτ

ωe−Γτ/2

Page 48: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation I

• χ(ω) must be the Fourier transform of a causal responsefunction G = G(τ)

• as defined in

P (t) = ε0

∫dτG(τ)E(t− τ)

• check this for

G(τ) = a

∫dω

e−iωτ

Ω2 − ω2 − iωΓ• poles at

ω1,2 = − iΓ

2± ω where ω = +

√Ω2 − Γ2/4

• Indeed, G(τ) = 0 for τ < 0

• for τ > 0

G(τ) =Nq2

ε0m

sin ωτ

ωe−Γτ/2

Page 49: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation II

• causal response function: G(τ) = θ(τ)G(τ)

• apply the convolution theorem

χ(ω) =

∫du

2πχ(u)θ(ω − u)

• Fourier transform of Heaviside function is

θ(ω) = lim0<η→0

1

η − iω

• dispersion , or Kramers-Kronig relations

χ ′(ω) = 2Pr

∫du

π

uχ ′′(u)

u2 − ω2

χ ′′(ω) = 2Pr

∫du

π

ωχ ′(u)

ω2 − u2

Page 50: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation II

• causal response function: G(τ) = θ(τ)G(τ)

• apply the convolution theorem

χ(ω) =

∫du

2πχ(u)θ(ω − u)

• Fourier transform of Heaviside function is

θ(ω) = lim0<η→0

1

η − iω

• dispersion , or Kramers-Kronig relations

χ ′(ω) = 2Pr

∫du

π

uχ ′′(u)

u2 − ω2

χ ′′(ω) = 2Pr

∫du

π

ωχ ′(u)

ω2 − u2

Page 51: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation II

• causal response function: G(τ) = θ(τ)G(τ)

• apply the convolution theorem

χ(ω) =

∫du

2πχ(u)θ(ω − u)

• Fourier transform of Heaviside function is

θ(ω) = lim0<η→0

1

η − iω

• dispersion , or Kramers-Kronig relations

χ ′(ω) = 2Pr

∫du

π

uχ ′′(u)

u2 − ω2

χ ′′(ω) = 2Pr

∫du

π

ωχ ′(u)

ω2 − u2

Page 52: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation II

• causal response function: G(τ) = θ(τ)G(τ)

• apply the convolution theorem

χ(ω) =

∫du

2πχ(u)θ(ω − u)

• Fourier transform of Heaviside function is

θ(ω) = lim0<η→0

1

η − iω

• dispersion , or Kramers-Kronig relations

χ ′(ω) = 2Pr

∫du

π

uχ ′′(u)

u2 − ω2

χ ′′(ω) = 2Pr

∫du

π

ωχ ′(u)

ω2 − u2

Page 53: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation II

• causal response function: G(τ) = θ(τ)G(τ)

• apply the convolution theorem

χ(ω) =

∫du

2πχ(u)θ(ω − u)

• Fourier transform of Heaviside function is

θ(ω) = lim0<η→0

1

η − iω

• dispersion , or Kramers-Kronig relations

χ ′(ω) = 2Pr

∫du

π

uχ ′′(u)

u2 − ω2

χ ′′(ω) = 2Pr

∫du

π

ωχ ′(u)

ω2 − u2

Page 54: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation II

• causal response function: G(τ) = θ(τ)G(τ)

• apply the convolution theorem

χ(ω) =

∫du

2πχ(u)θ(ω − u)

• Fourier transform of Heaviside function is

θ(ω) = lim0<η→0

1

η − iω

• dispersion , or Kramers-Kronig relations

χ ′(ω) = 2Pr

∫du

π

uχ ′′(u)

u2 − ω2

χ ′′(ω) = 2Pr

∫du

π

ωχ ′(u)

ω2 − u2

Page 55: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Kramers-Kronig relation II

• causal response function: G(τ) = θ(τ)G(τ)

• apply the convolution theorem

χ(ω) =

∫du

2πχ(u)θ(ω − u)

• Fourier transform of Heaviside function is

θ(ω) = lim0<η→0

1

η − iω

• dispersion , or Kramers-Kronig relations

χ ′(ω) = 2Pr

∫du

π

uχ ′′(u)

u2 − ω2

χ ′′(ω) = 2Pr

∫du

π

ωχ ′(u)

ω2 − u2

Page 56: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Dispersion of white light

Page 57: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(x + Γx + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−ω2p

ω2 + iωΓ• plasma frequency ωp

ω2p =

Nq2

ε0m• correction for ω ωp

ε(ω) = ε∞ −ω2p

ω2 + iωΓ

Page 58: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(x + Γx + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−ω2p

ω2 + iωΓ• plasma frequency ωp

ω2p =

Nq2

ε0m• correction for ω ωp

ε(ω) = ε∞ −ω2p

ω2 + iωΓ

Page 59: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(x + Γx + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−ω2p

ω2 + iωΓ• plasma frequency ωp

ω2p =

Nq2

ε0m• correction for ω ωp

ε(ω) = ε∞ −ω2p

ω2 + iωΓ

Page 60: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(x + Γx + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−ω2p

ω2 + iωΓ• plasma frequency ωp

ω2p =

Nq2

ε0m• correction for ω ωp

ε(ω) = ε∞ −ω2p

ω2 + iωΓ

Page 61: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(x + Γx + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−ω2p

ω2 + iωΓ• plasma frequency ωp

ω2p =

Nq2

ε0m• correction for ω ωp

ε(ω) = ε∞ −ω2p

ω2 + iωΓ

Page 62: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(x + Γx + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−ω2p

ω2 + iωΓ• plasma frequency ωp

ω2p =

Nq2

ε0m• correction for ω ωp

ε(ω) = ε∞ −ω2p

ω2 + iωΓ

Page 63: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(x + Γx + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−ω2p

ω2 + iωΓ

• plasma frequency ωp

ω2p =

Nq2

ε0m• correction for ω ωp

ε(ω) = ε∞ −ω2p

ω2 + iωΓ

Page 64: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(x + Γx + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−ω2p

ω2 + iωΓ• plasma frequency ωp

ω2p =

Nq2

ε0m

• correction for ω ωp

ε(ω) = ε∞ −ω2p

ω2 + iωΓ

Page 65: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(x + Γx + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−ω2p

ω2 + iωΓ• plasma frequency ωp

ω2p =

Nq2

ε0m• correction for ω ωp

ε(ω) = ε∞ −ω2p

ω2 + iωΓ

Page 66: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits opticalmeasurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large andnegative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)

Page 67: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits opticalmeasurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large andnegative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)

Page 68: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits opticalmeasurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large andnegative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)

Page 69: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits opticalmeasurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large andnegative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)

Page 70: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits opticalmeasurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large andnegative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)

Page 71: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits opticalmeasurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large andnegative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)

Page 72: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits opticalmeasurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large andnegative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)

Page 73: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits opticalmeasurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large andnegative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)

Page 74: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits opticalmeasurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large andnegative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)

Page 75: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

1 1.5 2 2.5 3−80

−60

−40

−20

0

20

Refractive (blue) and absorptive part (red) of the permittivityfunction for gold. The abscissa is ~ω in eV.

Page 76: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductivity

• consider a typical charged particle

• recall m(x + Γx + Ω2x) = qE

• electric current density J = Nqx

• Fourier transformed: J = Nq(−iω)x

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J(ω) = σ(ω)E(ω)

• conductivity is

σ(ω) =Nq2

m

−iω

Ω2 − ω2 − iωΓ

Page 77: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductivity

• consider a typical charged particle

• recall m(x + Γx + Ω2x) = qE

• electric current density J = Nqx

• Fourier transformed: J = Nq(−iω)x

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J(ω) = σ(ω)E(ω)

• conductivity is

σ(ω) =Nq2

m

−iω

Ω2 − ω2 − iωΓ

Page 78: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductivity

• consider a typical charged particle

• recall m(x + Γx + Ω2x) = qE

• electric current density J = Nqx

• Fourier transformed: J = Nq(−iω)x

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J(ω) = σ(ω)E(ω)

• conductivity is

σ(ω) =Nq2

m

−iω

Ω2 − ω2 − iωΓ

Page 79: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductivity

• consider a typical charged particle

• recall m(x + Γx + Ω2x) = qE

• electric current density J = Nqx

• Fourier transformed: J = Nq(−iω)x

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J(ω) = σ(ω)E(ω)

• conductivity is

σ(ω) =Nq2

m

−iω

Ω2 − ω2 − iωΓ

Page 80: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductivity

• consider a typical charged particle

• recall m(x + Γx + Ω2x) = qE

• electric current density J = Nqx

• Fourier transformed: J = Nq(−iω)x

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J(ω) = σ(ω)E(ω)

• conductivity is

σ(ω) =Nq2

m

−iω

Ω2 − ω2 − iωΓ

Page 81: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductivity

• consider a typical charged particle

• recall m(x + Γx + Ω2x) = qE

• electric current density J = Nqx

• Fourier transformed: J = Nq(−iω)x

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J(ω) = σ(ω)E(ω)

• conductivity is

σ(ω) =Nq2

m

−iω

Ω2 − ω2 − iωΓ

Page 82: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductivity

• consider a typical charged particle

• recall m(x + Γx + Ω2x) = qE

• electric current density J = Nqx

• Fourier transformed: J = Nq(−iω)x

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J(ω) = σ(ω)E(ω)

• conductivity is

σ(ω) =Nq2

m

−iω

Ω2 − ω2 − iωΓ

Page 83: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductivity

• consider a typical charged particle

• recall m(x + Γx + Ω2x) = qE

• electric current density J = Nqx

• Fourier transformed: J = Nq(−iω)x

• recall

x(ω) =q

m

E(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J(ω) = σ(ω)E(ω)

• conductivity is

σ(ω) =Nq2

m

−iω

Ω2 − ω2 − iωΓ

Page 84: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . Itcannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =Nq2

m

1

Γ− iω• orσ(ω)

σ(0)=

1

1− iω/Γ

• Note that the DC conductivity is always positive .

Page 85: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . Itcannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =Nq2

m

1

Γ− iω• orσ(ω)

σ(0)=

1

1− iω/Γ

• Note that the DC conductivity is always positive .

Page 86: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . Itcannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =Nq2

m

1

Γ− iω• orσ(ω)

σ(0)=

1

1− iω/Γ

• Note that the DC conductivity is always positive .

Page 87: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . Itcannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =Nq2

m

1

Γ− iω• orσ(ω)

σ(0)=

1

1− iω/Γ

• Note that the DC conductivity is always positive .

Page 88: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . Itcannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =Nq2

m

1

Γ− iω

• orσ(ω)

σ(0)=

1

1− iω/Γ

• Note that the DC conductivity is always positive .

Page 89: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . Itcannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =Nq2

m

1

Γ− iω• orσ(ω)

σ(0)=

1

1− iω/Γ

• Note that the DC conductivity is always positive .

Page 90: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . Itcannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =Nq2

m

1

Γ− iω• orσ(ω)

σ(0)=

1

1− iω/Γ

• Note that the DC conductivity is always positive .

Page 91: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Georg Simon Ohm, German physicist, 1789-1854

Page 92: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B• the typical electron obeys

m(x + Γx + Ω2x) = q(E + x×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x = q(E − iωx×B)

• assume B = Bez• assume circularly polarized light

E = E±e± where e± = (ex + iey)/√

2

• try x = x±e±

• note e± × ez = ∓ie±

• therefore

m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

Page 93: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B

• the typical electron obeys

m(x + Γx + Ω2x) = q(E + x×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x = q(E − iωx×B)

• assume B = Bez• assume circularly polarized light

E = E±e± where e± = (ex + iey)/√

2

• try x = x±e±

• note e± × ez = ∓ie±

• therefore

m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

Page 94: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B• the typical electron obeys

m(x + Γx + Ω2x) = q(E + x×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x = q(E − iωx×B)

• assume B = Bez• assume circularly polarized light

E = E±e± where e± = (ex + iey)/√

2

• try x = x±e±

• note e± × ez = ∓ie±

• therefore

m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

Page 95: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B• the typical electron obeys

m(x + Γx + Ω2x) = q(E + x×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x = q(E − iωx×B)

• assume B = Bez• assume circularly polarized light

E = E±e± where e± = (ex + iey)/√

2

• try x = x±e±

• note e± × ez = ∓ie±

• therefore

m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

Page 96: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B• the typical electron obeys

m(x + Γx + Ω2x) = q(E + x×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x = q(E − iωx×B)

• assume B = Bez

• assume circularly polarized light

E = E±e± where e± = (ex + iey)/√

2

• try x = x±e±

• note e± × ez = ∓ie±

• therefore

m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

Page 97: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B• the typical electron obeys

m(x + Γx + Ω2x) = q(E + x×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x = q(E − iωx×B)

• assume B = Bez• assume circularly polarized light

E = E±e± where e± = (ex + iey)/√

2

• try x = x±e±

• note e± × ez = ∓ie±

• therefore

m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

Page 98: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B• the typical electron obeys

m(x + Γx + Ω2x) = q(E + x×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x = q(E − iωx×B)

• assume B = Bez• assume circularly polarized light

E = E±e± where e± = (ex + iey)/√

2

• try x = x±e±

• note e± × ez = ∓ie±

• therefore

m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

Page 99: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B• the typical electron obeys

m(x + Γx + Ω2x) = q(E + x×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x = q(E − iωx×B)

• assume B = Bez• assume circularly polarized light

E = E±e± where e± = (ex + iey)/√

2

• try x = x±e±

• note e± × ez = ∓ie±

• therefore

m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

Page 100: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B• the typical electron obeys

m(x + Γx + Ω2x) = q(E + x×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x = q(E − iωx×B)

• assume B = Bez• assume circularly polarized light

E = E±e± where e± = (ex + iey)/√

2

• try x = x±e±

• note e± × ez = ∓ie±

• therefore

m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

Page 101: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Faraday effect

• m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

• therefore

x± =qE±

m(Ω2 − iωΓ− ω2)± qωB• recall P = Nqx = ε0χE

• effect of quasi-static induction B is

χ±(ω) =Nq2

ε0m

1

Ω2 − iωΓ− ω2 ± (q/m)ωB• left and right handed polarized light sees different

susceptibility

• Faraday effect

Page 102: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Faraday effect

• m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

• therefore

x± =qE±

m(Ω2 − iωΓ− ω2)± qωB• recall P = Nqx = ε0χE

• effect of quasi-static induction B is

χ±(ω) =Nq2

ε0m

1

Ω2 − iωΓ− ω2 ± (q/m)ωB• left and right handed polarized light sees different

susceptibility

• Faraday effect

Page 103: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Faraday effect

• m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

• therefore

x± =qE±

m(Ω2 − iωΓ− ω2)± qωB

• recall P = Nqx = ε0χE

• effect of quasi-static induction B is

χ±(ω) =Nq2

ε0m

1

Ω2 − iωΓ− ω2 ± (q/m)ωB• left and right handed polarized light sees different

susceptibility

• Faraday effect

Page 104: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Faraday effect

• m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

• therefore

x± =qE±

m(Ω2 − iωΓ− ω2)± qωB• recall P = Nqx = ε0χE

• effect of quasi-static induction B is

χ±(ω) =Nq2

ε0m

1

Ω2 − iωΓ− ω2 ± (q/m)ωB• left and right handed polarized light sees different

susceptibility

• Faraday effect

Page 105: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Faraday effect

• m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

• therefore

x± =qE±

m(Ω2 − iωΓ− ω2)± qωB• recall P = Nqx = ε0χE

• effect of quasi-static induction B is

χ±(ω) =Nq2

ε0m

1

Ω2 − iωΓ− ω2 ± (q/m)ωB

• left and right handed polarized light sees differentsusceptibility

• Faraday effect

Page 106: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Faraday effect

• m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

• therefore

x± =qE±

m(Ω2 − iωΓ− ω2)± qωB• recall P = Nqx = ε0χE

• effect of quasi-static induction B is

χ±(ω) =Nq2

ε0m

1

Ω2 − iωΓ− ω2 ± (q/m)ωB• left and right handed polarized light sees different

susceptibility

• Faraday effect

Page 107: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Faraday effect

• m(−ω2 − iωΓ + Ω2)x± = q(E± ∓ ωBx±)

• therefore

x± =qE±

m(Ω2 − iωΓ− ω2)± qωB• recall P = Nqx = ε0χE

• effect of quasi-static induction B is

χ±(ω) =Nq2

ε0m

1

Ω2 − iωΓ− ω2 ± (q/m)ωB• left and right handed polarized light sees different

susceptibility

• Faraday effect

Page 108: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Michael Faraday, English physicist, 1791-1867

Page 109: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk• linear magneto-optic effect

• Faraday constant is

K(ω) =Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backwardpropagation

• optical isolator

Page 110: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk• linear magneto-optic effect

• Faraday constant is

K(ω) =Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backwardpropagation

• optical isolator

Page 111: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk

• linear magneto-optic effect

• Faraday constant is

K(ω) =Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backwardpropagation

• optical isolator

Page 112: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk• linear magneto-optic effect

• Faraday constant is

K(ω) =Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backwardpropagation

• optical isolator

Page 113: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk• linear magneto-optic effect

• Faraday constant is

K(ω) =Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backwardpropagation

• optical isolator

Page 114: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk• linear magneto-optic effect

• Faraday constant is

K(ω) =Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backwardpropagation

• optical isolator

Page 115: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk• linear magneto-optic effect

• Faraday constant is

K(ω) =Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backwardpropagation

• optical isolator

Page 116: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk• linear magneto-optic effect

• Faraday constant is

K(ω) =Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backwardpropagation

• optical isolator

Page 117: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk• linear magneto-optic effect

• Faraday constant is

K(ω) =Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backwardpropagation

• optical isolator

Page 118: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Conduction in a magnetic field

• set the spring constant mΩ2 = 0

• study AC electric field E• and static magnetic induction B• solve

m(−ω2 − iΓω)x = q(E − iωx×B)

• or

x =q

m

1

−iω

1

Γ− iωE − iωx×B

• by iteration

x = . . . E +q

m

1

Γ− iωE ×B

• Ohmic current ∝ E and Hall current ∝ E ×B

Page 119: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Conduction in a magnetic field

• set the spring constant mΩ2 = 0

• study AC electric field E• and static magnetic induction B• solve

m(−ω2 − iΓω)x = q(E − iωx×B)

• or

x =q

m

1

−iω

1

Γ− iωE − iωx×B

• by iteration

x = . . . E +q

m

1

Γ− iωE ×B

• Ohmic current ∝ E and Hall current ∝ E ×B

Page 120: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Conduction in a magnetic field

• set the spring constant mΩ2 = 0

• study AC electric field E

• and static magnetic induction B• solve

m(−ω2 − iΓω)x = q(E − iωx×B)

• or

x =q

m

1

−iω

1

Γ− iωE − iωx×B

• by iteration

x = . . . E +q

m

1

Γ− iωE ×B

• Ohmic current ∝ E and Hall current ∝ E ×B

Page 121: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Conduction in a magnetic field

• set the spring constant mΩ2 = 0

• study AC electric field E• and static magnetic induction B

• solve

m(−ω2 − iΓω)x = q(E − iωx×B)

• or

x =q

m

1

−iω

1

Γ− iωE − iωx×B

• by iteration

x = . . . E +q

m

1

Γ− iωE ×B

• Ohmic current ∝ E and Hall current ∝ E ×B

Page 122: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Conduction in a magnetic field

• set the spring constant mΩ2 = 0

• study AC electric field E• and static magnetic induction B• solve

m(−ω2 − iΓω)x = q(E − iωx×B)

• or

x =q

m

1

−iω

1

Γ− iωE − iωx×B

• by iteration

x = . . . E +q

m

1

Γ− iωE ×B

• Ohmic current ∝ E and Hall current ∝ E ×B

Page 123: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Conduction in a magnetic field

• set the spring constant mΩ2 = 0

• study AC electric field E• and static magnetic induction B• solve

m(−ω2 − iΓω)x = q(E − iωx×B)

• or

x =q

m

1

−iω

1

Γ− iωE − iωx×B

• by iteration

x = . . . E +q

m

1

Γ− iωE ×B

• Ohmic current ∝ E and Hall current ∝ E ×B

Page 124: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Conduction in a magnetic field

• set the spring constant mΩ2 = 0

• study AC electric field E• and static magnetic induction B• solve

m(−ω2 − iΓω)x = q(E − iωx×B)

• or

x =q

m

1

−iω

1

Γ− iωE − iωx×B

• by iteration

x = . . . E +q

m

1

Γ− iωE ×B

• Ohmic current ∝ E and Hall current ∝ E ×B

Page 125: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Conduction in a magnetic field

• set the spring constant mΩ2 = 0

• study AC electric field E• and static magnetic induction B• solve

m(−ω2 − iΓω)x = q(E − iωx×B)

• or

x =q

m

1

−iω

1

Γ− iωE − iωx×B

• by iteration

x = . . . E +q

m

1

Γ− iωE ×B

• Ohmic current ∝ E and Hall current ∝ E ×B

Page 126: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect, schematilly

Page 127: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 128: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 129: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 130: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 131: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 132: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 133: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B

• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 134: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 135: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 136: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Hall effect

• Hall current usually forbidden by boundary conditions

• Hall field

EH = − q

m

1

Γ− iωE ×B

• replace E by E + EH

• EH ×B can be neglected

• current J(ω) = σ(ω)E(ω) as usual

• additional Hall field EH(ω) = R(ω)J(ω)×B• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes

Page 137: The Drude Model - uni-osnabrueck.de · The Drude Model Peter Hertel Overview Model Dielectric medium Permittivity of metals Electrical conductors Faraday e ect Hall e ect Paul Drude,

The DrudeModel

Peter Hertel

Overview

Model

Dielectricmedium

Permittivity ofmetals

Electricalconductors

Faraday effect

Hall effect

Edwin Hall, US-American physicist, 1855-1938