lrfd beam column design

265
PROJECT SECTION 1 CODE TITLE DATE 6/9/2022 LRFD SPECS. FILE LRFD_beam_column_design.xls TIME 11:35 PM SINGLE ANGLE (EQUAL LEGS ONE IN COMPRESSION) SECTION BEAM COLUMN DESIGN DESCRIPTION -Check design combined compression and bending strength of single angle member with equal legs to AISC LRFD 3rd Ed. -Material assumed to conform to ASTM A36 -Refer to LRFD Specifications for Single Angles Chapter 16.3 -Angle leg is assumed to be in compression INPUT PARAMETERS -Factored Maximum Moment about x-x Mux = = 108.5 [kp-ft] 145 [kN-m] -Factored Maximum Moment about y-y Muy = = 109.5 [kp-ft] 146 [kN-m] -Factored Axial Load Pu = = 800 [kp] 3556 [kN] -Member Unbraced Length L = = 50.0 [in] 1270 [mm] -Member Size Des = = L8X8X9/16 [] -Angle Separation As = = 0.375 [in] 10 [mm] -Table Row row = Match(Des,section,0) = 389 [] BOUNDARY CONDITIONS -unbraced length factor Kx = = 1.0 [] 1.0 [] -unbraced length factor Ky = = 1.0 [] 1.0 [] -unbraced length factor Kz = = 1.0 [] 1.0 [] MATERIAL -Yield strength Fy = = 36 [ksi] 248 [MPa] -Shear Modulus Gs = 11200 [ksi] 77241 [MPa] -Elastic Modulus E = = 29000 [ksi] 200000 [MPa] SECTION PROPERTIES -Member Designation = L8X8X9/16 [] L203X203X14.3 [] -Gross Area Ag = index(table,row,4) = 8.77 [in^2] 5658.05 [mm^2] -Radius of Gyration about Z RZ = index(table,row,39) = 1.58 [in] 40.13 [mm] -Radius of Gyration about Y RY = index(table,row,38) = 2.49 [in] 63.25 [mm] -Radius of Gyration about X RX = index(table,row,34) = 2.49 [in] 63.25 [mm] -Polar Radius of Gyration about shear centre ro = index(table,row,47) = 4.43 [in] 112.5 [mm] -Moment of Inertia about x-x Ix = index(table,row,31) = 54.2 [in^4] 22559743 [mm^4] -Thickness tk = index(table,row,13) = 0.563 [in] 14.29 [mm] - Leg 1 ss = index(table,row,9) = 8.0 [in] 203.20 [mm] - Leg 2 ll = index(table,row,5) = 8.0 [in] 203.20 [mm] -Moment of Inertia about y-y Iy = index(table,row,35) = 54.20 [in^4] 22559743 [mm^4] -Torsional Constant J = index(table,row,40) = 0.96 [in^4] 399998 [mm^4] -Elastic Modulus about x-x Sx = index(table,row,33) = 9.3 [in^3] -Elastic Modulus about y-y Sy = index(table,row,37) = 9.3 [in^3] CALCULATIONS SLENDERNES -Slenderness about x-x SLx = Kx*L/RX = 20.08 [] 20.08 [] -Slenderness about z-z SLz = Kz*L/RZ = 31.65 [] 31.65 [] -Slenderness about y-y SLy = Ky*L/RY = 20.08 [] 20.08 [] -Check Slenderness Chk1 = = OK [] [] AXIAL COMPRESSION -Limiting Slenderness Parameter = 0.45*sqrt(E/Fy) = 12.77 [] 12.77 [] -Check if section elements comply with LRFD E2 Sld = = Does not Comply (Table 1-14) -Buckling axis = X-X Buckling -Column Slenderness Parameter = = 0.3549 [] 0.355 [] (E2-4) -LOCAL BUCKLING -Critical Stress -Local Buckling Strength Fcrl = = 68.440 [ksi] 472 [MPa] -Check for Elastic Buckling Pn = 0.9*Fcrl*Ag = 540.2 [kp] 2401 [kN] if(Pu>Pn,"NOT OK","OK") = NOT OK FLEXURE LOCAL BUCKLING MOMENT -Reduction Factor for local buckling Qs = (0.534*E)/(Fy*(ll/tk)^2) = 2.127 [] 2 [] (4-3c) -Factored Nominal moment about x-x Mnx1 = = 37.79 [kp-ft] 50.382 [kN-m] (5-1a,b,c) -Factored Nominal moment about y-y Mny1 = = 37.79 [kp-ft] 50.382 [kN-m] (5-1a,b,c) LATERAL TORSIONAL BUCKLING -Bending Coefficient Cb = = 1.00 [] -Elastic Lateral Torsional Buckling Moment Mobx = = 106.83 [kp-ft] 142.439447510744 [kN-m] (5-4a,b) -Elastic Lateral Torsional Buckling Moment Moby = = 106.83 [kp-ft] 142.439447510744 [kN-m] (5-4a,b) -Factored Lateral Torsional Buckling Moment about Mnx2 = = 91.06 [kp-ft] 121.42 [kN-m] -Factored Lateral Torsional Buckling Moment about Mny2 = = 91.06 [kp-ft] 121.42 [kN-m] -Bending Strength about x-x Mnx = min(Mnx1,Mnx2) = 37.79 [kp-ft] 50.38 [kN-m] -Bending Strength about y-y Mny = min(Mny1,Mny2) = 37.79 [kp-ft] 50.38 [kN-m] -Final Check Chk2 = = 6.61 (H1-1a,b) if(Chk2<=1.0,"OK","NOT OK") = NOT OK if(max(SLx, Sly,SLz)>200,"NOT OK","OK") lr if(Qs=1,"Complies with LRFD E2","Does not Comply") if(SLy>SLx, "Y-Y Buckling","X- X Buckling") lc max(SLx,SLy,SLz)*(1/ pi())*sqrt(Fy/E) (Qs*0.658^(Qs*lc^2)*Fy), (0.877/lc^2)*Fy) Fy),1.5*Fy*Sx,if(and(ll/ tk>0.54*sqrt(E/Fy),ll/ tk<=0.91*sqrt(E/Fy))=true, Fy*Sx*(1.5-0.93*((ll/tk)/(0.54 *sqrt(E/Fy))- 1)),1.34*Qs*Fy*Sx)) Fy),1.5*Fy*Sy,if(and(ss/ tk>0.54*sqrt(E/Fy),ss/ tk<=0.91*sqrt(E/Fy))=true, Fy*Sy*(1.5-0.93*((ss/tk)/(0.54 *sqrt(E/Fy))- 1)),1.34*Qs*Fy*Sy)) (L^2))*(sqrt(1+0.78*(L*tk/ ll^2)^2)-1) (L^2))*(sqrt(1+0.78*(L*tk/ ss^2)^2)-1) (0.8*Sx*Fy))*Mobx,min((1.92- 1.17*sqrt(0.8*Sx*Fy/ Mobx))*0.8*Sx*Fy,1.5*0.8*Sx*Fy )) (0.8*Sy*Fy))*Moby,min((1.92- 1.17*sqrt(0.8*Sy*Fy/ Mobx))*0.8*Sy*Fy,1.5*0.8*Sy*Fy )) if((Pu/Pn)>=0.2,((Pu/Pn) +(8/9)*(Mux/Mnx+Muy/Mny)), (Pu/(2*Pn)+(Mux/Mnx+Muy/Mny)))

Upload: christian-ft

Post on 15-Sep-2015

56 views

Category:

Documents


18 download

DESCRIPTION

asdadasdsad

TRANSCRIPT

Single Angle (Eq. Legs Comp )PROJECTSECTION1CODETITLEDATE11/6/02LRFD SPECS.FILELRFD_beam_column_design.xlsTIME3:37 PMSINGLE ANGLE (EQUAL LEGS ONE IN COMPRESSION) SECTION BEAM COLUMN DESIGNDESCRIPTION-Check design combined compression and bending strength of single angle member with equal legs to AISC LRFD 3rd Ed.-Material assumed to conform to ASTM A36-Refer to LRFD Specifications for Single Angles Chapter 16.3-Angle leg is assumed to be in compressionINPUT PARAMETERS-Factored Maximum Moment about x-xMux==108.5[kp-ft]145[kN-m]-Factored Maximum Moment about y-yMuy==109.5[kp-ft]146[kN-m]-Factored Axial LoadPu==800[kp]3556[kN]-Member Unbraced LengthL==50.0[in]1270[mm]-Member SizeDes==L8X8X9/16[]-Angle SeparationAs==0.375[in]10[mm]-Table Rowrow=Match(Des,section,0)=389[]BOUNDARY CONDITIONS-unbraced length factorKx==1.0[]1.0[]-unbraced length factorKy==1.0[]1.0[]-unbraced length factorKz==1.0[]1.0[]MATERIAL-Yield strengthFy==36[ksi]248[MPa]-Shear ModulusGs=11200[ksi]77241[MPa]-Elastic ModulusE==29000[ksi]200000[MPa]SECTION PROPERTIES-Member Designation=L8X8X9/16[]L203X203X14.3[]-Gross AreaAg=index(table,row,4)=8.77[in^2]5658.05[mm^2]-Radius of Gyration about ZRZ=index(table,row,39)=1.58[in]40.13[mm]-Radius of Gyration about YRY=index(table,row,38)=2.49[in]63.25[mm]-Radius of Gyration about XRX=index(table,row,34)=2.49[in]63.25[mm]-Polar Radius of Gyration about shear centrero=index(table,row,47)=4.43[in]112.5[mm]-Moment of Inertia about x-xIx=index(table,row,31)=54.2[in^4]22559743[mm^4]-Thicknesstk=index(table,row,13)=0.563[in]14.29[mm]- Leg 1ss=index(table,row,9)=8.0[in]203.20[mm]- Leg 2ll=index(table,row,5)=8.0[in]203.20[mm]-Moment of Inertia about y-yIy=index(table,row,35)=54.20[in^4]22559743[mm^4]-Torsional ConstantJ=index(table,row,40)=0.96[in^4]399998[mm^4]-Elastic Modulus about x-xSx=index(table,row,33)=9.3[in^3]-Elastic Modulus about y-ySy=index(table,row,37)=9.3[in^3]CALCULATIONSSLENDERNES-Slenderness about x-xSLx=Kx*L/RX=20.08[]20.08[]-Slenderness about z-zSLz=Kz*L/RZ=31.65[]31.65[]-Slenderness about y-ySLy=Ky*L/RY=20.08[]20.08[]-Check SlendernessChk1=if(max(SLx, Sly,SLz)>200,"NOT OK","OK")=OK[][]AXIAL COMPRESSION-Limiting Slenderness Parameterlr=0.45*sqrt(E/Fy)=12.77[]12.77[]-Check if section elements comply with LRFD E2Sld=if(Qs=1,"Complies with LRFD E2","Does not Comply")=Does not Comply(Table 1-14)-Buckling axisif(SLy>SLx, "Y-Y Buckling","X-X Buckling")=X-X Buckling-Column Slenderness Parameterlc=max(SLx,SLy,SLz)*(1/pi())*sqrt(Fy/E)=0.3549[]0.355[](E2-4)-LOCAL BUCKLING-Critical Stress-Local Buckling StrengthFcrl=if(lc*sqrt(Qs)Pn,"NOT OK","OK")=NOT OKFLEXURELOCAL BUCKLING MOMENT-Reduction Factor for local bucklingQs=(0.534*E)/(Fy*(ll/tk)^2)=2.127[]2[](4-3c)-Factored Nominal moment about x-xMnx1=(1/12)*0.9*if(ll/tk0.54*sqrt(E/Fy),ll/tk