lrfd design spreadsheet

10
Tensile Rupture (Sections D2 & J4.1b) P n = A e F u = A n UF u F u = 58ksi A g = 4.5in 2 t pl = 0.5in # members 1 d b = 0.75in Connecting Element? N (Y or N) Net Area Determination failure path #1 s g s 2 /4g Total width tpl Area (in) (in) (in) (in) (in 2 ) width segment 1 0.000 1.500 0.000 1.500 0.500 0.750 width segment 2 0.000 3.000 0.000 3.000 0.500 1.500 width segment 3 0.000 3.000 0.000 3.000 0.500 1.500 width segment 4 0.000 1.500 0.000 1.500 0.500 0.750 hole 1 -0.875 0.500 -0.438 hole 2 -0.875 0.500 -0.438 hole 3 0.000 0.500 0.000 Net Area 3.625 failure path #2 s g s 2 /4g Total width tpl Area (in) (in) (in) (in) (in 2 ) width segment 1 0.000 1.500 0.000 1.500 0.500 0.750 width segment 2 3.000 3.000 0.750 3.750 0.500 1.875 width segment 3 3.000 3.000 0.750 3.750 0.500 1.875 width segment 4 0.000 1.500 0.000 1.500 0.500 0.750 hole 1 -0.875 0.500 -0.438

Upload: wgao2010

Post on 24-Aug-2014

111 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lrfd Design Spreadsheet

Tensile Rupture (Sections D2 & J4.1b) Pn = AeFu = AnUFu                          

 Fu = 58ksi     Ag = 4.5in2     tpl = 0.5in    # members 1     

 db = 0.75in    Connecting Element? N (Y or N)    

         Net Area Determination               failure path #1    

       s g s2/4g Total width tpl Area       (in) (in)   (in) (in) (in2)  width segment 1 0.000 1.500 0.000 1.500 0.500 0.750  width segment 2 0.000 3.000 0.000 3.000 0.500 1.500  width segment 3 0.000 3.000 0.000 3.000 0.500 1.500  width segment 4 0.000 1.500 0.000 1.500 0.500 0.750  hole 1         -0.875 0.500 -0.438  hole 2         -0.875 0.500 -0.438  hole 3         0.000 0.500 0.000  Net Area             3.625                   failure path #2            

       s g s2/4g Total width tpl Area       (in) (in)   (in) (in) (in2)  width segment 1 0.000 1.500 0.000 1.500 0.500 0.750  width segment 2 3.000 3.000 0.750 3.750 0.500 1.875  width segment 3 3.000 3.000 0.750 3.750 0.500 1.875  width segment 4 0.000 1.500 0.000 1.500 0.500 0.750  hole 1         -0.875 0.500 -0.438  hole 2         -0.875 0.500 -0.438  hole 3         -0.875 0.500 -0.438  Net Area             3.938                 

 0.85Ag =  3.825in2                             

 Controlling An =  3.625in2            U = 1.000           

   Ae = 3.625in2                           

 Pn = 210.3kips                             Determine Capacity              LRFD       ASD        

 t = 0.75    t = 2     

Page 2: Lrfd Design Spreadsheet

 t Pn = 158kips   Pn / t = 105kips    CLF 1.40    CLF 0.90     

 Ps,eq = 112.6kips   Ps,eq = 116.8kips                     Check Capacity              LRFD       ASD        

 t = 0.75    t = 2      t Pn = 158kips   Pn / t = 105kips     Pu 50.00kips   Pa 35.00kips     Pu/tPn = 31.7%kips Pa / (Pn / t ) = 33.3%kips      Okay       Okay      

Tensile Yielding (Sections D2 & J4.1a) Pn = AgFy                 

  Ag 2in2          Fy = 50ksi                         Pn = 100kips        

             IF you need to determine capacity:  LRFD       ASD    

  t = 0.9    t = 1.67   t Pn = 90kips   Pn / t = 60kips

CLF 1.40    CLF 0.90   Ps,eq = 64.3kips   Ps,eq = 66.5kips

             IF you need to check capacity:    LRFD       ASD    

  t = 0.9    t = 1.67   t Pn = 90kips   Pn / t = 60kips  Pu 50.00kips   Pa 35.00kips  Pu/tPn = 55.6%kips   Pa / (Pn / t ) = 58.5%kips

  Okay       Okay  

Bolt Bearing (J3.10)                             

  deformation at bolt hole IS a design consideration:  Rn = min[1.2LctFu, 2.4dtFu]  deformation at bolt hole IS NOT a design consideration:  Rn = min[1.5LctFu, 3.0dtFu]  long slotted holes perpendicular to force:  Rn = min[1.0LctFu, 2.0dtFu]

               Deformation at the bolt hole is not a design consideration    Use Equation J3-6b                           

  tpl = 0.5in End dist 1.5in      db = 0.75in Lc = 1.0625in    

Page 3: Lrfd Design Spreadsheet

  Fu = 65ksi num bolts 12bolts/connection                     Tear Bearing Use Use        Out Deformation            (k/bolt) (k/bolt) (k/bolt) (k)    

    Fu factor 1.5 3.0            Rn 51.8 73.1 51.8 621.6    

                 Controlling Rn = 621.6k        

               IF you need to determine capacity:  LRFD       ASD      

  t = 0.75    t = 2     t Pn = 466kips   Pn / t = 311kips  

CLF 1.40    CLF 0.90     Ps,eq = 333.0kips   Ps,eq = 345.3kips  

               IF you need to check capacity:  LRFD       ASD      

  t = 0.75    t = 2     t Pn = 466kips   Pn / t = 311kips    Pu 50.00kips   Pa 50.00kips    Pu/tPn = 10.7%kips Pa / (Pn / t ) = 16.1%kips  

  Okay       Okay

Block Shear (Section J4.3)   Rn = min[0.6FuAnv + UbsFuAnt, 0.6FyAgv + UbsFuAnt]       Fy = 36ksi  Fu = 58ksi  tpl = 1in  db = 0.75in

                                                            Failure Path #1 gross path number net path          length holes/path length # paths Area      (in)   (in)   (in^2)  

    Agv 10.500 0.000 10.500 2.000 21.000      Anv1 10.500 3.500 7.438 1.000 7.438  

Page 4: Lrfd Design Spreadsheet

    Anv2 10.500 3.500 7.438 1.000 5.578      Ant 6.000 1.000 5.125 1.000 5.125  

                   Ubs 1.0          

                   Shear Shear Use          Fracture Yield            (k) (k) (k)      

    Rn 750.2 750.9 750.2                     Failure Path #2 gross path number net path          length holes/path length # paths Area      (in)   (in)   (in^2)  

    Agv 10.500 0.000 10.500 1.000 10.500      Anv 10.500 3.500 7.438 1.000 7.438      Ant 7.500 1.500 6.188 1.000 6.188  

                   Ubs 0.5          

                   Shear Shear Use          Fracture Yield            (k) (k) (k)      

    Rn 438.3 406.2 406.2                     

  Controlling Rn = 406.2k                       IF you need to determine capacity:  LRFD       ASD      

  t = 0.75    t = 2     t Pn = 305kips   Pn / t = 203kips  

CLF 1.40    CLF 0.90     Ps,eq = 217.6kips   Ps,eq = 225.7kips  

               If you need to check capacity:  LRFD       ASD      

  t = 0.75    t = 2     t Pn = 305kips   Pn / t = 203kips    Pu 50.00kips   Pa 50.00kips    Pu/tPn = 16.4%kips Pa / (Pn / t ) = 24.6%kips  

  Okay       Okay  

Page 5: Lrfd Design Spreadsheet

Tension Limit State SummaryLast Revised:

Serviceability Limit States:

Limit State Specification Limit

Slenderness D1L/r < 300

orr > L/300

Strength Limit States:

All strength limit states take the form:

LRFD ASDPu < tPn Pa < Pn/t

Req'd Pn = Pu/t < Pn Req'd Pn = Pa t < Pn

Pu / (tPn)  < 1.00 Pa / (Pn/t) < 1.00

Rn (nominal resistance) is often used in place of Pn (nominal axial strength) in the equations above.

Limit State

Specification Nominal Capacity

Typical Design

Variables

Tensile Yielding D2(a)/J4.1(a)

Member Capacity:

FyAg

Stl Type, Section 0.90 1.67

Tensile Rupture D2(b)/J4.1(b)

Member Capacity:

FuAe

Stl Type, Section, Bolt size,

Bolt Layout, Section

modifications

0.75 2.00

Block Shear

J4.3 Capacity per connection:

min(0.6FuAnv +

Stl Type, Section, Bolt Size,

Bolt Layout,

0.75 2.00

Page 6: Lrfd Design Spreadsheet

UbsFuAnt, 0.6FyAgv + UbsFuAnt)

Section modificatio

ns

Bolt Bearing J3.10

Capacity per bolt hole:

Std Holes, Defl an issue:

min(1.2 Lct Fu, 2.4 dt Fu)

Std Holes, Defl not issue:

min(1.5 Lct Fu, 3.0 dt Fu)

Stl Type, Section, Bolt Size,

Bolt Layout, Section

modifications

0.75 2.00

Notes:

1. See SCM specification D3 for requirements for computing An, and Ae.

2. SCM specification J4.1(b) places an upper limit of 0.85Ag on An for connecting elements.

3. Multiple failure paths may need to be considered for Tensile Rupture and Block Shear.

4. The least bolt bearing value in a connection controls the bolt bearing strength of the member.

Bolt SummaryLast Revised:

Strength Limit States:

All strength limit states take the form:

LRFD ASDRu < tRn Ra < Rn/t

Req'd Rn = Ru/t < Rn Req'd Rn = Ra t < Rn

Ru / (tRn)  < 1.00 Ra / (Rn/t) < 1.00

Which is:  FORCE on a bolt < STRENGTH of a bolt

Page 7: Lrfd Design Spreadsheet

The STRENGTH of a bolt is computed by:

Simple Tension or Shear

Limit State

Specification Nominal Capacity

Typical Design

Variables

Tensile Rupture J3.6 Single Bolt Capacity:

FntAb

Bolt Material, Bolt Size

0.75 2.00

Shear Rupture J3.6 Single Shear Plane:

FnvAb

Bolt Material, Bolt Size

0.75 2.00

Slip Capacity J3.8 Single Shear Plane:

DuhscTb

Bolt Material, Bolt Size

0.75 2.00

Combined Shear and Tension:

Bearing Type Fasteners (-X or -N bolts): 

Modify the nominal tensile rupture capacity for the presence of shear (SCM J3.7)

Apply the shear rupture limit state without modification

Limit State

Specification Nominal Capacity, Rn

Typical Design

Variables

Tensile Rupture J3.7 Single Bolt Capacity:

F'ntAb

Bolt Material, Bolt Size

0.75 2.00

Shear Rupture J3.6 Single Shear Plane:

FnvAb

Bolt Material, Bolt Size

0.75 2.00

Slip Critical Type Fasteners (-SC bolts): 

Modify the nominal slip capacity for the presence of tension (SCM J3.9)

Apply the tensile rupture limit state without modification

Page 8: Lrfd Design Spreadsheet

Limit State

Specification Nominal Capacity, Rn

Typical Design

Variables

Tensile Rupture J3.6 Single Bolt Capacity:

FntAb

Bolt Material, Bolt Size

0.75 2.00

Slip Capacity J3.9 Single Shear Plane:

DuhscTbks

Bolt Material, Bolt Size

0.75 2.00

The FORCE on a bolt is computed by:

Forces Concentric with the Bolt Group at the Faying Surface:

All bolts are assumed to be equally stressed in tension. All shear planes are assumed to be equally stressed in shear.

Eccentricity in the Plane of the Faying Surface:

Elastic Vector Method:  See SCM pg 7-8.  Computes shear in the bolts.  Direct method that is conservative and has an inconsistent factor of safety.

Instantaneous Center of Rotation Method:  See SCM pg 7-6.  Computes the relationship between the applied load and the shear load in the worst case bolt.  Iterative method that is more consistent with test results and not as conservative as the Elastic Method.

Eccentricity out of the Plane of the Faying Surface:

Case I Method:  See SCM pg 7-10.  Basic mechanics (Mc/I) using the compression contact area to find the tension in the worst case bolt.  Finding Ix may be iterative.  If the shear is concentric with the bolt group it is equally divided among the shear planes otherwise use either the elastic vector or IC method to find the bolt shear forces.

Case II Method:  See SCM pg 7-12.  Uses basic statics (Applied Moment = Pe = rat n' dm= Internal Moment) without considering the contact area to find the tension in the worst case bolt. If the shear is concentric with the bolt group it is equally divided among the shear planes otherwise use either the elastic vector or IC method to find the bolt shear forces.

Page 9: Lrfd Design Spreadsheet