luz linear luz circular polarizada - usp - ifsc...– equilibrium intermediates – kinetics –...

26
Luz polarizada Luz linear polarizada Luz circular polarizada

Upload: others

Post on 19-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Luz polarizada

Luz linear

polarizada

Luz circular

polarizada

Page 2: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 3: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 4: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 5: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 6: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 7: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 8: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

φ λ= −180l n nL R( ) / graus

θ π= −2 303 180 4, ( ) /A AL R graus

Atividade óptica

• Mudança na velocidade de propagação das duas componentes: dispersãorotatória óptica (ORD) e birrefringência• Diferença na absorção das mesmas: dicroísmo circular e elipticidade.

A rotação óptica como função do comprimento de onda é chamada de dispersão rotatória óptica (ORD)

Page 9: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Dicroísmo circular e birrefringência

Page 10: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 11: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Interações: • pelas mudanças nas velocidades de propagação dos raios através da amostra que tem relação com o índice de refração do meio = Dispersão Óptica Rotatória (ORD);

•pela diferença da intensidade de absorção dos raios através da amostra = Dicroísmo Circular (CD).

Lembrando: A = ε C lCD seria ∆A = Al - Ar = εl C I - εr C I =∆ ε C I ⇒⇒⇒⇒ CD= ∆ε =εl - εr

Page 12: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

clA ε=

( ) Acl ∆=∆ /1ε

Onde ∆ε é definido como εl - εr

( ) ( ) ( ) ( )rlrl EEEEtgrad +−=≈ θθ

+

= expexpexpexp // rr AAAA

Desta forma, temos:

+

= 2exp2exp2exp2exp // rr AAAA

Expandindo as exponenciais e convertendo em graus, temos:

( ) πθ 4.10ln.180 Agraus ∆=

A∆= 98,32θ

Esta elipticidade é proporcional ao CD de forma que :

Page 13: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Por razões históricas, a concentração era medida em g/100 cm3, a elipticidade molarera medida em grau.cm2.g-1.

Para corrigir estas unidades temos que multiplicar a equação anterior por 100.

e

[ ] clθθ .100=

[ ] ( )clA∆= .98,32.100θ

[ ] εθ ∆= .3298 units: deg cm2 dmole -1

Page 14: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Cristal pizoelétrico

Esquema básico de um espectropolarímetro

Page 15: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 16: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 17: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

ASSIMETRIAS QUE PODEM LEVAR À ATIVIDADE ÓPTICANA ESTRUTURA DE PROTEÍNAS

•os aminoácidos (com exceção da Glicina) são compostos assimétricos

•estrutura primária é inerentemente assimétrica devido as ligações peptídicas que são opticamente ativas:

•transições eletrônicas no grupo amida:•transições eletrônicas no grupo amida:

•n-π* (210 - 230 nm)•π-π* (180 - 200 nm)

Page 18: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 19: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary
Page 20: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Secondary Structure & CDα-helix β-sheet turn

12

3 4

ββββ-sheet

αααα-helix

other/PII

turns

PolyProII (PII)

Page 21: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

CD Spectrum →→→→ Structure Linear relation Cλ = Σ fk Bkλ

Cλ: protein CD spectrum; Bkλ: component secondary structure spectra; fk is the fraction of the secondary structure k.

Determination of Bkλ model polypeptides or set of proteins.

Curve Assumptions

1. CD contributions from individual secondary structures are additive

2. The ensemble-averaged solution structure and the time-averaged solid-state structure are equivalent

3. CD contributions from non-peptide chromophores do not influence the analysis

4. The effect of the tertiary structure on CD is negligible

5. Effects of the geometric variability of the secondary structures are not explicitly considered

Curve Fitting

Page 22: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Secondary Structure - Structural Decomposition

α-helixA

β-sheetB

TurnsT

C147

N1

X-ray Structure

fα 0.32

fβ 0.22

fT 0.26

Page 23: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Methods for Protein CD Analysis

AlgorithmsVariable Selection

Locally Linearized Model

Self-consistent Method

Minimal Basis

CDProSoftware Package

MethodsLeast Squares Minimization

Ridge Regression

Singular Value Decomposition

Principal Component/Factor Analysis

Neural Networks

Convex Constraint Analysis

ProgramsSelcon3 CDsstr Contin

varselc, CDNN, K2D, CCA

Page 24: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Protein Structure & CD Spectrum

αβαβαβαβ

αααααααα ββββββββα/βα/βα/βα/β α+βα+βα+βα+β

Page 25: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

Summary

Characteristic CD Spectra of Protein Secondary Structures

Different spectral regions give different structural information

The information content depends on the chromophore

Structure ���� Spectrum Spectrum ���� Structure

Chromophores Database of Structure/Spectra

Theoretical Methods Mathematical AnalysisTheoretical Methods Mathematical Analysis

Protein CD analysis

Secondary Structure Fractions

Number of α and β segments

Tertiary Structure Class

Page 26: Luz linear Luz circular polarizada - USP - IFSC...– Equilibrium intermediates – Kinetics – Stability of short helices, β-strands • Comparison of mutant and wild-type – Secondary

APPLICATIONS OF CD TO PROTEINS

• Protein structure and function– Secondary structure analysis– Monitoring conformational change– Ligand binding

• Protein folding• Protein folding– Equilibrium intermediates– Kinetics– Stability of short helices, β-strands

• Comparison of mutant and wild-type– Secondary structure – Stability