ma1302 engineering mathematics i -...

113
MA1302 Engineering Mathematics I Dr. G.H.J. Lanel Integration Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 1 / 44

Upload: others

Post on 01-Nov-2019

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

MA1302 Engineering Mathematics I

Dr. G.H.J. Lanel

Integration

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 1 / 44

Page 2: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Outline

Outline

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 2 / 44

Page 3: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Outline

1 Antiderivatives

2 Definite Integral

3 Definite Integral and Area

4 Properties of the Definite Integral

5 Evaluating Definite Integrals (Approximating by Numerical Methods)

6 The Fundamental Theorem of Calculus

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 3 / 44

Page 4: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

A function F is called an antiderivative of f ifd(F (x))

dx= f (x)

F is also known as an indefinite integral of f and denoted by

F (x) =

∫f (x)dx

.

If F is an antiderivative of f then the most general antiderivative off if F (x) + c where c is an arbitrary constant.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 4 / 44

Page 5: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

A function F is called an antiderivative of f ifd(F (x))

dx= f (x)

F is also known as an indefinite integral of f and denoted by

F (x) =

∫f (x)dx

.

If F is an antiderivative of f then the most general antiderivative off if F (x) + c where c is an arbitrary constant.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 4 / 44

Page 6: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

A function F is called an antiderivative of f ifd(F (x))

dx= f (x)

F is also known as an indefinite integral of f and denoted by

F (x) =

∫f (x)dx

.

If F is an antiderivative of f then the most general antiderivative off if F (x) + c where c is an arbitrary constant.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 4 / 44

Page 7: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

A function F is called an antiderivative of f ifd(F (x))

dx= f (x)

F is also known as an indefinite integral of f and denoted by

F (x) =

∫f (x)dx

.

If F is an antiderivative of f then the most general antiderivative off if F (x) + c where c is an arbitrary constant.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 4 / 44

Page 8: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Common antiderivatives as follows;

f(x) F(x)cf (x) cF (x)(F ′ = f )

f (x) + g(x) F (x) + G(x)(F ′ = f ,G′ = g)

xn xn+1

n + 1+ c, (n 6= −1)

1x

ln |x |+ c

ex ex + c

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 5 / 44

Page 9: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Common antiderivatives as follows;

f(x) F(x)cf (x) cF (x)(F ′ = f )

f (x) + g(x) F (x) + G(x)(F ′ = f ,G′ = g)

xn xn+1

n + 1+ c, (n 6= −1)

1x

ln |x |+ c

ex ex + c

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 5 / 44

Page 10: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

f(x) F(x)sin(x) − cos(x) + ccos(x) sin(x) + csec2(x) tan(x) + c

1√1− x2

sin−1(x) + c

11 + x2 tan−1(x) + c

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 6 / 44

Page 11: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

E.g.01 f (x) = 2Solution: ∫

f (x)dx =

∫2dx

F (x) = 2x + c

c is an arbitrary constantBy differentiating,

dF (x)

dx=

d(2x + c)

dx

f (x) = 2Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 7 / 44

Page 12: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

E.g.01 f (x) = 2Solution: ∫

f (x)dx =

∫2dx

F (x) = 2x + c

c is an arbitrary constantBy differentiating,

dF (x)

dx=

d(2x + c)

dx

f (x) = 2Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 7 / 44

Page 13: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

E.g.01 f (x) = 2Solution: ∫

f (x)dx =

∫2dx

F (x) = 2x + c

c is an arbitrary constantBy differentiating,

dF (x)

dx=

d(2x + c)

dx

f (x) = 2Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 7 / 44

Page 14: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

E.g.01 f (x) = 2Solution: ∫

f (x)dx =

∫2dx

F (x) = 2x + c

c is an arbitrary constantBy differentiating,

dF (x)

dx=

d(2x + c)

dx

f (x) = 2Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 7 / 44

Page 15: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

E.g.01 f (x) = 2Solution: ∫

f (x)dx =

∫2dx

F (x) = 2x + c

c is an arbitrary constantBy differentiating,

dF (x)

dx=

d(2x + c)

dx

f (x) = 2Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 7 / 44

Page 16: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

E.g.01 f (x) = 2Solution: ∫

f (x)dx =

∫2dx

F (x) = 2x + c

c is an arbitrary constantBy differentiating,

dF (x)

dx=

d(2x + c)

dx

f (x) = 2Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 7 / 44

Page 17: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

E.g.01 f (x) = 2Solution: ∫

f (x)dx =

∫2dx

F (x) = 2x + c

c is an arbitrary constantBy differentiating,

dF (x)

dx=

d(2x + c)

dx

f (x) = 2Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 7 / 44

Page 18: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

E.g.01 f (x) = 2Solution: ∫

f (x)dx =

∫2dx

F (x) = 2x + c

c is an arbitrary constantBy differentiating,

dF (x)

dx=

d(2x + c)

dx

f (x) = 2Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 7 / 44

Page 19: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

1 f (x) = 3x + 5

2 f (x) = x2 − x−2

3 f (x) = 3x35 + 4x

−25

4 f (x) = cos(2x)

5 f (x) = 2e3x

6 f (x) = sec2 3x − (1− x2)−1

7 f (x) = 2x−1 − 3 sin(4x)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 8 / 44

Page 20: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

1 f (x) = 3x + 5

2 f (x) = x2 − x−2

3 f (x) = 3x35 + 4x

−25

4 f (x) = cos(2x)

5 f (x) = 2e3x

6 f (x) = sec2 3x − (1− x2)−1

7 f (x) = 2x−1 − 3 sin(4x)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 8 / 44

Page 21: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

1 f (x) = 3x + 5

2 f (x) = x2 − x−2

3 f (x) = 3x35 + 4x

−25

4 f (x) = cos(2x)

5 f (x) = 2e3x

6 f (x) = sec2 3x − (1− x2)−1

7 f (x) = 2x−1 − 3 sin(4x)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 8 / 44

Page 22: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

1 f (x) = 3x + 5

2 f (x) = x2 − x−2

3 f (x) = 3x35 + 4x

−25

4 f (x) = cos(2x)

5 f (x) = 2e3x

6 f (x) = sec2 3x − (1− x2)−1

7 f (x) = 2x−1 − 3 sin(4x)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 8 / 44

Page 23: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

1 f (x) = 3x + 5

2 f (x) = x2 − x−2

3 f (x) = 3x35 + 4x

−25

4 f (x) = cos(2x)

5 f (x) = 2e3x

6 f (x) = sec2 3x − (1− x2)−1

7 f (x) = 2x−1 − 3 sin(4x)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 8 / 44

Page 24: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

1 f (x) = 3x + 5

2 f (x) = x2 − x−2

3 f (x) = 3x35 + 4x

−25

4 f (x) = cos(2x)

5 f (x) = 2e3x

6 f (x) = sec2 3x − (1− x2)−1

7 f (x) = 2x−1 − 3 sin(4x)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 8 / 44

Page 25: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

1 f (x) = 3x + 5

2 f (x) = x2 − x−2

3 f (x) = 3x35 + 4x

−25

4 f (x) = cos(2x)

5 f (x) = 2e3x

6 f (x) = sec2 3x − (1− x2)−1

7 f (x) = 2x−1 − 3 sin(4x)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 8 / 44

Page 26: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 01

Find the most general antiderivative of each of the following functions.(Check your answer by differentiation.)

1 f (x) = 3x + 5

2 f (x) = x2 − x−2

3 f (x) = 3x35 + 4x

−25

4 f (x) = cos(2x)

5 f (x) = 2e3x

6 f (x) = sec2 3x − (1− x2)−1

7 f (x) = 2x−1 − 3 sin(4x)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 8 / 44

Page 27: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 02

Find f if, f ′′(x) = 2x + 3Solution:

f ′′(x)dx = 2x + 3

f ′(x) =

∫(2x + 3)dx

f ′(x) = x2 + 3x + c

c is an arbitrary constant

f (x) =

∫(x2 + 3x + c)dx

f (x) =x3

3+ 3

x2

2+ cx + d

, where d is an arbitrary constant.Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 9 / 44

Page 28: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 02

Find f if, f ′′(x) = 2x + 3Solution:

f ′′(x)dx = 2x + 3

f ′(x) =

∫(2x + 3)dx

f ′(x) = x2 + 3x + c

c is an arbitrary constant

f (x) =

∫(x2 + 3x + c)dx

f (x) =x3

3+ 3

x2

2+ cx + d

, where d is an arbitrary constant.Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 9 / 44

Page 29: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 02

Find f if, f ′′(x) = 2x + 3Solution:

f ′′(x)dx = 2x + 3

f ′(x) =

∫(2x + 3)dx

f ′(x) = x2 + 3x + c

c is an arbitrary constant

f (x) =

∫(x2 + 3x + c)dx

f (x) =x3

3+ 3

x2

2+ cx + d

, where d is an arbitrary constant.Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 9 / 44

Page 30: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 02

Find f if, f ′′(x) = 2x + 3Solution:

f ′′(x)dx = 2x + 3

f ′(x) =

∫(2x + 3)dx

f ′(x) = x2 + 3x + c

c is an arbitrary constant

f (x) =

∫(x2 + 3x + c)dx

f (x) =x3

3+ 3

x2

2+ cx + d

, where d is an arbitrary constant.Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 9 / 44

Page 31: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 02

Find f if, f ′′(x) = 2x + 3Solution:

f ′′(x)dx = 2x + 3

f ′(x) =

∫(2x + 3)dx

f ′(x) = x2 + 3x + c

c is an arbitrary constant

f (x) =

∫(x2 + 3x + c)dx

f (x) =x3

3+ 3

x2

2+ cx + d

, where d is an arbitrary constant.Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 9 / 44

Page 32: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 02

Find f if, f ′′(x) = 2x + 3Solution:

f ′′(x)dx = 2x + 3

f ′(x) =

∫(2x + 3)dx

f ′(x) = x2 + 3x + c

c is an arbitrary constant

f (x) =

∫(x2 + 3x + c)dx

f (x) =x3

3+ 3

x2

2+ cx + d

, where d is an arbitrary constant.Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 9 / 44

Page 33: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Example 02

Find f if, f ′′(x) = 2x + 3Solution:

f ′′(x)dx = 2x + 3

f ′(x) =

∫(2x + 3)dx

f ′(x) = x2 + 3x + c

c is an arbitrary constant

f (x) =

∫(x2 + 3x + c)dx

f (x) =x3

3+ 3

x2

2+ cx + d

, where d is an arbitrary constant.Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 9 / 44

Page 34: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 02

Find f of the followings.

1 f ′′(x) = x3 − 2x2 + 5

2 f ′′′(x) = cos(x)

3 f ′(x) = 1 + 3√

x , f (4) = 25

4 f ′′(θ) = cos θ + sin θ, f (0) = 3, f ′(0) = 4

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 10 / 44

Page 35: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 02

Find f of the followings.

1 f ′′(x) = x3 − 2x2 + 5

2 f ′′′(x) = cos(x)

3 f ′(x) = 1 + 3√

x , f (4) = 25

4 f ′′(θ) = cos θ + sin θ, f (0) = 3, f ′(0) = 4

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 10 / 44

Page 36: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 02

Find f of the followings.

1 f ′′(x) = x3 − 2x2 + 5

2 f ′′′(x) = cos(x)

3 f ′(x) = 1 + 3√

x , f (4) = 25

4 f ′′(θ) = cos θ + sin θ, f (0) = 3, f ′(0) = 4

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 10 / 44

Page 37: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 02

Find f of the followings.

1 f ′′(x) = x3 − 2x2 + 5

2 f ′′′(x) = cos(x)

3 f ′(x) = 1 + 3√

x , f (4) = 25

4 f ′′(θ) = cos θ + sin θ, f (0) = 3, f ′(0) = 4

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 10 / 44

Page 38: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Antiderivatives

Exercise 02

Find f of the followings.

1 f ′′(x) = x3 − 2x2 + 5

2 f ′′′(x) = cos(x)

3 f ′(x) = 1 + 3√

x , f (4) = 25

4 f ′′(θ) = cos θ + sin θ, f (0) = 3, f ′(0) = 4

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 10 / 44

Page 39: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral

Outline

1 Antiderivatives

2 Definite Integral

3 Definite Integral and Area

4 Properties of the Definite Integral

5 Evaluating Definite Integrals (Approximating by Numerical Methods)

6 The Fundamental Theorem of Calculus

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 11 / 44

Page 40: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral

DefinitionLet f be a continuous function defined on a ≤ x ≤ b and leta = x0 < x1 < x2 < ... < xn−1 < xn = b be endpoints of n sub-intervals

of interval [a,b]. Let ∆x =b − a

nand x∗i ∈ [xi−1, i] (i = 1,2, ...,n)

Then, the definite integral of f from a to b is

∫ b

af (x)dx = lim

n→∞

n∑i=1

f (x∗i )∆x

provided that this limit exists. It gives the same value for all possiblechoices of sample points x∗i . If it does exist, we say that f is integrableon [a,b].

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 12 / 44

Page 41: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral

Note 01: The quantityn∑

i=1

f (x∗i )∆x

is known as Riemann sum.

Note 02: The definite integral ∫ b

af (x)dx

is a number and it does not depend on x.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 13 / 44

Page 42: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral

Note 01: The quantityn∑

i=1

f (x∗i )∆x

is known as Riemann sum.

Note 02: The definite integral ∫ b

af (x)dx

is a number and it does not depend on x.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 13 / 44

Page 43: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral

TheoremIf f is continuous on [a,b], or if f has only a finite number of jumpdiscontinuities, then f is integrable on [a,b]; that is, the definite integral∫ b

af (x)dx

exists.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 14 / 44

Page 44: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Outline

1 Antiderivatives

2 Definite Integral

3 Definite Integral and Area

4 Properties of the Definite Integral

5 Evaluating Definite Integrals (Approximating by Numerical Methods)

6 The Fundamental Theorem of Calculus

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 15 / 44

Page 45: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Exercise 05

Suppose we are given the function f shown here and we want to find

the (shaded) area of the region bounded by the vertical lines x = a and

x = b, the x-axis and the graph of f .

1 Give an algebraic expression that approximates the shaded area.

2 Give an algebraic expression that is equal to the shaded area.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 16 / 44

Page 46: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Exercise 05

Suppose we are given the function f shown here and we want to find

the (shaded) area of the region bounded by the vertical lines x = a and

x = b, the x-axis and the graph of f .

1 Give an algebraic expression that approximates the shaded area.

2 Give an algebraic expression that is equal to the shaded area.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 16 / 44

Page 47: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Exercise 05

Suppose we are given the function f shown here and we want to find

the (shaded) area of the region bounded by the vertical lines x = a and

x = b, the x-axis and the graph of f .

1 Give an algebraic expression that approximates the shaded area.

2 Give an algebraic expression that is equal to the shaded area.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 16 / 44

Page 48: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Note: We may choose xi to be the left end point, right end point, midpoint or any other point in the interval.

Approximated area for n = 2,4,8,12 with xi chosen to be the right endpoint of each interval;

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 17 / 44

Page 49: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Note: We may choose xi to be the left end point, right end point, midpoint or any other point in the interval.

Approximated area for n = 2,4,8,12 with xi chosen to be the right endpoint of each interval;

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 17 / 44

Page 50: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Exercise 06

Suppose the odometer on a car is broken and we want to estimate the

distance driven over a 30-second time interval. We take speedometer

readings every five seconds and record them in the following table:

Time(s) 0 5 10 15 20 25 30Velocity(m/s) 17 21 24 29 32 31 281 Estimate the distance traveled during 30s.

2 Sketch a graph of velocity vs time and explain the relation among

area under the graph, distance traveled, and the definite integral∫ 300 v(t)dt where v(t) denotes the velocity at time t .

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 18 / 44

Page 51: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Exercise 06

Suppose the odometer on a car is broken and we want to estimate the

distance driven over a 30-second time interval. We take speedometer

readings every five seconds and record them in the following table:

Time(s) 0 5 10 15 20 25 30Velocity(m/s) 17 21 24 29 32 31 281 Estimate the distance traveled during 30s.

2 Sketch a graph of velocity vs time and explain the relation among

area under the graph, distance traveled, and the definite integral∫ 300 v(t)dt where v(t) denotes the velocity at time t .

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 18 / 44

Page 52: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Exercise 06

Suppose the odometer on a car is broken and we want to estimate the

distance driven over a 30-second time interval. We take speedometer

readings every five seconds and record them in the following table:

Time(s) 0 5 10 15 20 25 30Velocity(m/s) 17 21 24 29 32 31 281 Estimate the distance traveled during 30s.

2 Sketch a graph of velocity vs time and explain the relation among

area under the graph, distance traveled, and the definite integral∫ 300 v(t)dt where v(t) denotes the velocity at time t .

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 18 / 44

Page 53: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Note:If f ≥ 0 for all x ∈ [a,b] then

the definite integral∫ b

a f (x)dx

represents the area under the

curve y = f (x), above the x-axis,

from a to b.

Note: If f takes on both positive

and negative values for x ∈ [a,b]

then the definite integral∫ b

a f (x)dx

represents the net area under the

curve y = f (x), above the x-axis,

from a to b.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 19 / 44

Page 54: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Note:If f ≥ 0 for all x ∈ [a,b] then

the definite integral∫ b

a f (x)dx

represents the area under the

curve y = f (x), above the x-axis,

from a to b.

Note: If f takes on both positive

and negative values for x ∈ [a,b]

then the definite integral∫ b

a f (x)dx

represents the net area under the

curve y = f (x), above the x-axis,

from a to b.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 19 / 44

Page 55: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Exercise 07

Evaluate∫ 1

0

√1− x2dx by interpreting in terms of area.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 20 / 44

Page 56: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Definite Integral and Area

Exercise 08

If F (x) =∫ x

0 f (t)dt where f is the function whose graph is given,estimate F (i),i = 0,1, · · · ,5

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 21 / 44

Page 57: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

Outline

1 Antiderivatives

2 Definite Integral

3 Definite Integral and Area

4 Properties of the Definite Integral

5 Evaluating Definite Integrals (Approximating by Numerical Methods)

6 The Fundamental Theorem of Calculus

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 22 / 44

Page 58: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

∫ a

af (x)dx = 0

∫ b

af (x)dx = −

∫ a

bf (x)dx

∫ b

acdx = c(b − a)

∫ b

acf (x)dx = c

∫ b

af (x)dx

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 23 / 44

Page 59: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

∫ a

af (x)dx = 0

∫ b

af (x)dx = −

∫ a

bf (x)dx

∫ b

acdx = c(b − a)

∫ b

acf (x)dx = c

∫ b

af (x)dx

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 23 / 44

Page 60: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

∫ a

af (x)dx = 0

∫ b

af (x)dx = −

∫ a

bf (x)dx

∫ b

acdx = c(b − a)

∫ b

acf (x)dx = c

∫ b

af (x)dx

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 23 / 44

Page 61: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

∫ a

af (x)dx = 0

∫ b

af (x)dx = −

∫ a

bf (x)dx

∫ b

acdx = c(b − a)

∫ b

acf (x)dx = c

∫ b

af (x)dx

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 23 / 44

Page 62: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

∫ b

a[f (x) + g(x)]dx =

∫ b

af (x)dx +

∫ b

ag(x)dx

∫ b

a[f (x)− g(x)]dx =

∫ b

af (x)dx −

∫ b

ag(x)dx

∫ b

af (x)dx =

∫ c

af (x)dx +

∫ b

cf (x)dx

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 24 / 44

Page 63: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

∫ b

a[f (x) + g(x)]dx =

∫ b

af (x)dx +

∫ b

ag(x)dx

∫ b

a[f (x)− g(x)]dx =

∫ b

af (x)dx −

∫ b

ag(x)dx

∫ b

af (x)dx =

∫ c

af (x)dx +

∫ b

cf (x)dx

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 24 / 44

Page 64: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

∫ b

a[f (x) + g(x)]dx =

∫ b

af (x)dx +

∫ b

ag(x)dx

∫ b

a[f (x)− g(x)]dx =

∫ b

af (x)dx −

∫ b

ag(x)dx

∫ b

af (x)dx =

∫ c

af (x)dx +

∫ b

cf (x)dx

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 24 / 44

Page 65: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

If f (x) ≥ 0 for a < x < b then∫ b

af (x)dx ≥ 0

If f (x) ≥ g(x) for a < x < b then∫ b

af (x)dx ≥

∫ b

ag(x)dx

If m ≤ f (x) ≤ M for a < x < b then

m(b − a) ≤∫ b

af (x)dx ≤ M(b − a)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 25 / 44

Page 66: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

If f (x) ≥ 0 for a < x < b then∫ b

af (x)dx ≥ 0

If f (x) ≥ g(x) for a < x < b then∫ b

af (x)dx ≥

∫ b

ag(x)dx

If m ≤ f (x) ≤ M for a < x < b then

m(b − a) ≤∫ b

af (x)dx ≤ M(b − a)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 25 / 44

Page 67: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

If f (x) ≥ 0 for a < x < b then∫ b

af (x)dx ≥ 0

If f (x) ≥ g(x) for a < x < b then∫ b

af (x)dx ≥

∫ b

ag(x)dx

If m ≤ f (x) ≤ M for a < x < b then

m(b − a) ≤∫ b

af (x)dx ≤ M(b − a)

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 25 / 44

Page 68: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

Exercise 09

1 If∫ 5

1 f (x)dx = 12 and∫ 5

4 f (x)dx = 5 find∫ 4

1 f (x)dx .

2 Find∫ 5

0 f (x)dx if

f (x) =

{3 if x < 3x if x ≥ 3

3 Show that 2 ≤∫ 1−1

√1 + x2dx ≤ 2

√2

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 26 / 44

Page 69: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

Exercise 09

1 If∫ 5

1 f (x)dx = 12 and∫ 5

4 f (x)dx = 5 find∫ 4

1 f (x)dx .

2 Find∫ 5

0 f (x)dx if

f (x) =

{3 if x < 3x if x ≥ 3

3 Show that 2 ≤∫ 1−1

√1 + x2dx ≤ 2

√2

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 26 / 44

Page 70: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Properties of the Definite Integral

Exercise 09

1 If∫ 5

1 f (x)dx = 12 and∫ 5

4 f (x)dx = 5 find∫ 4

1 f (x)dx .

2 Find∫ 5

0 f (x)dx if

f (x) =

{3 if x < 3x if x ≥ 3

3 Show that 2 ≤∫ 1−1

√1 + x2dx ≤ 2

√2

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 26 / 44

Page 71: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Outline

1 Antiderivatives

2 Definite Integral

3 Definite Integral and Area

4 Properties of the Definite Integral

5 Evaluating Definite Integrals (Approximating by Numerical Methods)

6 The Fundamental Theorem of Calculus

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 27 / 44

Page 72: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Suppose that we divide the interval [a,b] into n sub-intervals of equal

length ∆x =b − a

n, and x∗i is any point in the i th sub-interval [xi−1, xi ].

Then we have

∫ b

af (x)dx ≈

n∑i=1

f (x∗i )∆x

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 28 / 44

Page 73: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Suppose that we divide the interval [a,b] into n sub-intervals of equal

length ∆x =b − a

n, and x∗i is any point in the i th sub-interval [xi−1, xi ].

Then we have

∫ b

af (x)dx ≈

n∑i=1

f (x∗i )∆x

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 28 / 44

Page 74: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

1. Left endpoint approximating:

The point x∗i is chosen to be theleft endpoint of the interval. Then,∫ b

a f (x)dx ≈ Ln =∑n

i=1 f (xi−1)∆x

Figure: (a)Left endpoint approximation

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 29 / 44

Page 75: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

2. Right endpoint approximating:

The point x∗i is chosen to be theright endpoint of the interval. Then,∫ b

a f (x)dx ≈ Rn =∑n

i=1 f (xi)∆x

Figure: (b)Right endpointapproximation

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 30 / 44

Page 76: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

3. Midpoint rule:

The point x∗i is chosen to be themid point x̄i of the interval. Then,∫ b

a f (x)dx ≈ Mn =∑n

i=1 f (x̄i)∆x

Error bound:Error EM of mid pointrule is bounded by

|EM | ≤K (b − a)3

24n2

where |f ′′(x)| ≤ K for a ≤ x ≤ b. Figure: (c) Midpoint approximation

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 31 / 44

Page 77: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

3. Midpoint rule:

The point x∗i is chosen to be themid point x̄i of the interval. Then,∫ b

a f (x)dx ≈ Mn =∑n

i=1 f (x̄i)∆x

Error bound:Error EM of mid pointrule is bounded by

|EM | ≤K (b − a)3

24n2

where |f ′′(x)| ≤ K for a ≤ x ≤ b. Figure: (c) Midpoint approximation

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 31 / 44

Page 78: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

3. Midpoint rule:

The point x∗i is chosen to be themid point x̄i of the interval. Then,∫ b

a f (x)dx ≈ Mn =∑n

i=1 f (x̄i)∆x

Error bound:Error EM of mid pointrule is bounded by

|EM | ≤K (b − a)3

24n2

where |f ′′(x)| ≤ K for a ≤ x ≤ b. Figure: (c) Midpoint approximation

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 31 / 44

Page 79: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

4. Trapezoidal rule:Averaging left and right end approximations,∫ b

a f (x)dx ≈ Tn =∆x2

[f (x0) + 2f (x1) + · · ·+ 2f (xn−1) + f (xn)]

Error bound: Error ET oftrapezoidal rule is bounded by

|ET | ≤K (b − a)3

12n2

where |f ′′(x)| ≤ K for a ≤ x ≤ b.

Figure: (d) Trapezoidal Approximation

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 32 / 44

Page 80: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

4. Trapezoidal rule:Averaging left and right end approximations,∫ b

a f (x)dx ≈ Tn =∆x2

[f (x0) + 2f (x1) + · · ·+ 2f (xn−1) + f (xn)]

Error bound: Error ET oftrapezoidal rule is bounded by

|ET | ≤K (b − a)3

12n2

where |f ′′(x)| ≤ K for a ≤ x ≤ b.

Figure: (d) Trapezoidal Approximation

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 32 / 44

Page 81: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

4. Trapezoidal rule:Averaging left and right end approximations,∫ b

a f (x)dx ≈ Tn =∆x2

[f (x0) + 2f (x1) + · · ·+ 2f (xn−1) + f (xn)]

Error bound: Error ET oftrapezoidal rule is bounded by

|ET | ≤K (b − a)3

12n2

where |f ′′(x)| ≤ K for a ≤ x ≤ b.

Figure: (d) Trapezoidal Approximation

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 32 / 44

Page 82: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

5. Simpson’s rule:Let n be even. Using parabolas to approximate the curve (instead oflines), ∫ b

a f (x)dx ≈ Sn =∆x3

[f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + · · ·+ 2f (xn−2) + 4f (xn−1) + f (xn)]

Error bound: Error ES of Simpson’s rule is bounded by

|ES| ≤K (b − a)5

180n4

where |f (4)(x)| ≤ K for a ≤ x ≤ b.

Figure: (e)Simpson’s ApproximationDr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 33 / 44

Page 83: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

5. Simpson’s rule:Let n be even. Using parabolas to approximate the curve (instead oflines), ∫ b

a f (x)dx ≈ Sn =∆x3

[f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + · · ·+ 2f (xn−2) + 4f (xn−1) + f (xn)]

Error bound: Error ES of Simpson’s rule is bounded by

|ES| ≤K (b − a)5

180n4

where |f (4)(x)| ≤ K for a ≤ x ≤ b.

Figure: (e)Simpson’s ApproximationDr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 33 / 44

Page 84: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10

1 Find the exact value of the definite integral∫ 2

11x

dx . (Give youranswer to 6 decimal places.)

2 Find the approximated value of the definite integral∫ 2

11x

dx usingeach method given above. (Give your answer to 6 decimal places.)

1 Use left end approximation with n = 5,10 and 20.

2 Use right end approximation with n = 5,10 and 20.

3 Use mid point approximation with n = 5,10 and 20.

4 Use trapezoidal rule with n = 5,10 and 20.

5 Use Simpson’s rule with n = 5,10 and 20.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 34 / 44

Page 85: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10

1 Find the exact value of the definite integral∫ 2

11x

dx . (Give youranswer to 6 decimal places.)

2 Find the approximated value of the definite integral∫ 2

11x

dx usingeach method given above. (Give your answer to 6 decimal places.)

1 Use left end approximation with n = 5,10 and 20.

2 Use right end approximation with n = 5,10 and 20.

3 Use mid point approximation with n = 5,10 and 20.

4 Use trapezoidal rule with n = 5,10 and 20.

5 Use Simpson’s rule with n = 5,10 and 20.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 34 / 44

Page 86: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10

1 Find the exact value of the definite integral∫ 2

11x

dx . (Give youranswer to 6 decimal places.)

2 Find the approximated value of the definite integral∫ 2

11x

dx usingeach method given above. (Give your answer to 6 decimal places.)

1 Use left end approximation with n = 5,10 and 20.

2 Use right end approximation with n = 5,10 and 20.

3 Use mid point approximation with n = 5,10 and 20.

4 Use trapezoidal rule with n = 5,10 and 20.

5 Use Simpson’s rule with n = 5,10 and 20.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 34 / 44

Page 87: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10

1 Find the exact value of the definite integral∫ 2

11x

dx . (Give youranswer to 6 decimal places.)

2 Find the approximated value of the definite integral∫ 2

11x

dx usingeach method given above. (Give your answer to 6 decimal places.)

1 Use left end approximation with n = 5,10 and 20.

2 Use right end approximation with n = 5,10 and 20.

3 Use mid point approximation with n = 5,10 and 20.

4 Use trapezoidal rule with n = 5,10 and 20.

5 Use Simpson’s rule with n = 5,10 and 20.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 34 / 44

Page 88: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10

1 Find the exact value of the definite integral∫ 2

11x

dx . (Give youranswer to 6 decimal places.)

2 Find the approximated value of the definite integral∫ 2

11x

dx usingeach method given above. (Give your answer to 6 decimal places.)

1 Use left end approximation with n = 5,10 and 20.

2 Use right end approximation with n = 5,10 and 20.

3 Use mid point approximation with n = 5,10 and 20.

4 Use trapezoidal rule with n = 5,10 and 20.

5 Use Simpson’s rule with n = 5,10 and 20.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 34 / 44

Page 89: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10

1 Find the exact value of the definite integral∫ 2

11x

dx . (Give youranswer to 6 decimal places.)

2 Find the approximated value of the definite integral∫ 2

11x

dx usingeach method given above. (Give your answer to 6 decimal places.)

1 Use left end approximation with n = 5,10 and 20.

2 Use right end approximation with n = 5,10 and 20.

3 Use mid point approximation with n = 5,10 and 20.

4 Use trapezoidal rule with n = 5,10 and 20.

5 Use Simpson’s rule with n = 5,10 and 20.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 34 / 44

Page 90: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10

1 Find the exact value of the definite integral∫ 2

11x

dx . (Give youranswer to 6 decimal places.)

2 Find the approximated value of the definite integral∫ 2

11x

dx usingeach method given above. (Give your answer to 6 decimal places.)

1 Use left end approximation with n = 5,10 and 20.

2 Use right end approximation with n = 5,10 and 20.

3 Use mid point approximation with n = 5,10 and 20.

4 Use trapezoidal rule with n = 5,10 and 20.

5 Use Simpson’s rule with n = 5,10 and 20.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 34 / 44

Page 91: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10 ctd..

Note:Error = [exact value of∫ 2

11x

dx ]-[approximated value].

Calculate the error for each of above calculation.

Calculate error bounds for mid point rule, trapezoidal rule, andSimpson’s rule.

Comment on your answers.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 35 / 44

Page 92: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10 ctd..

Note:Error = [exact value of∫ 2

11x

dx ]-[approximated value].

Calculate the error for each of above calculation.

Calculate error bounds for mid point rule, trapezoidal rule, andSimpson’s rule.

Comment on your answers.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 35 / 44

Page 93: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10 ctd..

Note:Error = [exact value of∫ 2

11x

dx ]-[approximated value].

Calculate the error for each of above calculation.

Calculate error bounds for mid point rule, trapezoidal rule, andSimpson’s rule.

Comment on your answers.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 35 / 44

Page 94: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 10 ctd..

Note:Error = [exact value of∫ 2

11x

dx ]-[approximated value].

Calculate the error for each of above calculation.

Calculate error bounds for mid point rule, trapezoidal rule, andSimpson’s rule.

Comment on your answers.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 35 / 44

Page 95: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

Evaluating Definite Integrals (Approximating by NumericalMethods)

Exercise 11

How large should we take n in order to guarantee that the

approximations for the definite integral∫ 2

11x

dx are accurate to within0.0001 if we use; (a) mid point rule (b) trapezoidal rule (c) Simpson’srule?

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 36 / 44

Page 96: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Outline

1 Antiderivatives

2 Definite Integral

3 Definite Integral and Area

4 Properties of the Definite Integral

5 Evaluating Definite Integrals (Approximating by Numerical Methods)

6 The Fundamental Theorem of Calculus

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 37 / 44

Page 97: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Area function

Let g(x) =∫ x

a f (t)dt where f is continuous and a ≤ x ≤ b. The functiong is known as the area function; area under the graph of f from a to x ,where x can vary from a to b.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 38 / 44

Page 98: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

If f is the function whose graph is shown and g(x) =∫ x

0 f (t)dt findg(0),g(1),g(2),g(3),g(4),g(5) and sketch a rough graph of g.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 39 / 44

Page 99: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

TheoremThe Fundamental Theorem of Calculus (FTC)

Suppose f is continuous on [a,b]. Then,

Part 1. If g(x) =∫ x

a f (t)dt then g′(x) = f (x). Alternativelyddx

∫ xa f (t)dt = f (x)

Part 2. If∫ b

a f (x)dx = F (b)− F (a) where F is any antiderivative of f ,

i.e., F ′ = f . Alternativelyddx

∫ xa f (t)dt = f (x)

Alternatively∫ b

a F ′(x)dx = F (b)− F (a) = F (x)|ba

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 40 / 44

Page 100: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

TheoremThe Fundamental Theorem of Calculus (FTC)

Suppose f is continuous on [a,b]. Then,

Part 1. If g(x) =∫ x

a f (t)dt then g′(x) = f (x). Alternativelyddx

∫ xa f (t)dt = f (x)

Part 2. If∫ b

a f (x)dx = F (b)− F (a) where F is any antiderivative of f ,

i.e., F ′ = f . Alternativelyddx

∫ xa f (t)dt = f (x)

Alternatively∫ b

a F ′(x)dx = F (b)− F (a) = F (x)|ba

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 40 / 44

Page 101: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

TheoremThe Fundamental Theorem of Calculus (FTC)

Suppose f is continuous on [a,b]. Then,

Part 1. If g(x) =∫ x

a f (t)dt then g′(x) = f (x). Alternativelyddx

∫ xa f (t)dt = f (x)

Part 2. If∫ b

a f (x)dx = F (b)− F (a) where F is any antiderivative of f ,

i.e., F ′ = f . Alternativelyddx

∫ xa f (t)dt = f (x)

Alternatively∫ b

a F ′(x)dx = F (b)− F (a) = F (x)|ba

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 40 / 44

Page 102: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

TheoremThe Fundamental Theorem of Calculus (FTC)

Suppose f is continuous on [a,b]. Then,

Part 1. If g(x) =∫ x

a f (t)dt then g′(x) = f (x). Alternativelyddx

∫ xa f (t)dt = f (x)

Part 2. If∫ b

a f (x)dx = F (b)− F (a) where F is any antiderivative of f ,

i.e., F ′ = f . Alternativelyddx

∫ xa f (t)dt = f (x)

Alternatively∫ b

a F ′(x)dx = F (b)− F (a) = F (x)|ba

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 40 / 44

Page 103: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

TheoremThe Fundamental Theorem of Calculus (FTC)

Suppose f is continuous on [a,b]. Then,

Part 1. If g(x) =∫ x

a f (t)dt then g′(x) = f (x). Alternativelyddx

∫ xa f (t)dt = f (x)

Part 2. If∫ b

a f (x)dx = F (b)− F (a) where F is any antiderivative of f ,

i.e., F ′ = f . Alternativelyddx

∫ xa f (t)dt = f (x)

Alternatively∫ b

a F ′(x)dx = F (b)− F (a) = F (x)|ba

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 40 / 44

Page 104: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 13

Apply the FTC 1 to find the derivative of each function.1

g(x) =

∫ x

1

11 + u3 du

2

g(x) =

∫ 0

x

√1 + t2dt

3

g(x) =

∫ x2

0cos3 θdθ

4

g(x) =

∫ x4

1sec(t)dt

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 41 / 44

Page 105: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 13

Apply the FTC 1 to find the derivative of each function.1

g(x) =

∫ x

1

11 + u3 du

2

g(x) =

∫ 0

x

√1 + t2dt

3

g(x) =

∫ x2

0cos3 θdθ

4

g(x) =

∫ x4

1sec(t)dt

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 41 / 44

Page 106: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 13

Apply the FTC 1 to find the derivative of each function.1

g(x) =

∫ x

1

11 + u3 du

2

g(x) =

∫ 0

x

√1 + t2dt

3

g(x) =

∫ x2

0cos3 θdθ

4

g(x) =

∫ x4

1sec(t)dt

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 41 / 44

Page 107: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 13

Apply the FTC 1 to find the derivative of each function.1

g(x) =

∫ x

1

11 + u3 du

2

g(x) =

∫ 0

x

√1 + t2dt

3

g(x) =

∫ x2

0cos3 θdθ

4

g(x) =

∫ x4

1sec(t)dt

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 41 / 44

Page 108: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 14

Apply the FTC 2 to find the derivative of each function.1

g(x) =

∫ 1

−1x3dx

2

g(x) =

∫ 4

0(4− x)

√xdx

3

g(x) =

∫ 2

1

1 + u4

u2 du

4

g(x) =

∫ π

40

sec θ tan θdθ

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 42 / 44

Page 109: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 14

Apply the FTC 2 to find the derivative of each function.1

g(x) =

∫ 1

−1x3dx

2

g(x) =

∫ 4

0(4− x)

√xdx

3

g(x) =

∫ 2

1

1 + u4

u2 du

4

g(x) =

∫ π

40

sec θ tan θdθ

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 42 / 44

Page 110: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 14

Apply the FTC 2 to find the derivative of each function.1

g(x) =

∫ 1

−1x3dx

2

g(x) =

∫ 4

0(4− x)

√xdx

3

g(x) =

∫ 2

1

1 + u4

u2 du

4

g(x) =

∫ π

40

sec θ tan θdθ

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 42 / 44

Page 111: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 14

Apply the FTC 2 to find the derivative of each function.1

g(x) =

∫ 1

−1x3dx

2

g(x) =

∫ 4

0(4− x)

√xdx

3

g(x) =

∫ 2

1

1 + u4

u2 du

4

g(x) =

∫ π

40

sec θ tan θdθ

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 42 / 44

Page 112: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 15

True or false? ∫ 3

−1

1x2 = −4

3

Justify your answer.

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 43 / 44

Page 113: MA1302 Engineering Mathematics I - scholar.sjp.ac.lkscholar.sjp.ac.lk/sites/default/files/lanel/files/lectures_8_and_9_integration.pdf2 Definite Integral 3 Definite Integral and

The Fundamental Theorem of Calculus

Exercise 16 (Use any computational software.)

The sine integral function is defined as

Si(x) =

∫ x

0

sin(t)t

dt

[The integrand f (t) = sin t/t is not defined when t = 0, but we knowthat it’s limit is 1 when t −→ 0. So we define f (0) = 1 and this makes fa continuous function everywhere.]

1 Draw the graph of Si2 At what values does this function have local maximum values?3 Find the coordinates of the first inflection point to the right of the

origin.4 Does this function have horizontal asymptotes?5 Solve the following equation correct to one decimal place:∫ x

0sin(t)

tdt = 1

Dr. G.H.J. Lanel MA1302 Engineering Mathematics I Integration 44 / 44