magnetorota)onal++ corecollapse supernovaeinthree+ dimensions · magnetorota)onal++ corecollapse...

18
Magnetorota)onal CoreCollapse Supernovae in Three Dimensions Philipp Mösta California Ins)tute of Technology [email protected] Astrophysical Journal, 785, L29 Sherwood Richers, Chris>an O@, Roland Haas, Anthony L. Piro, Ernazar Abdikamalov, Chris>an Reisswig, Erik Schne@er and Peter Diener BlueWaters Symposium 2014, NCSA, Illinois

Upload: others

Post on 02-May-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Magnetorota)onal    Core-­‐Collapse    

Supernovae  in  Three  Dimensions  Philipp  Mösta  

California  Ins)tute  of  Technology  [email protected]  

Astrophysical  Journal,  785,  L29  

Sherwood  Richers,  Chris>an  O@,  Roland  Haas,  Anthony  L.  Piro,  Ernazar  Abdikamalov,    Chris>an  Reisswig,  Erik  Schne@er  and  Peter  Diener  

BlueWaters  Symposium  2014,  NCSA,  Illinois  

Page 2: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Core  Collapse  Basics  

2  

Nuclear  equa>on  of  state  (EOS)  s>ffens  at  nuclear  density.    Inner  core  (~0.5  MSun)    -­‐>  protoneutron  star  core.    Shock  wave  formed.  

Outer  core  accretes  onto  shock  &  protoneutron  star  with  O(1)  M⦿/s.  

-­‐>  Shock  stalls  at  ~100  km,    must  be  “revived”  to  drive    explosion.  

Reviews:  Bethe’90  Janka+‘12  

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 3: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Hyperenerge)c  Supernovae  

Small  frac>on  (      0.1%)  of  CCSN:    

•  hyperenerge>c  •  doppler-­‐broadened  lines  (Type  Ic-­‐bl)  

•  Rela>vis>c  ouelows  •  Some  connected  to  long  gamma-­‐ray  bursts  

3  

Supernova  1998bw    Image  Credit:  ESO  

~

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 4: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Hypernovae  &  GRBs  

4  

• Neutrino  mechanism  is  inefficient  (η~10%);    can’t  deliver  a  hypernova.  

• 11  long  GRB  –  core-­‐collapse  supernova  associa>ons.  • All  GRB-­‐SNe  are  of  type  “Ic-­‐bl”:  no  H,  He  in  spectra,  rela>vis>c  veloci>es  (bl:  “broad  lines”),  hypernova  energies  (~1052  erg).  

• What  mechanism  drives  these  extreme  explosions?  

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 5: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Magnetorota)onal  Mechanism  

5  

[LeBlanc  &  Wilson  ‘70,  Bisnovatyi-­‐Kogan  ’70,  Obergaulinger+’06,    Burrows+  ‘07,  Takiwaki  &  Kotake  ‘11,  Winteler+  12]    

Rapid  Rota)on  +  B-­‐field  amplifica)on    (need  magnetorota>onal  instability  [MRI];      difficult  to  resolve,  but  see,  e.g,      Obergaulinger+’09)  

2D:  Energe)c  bipolar  explosions.  Energy  in  rota>on  up  to  10B.    Results  in  ms-­‐period  proto-­‐magnetar.  GRB  connec>on?    

Burrows+’07  

Caveats:  Need  high  core  spin;  only  in    very  few  progenitor  stars?  Magne)c  field  amplifac)on?  

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 6: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Computa)onal  challenge  

6  

Core-­‐collapse  supernovae  pose  a  mul)-­‐scale,  mul)-­‐dimensional,  mul)-­‐physics  problem:  

• General  Rela>vity,  magnetohydrodynamics,  nuclear  equa>on  of  state,  neutrino  transport,  neutrino/nuclear  interac>ons  

•  turbulence  (e.g.  MRI)  on  scales  103  cm  but  radius  of  relevant  stellar  interior  is  109  cm  

• Courant-­‐limited  >mestep  is  10-­‐6  s  but  cooling  >me  of  protoneutron  star  is  10  s  

• 3  spa>al,  3  momentum  (neutrinos)  space  dimensions                    +  1  >me  dimension  

• Need  full  3D  (turbulence,  instabili>es)  P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 7: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

New  3D  Simula)ons  

7  

• Open-­‐source  simula>on  code  based  on    Einstein  Toolkit  (einsteintoolkit.org)  [Moesta+’14].  

• Full  3D  general  rela>vity  (GR).  

•  Ideal  GR  magneto-­‐hydrodynamics  with  detailed  nuclear  equa>on  of  state  (LS220)  and  neutrino  hea>ng/cooling  via  Leakage  scheme  [O’Connor+‘10,  O@+‘12].  

• div  B  =  0  via  constrained  transport.  

• 9  levels  of  adap>ve  mesh  refinement.    6  TB  run>me  memory.  500  TB  simula>on  output.  

• Simula>on  on  ~20k  compute  cores  on    NSF  Blue  Waters  at  NCSA/Illinois.  

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 8: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

3D  Dynamics  of  Magnetorota)onal  Explosions  

8  Octant  Symmetry  (no  odd  modes)   Full  3D  

ß  2000  km  à    ß  2000  km  à    

New,  full  3D  GR  simula>ons.  Mösta+  2014,  ApJ  759,  L24  Ini>al  configura>on  as  in  Takiwaki+11,  1012  G  seed  field.  

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 9: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

What’s  going  on  here?  

5 10 15 20 2510�5

10�4

10�3

10�2

10�1

1

t � tbounce [ms]

r[k

m]

magnetic pressure b2/2

zi = 30 kmzi = 44 kmzi = 59 kmzi = 74 kmet/t , t = 1.4 ms

zi = 30 kmzi = 44 kmzi = 59 kmzi = 74 kmet/t , t = 1.4 ms

9  

H (Btor )

•  m=1  spiral  instability  •  Growth  rate,  wavelength  and  helicity  of  

fastest  growing  mode  consistent  with  MHD  kink  instability;  should  hold  independent  of  ini>al  B-­‐field  strength  

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 10: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Key  for  instability:            Btor/Bz>2πa/L  

MHD  Kink  Instability  

3D:  Plasma  flow  unstable  to      MHD  “kink”  instability      (as  seen  in  laboratories  in  Tokamak      fusion  reactors!)    

Braithwaite+’06  10  

[Shafranov+’56,  Kruskal+’58]  

•  Magne>c  pressure  driven  •  cannot  be  countered  by  magne>c  tension  

∇(p + B28π ) = 1

4π (B ⋅∇)B

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 11: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Mösta  et  al.  2014  

3D  Volume    Visualiza)on  of  

11  

Entropy  

Page 12: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

� =Pgas

Pmag

Mösta  et  al.  2014  

3D  Volume    Visualiza)on  of  

12  

Page 13: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Connec)on  to  Observa)ons  •  Highly  magne>zed  ouelows  show  plausible  condi>ons  for  crea>on  of  neutron-­‐rich  heavy  elements,  possibly  r-­‐process.  

•  May  explain  observed  asymmetries  in  SNR  also  for  rota>ng  progenitors  (recent  NuStar  observa>ons).  

•  Explosion?  

Cassiopeia  A  Supernova  Remnant  Image  Credit:  NASA.  

13  

β ~ 0.01− 0.1Ye ~ 0.1− 0.2 s ~ 10 −15 kbbaryon −1

underdense  P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 14: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

•  Long  gamma-­‐ray  bursts  come  with  extreme  supernovae.  

•  Central  engine  of  GRB:    black  hole  or  neutron  star?  

•  Simula>ons  show:  con>nued  accre>on  on  the  equator  in  supernova  phase.  

•  Favors  forma>on  of    black-­‐hole  engine  (collapsar).  

Supernova  remnant  W49B;  harboring  a    black  hole?  (Lopez+2013)  

14  

Implica)ons  for  Gamma-­‐Ray  Bursts  

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 15: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Summary  

15  

• We  are  using  BlueWaters  for  full  3D  core-­‐collapse  supernova  simula>ons  

• Developing  jet  becomes  ‘kink’-­‐unstable  and  is  disrupted  

• Highly  magne>zed  ouelows  drive  shock  into  dual-­‐lobe  structure  

• Accre>on  con>nues  -­‐>  favors  collapsar  long  gamma-­‐ray  burst  engine  

• Asymmetries  may  explain  off-­‐(jet-­‐)axis  ejecta  elements  for  rapidly  spinning  progenitors  (-­‐>  NuStar  44Ti  mapping  in  CasA)    

  P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 16: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

Future  

16  

• Longer  simula>ons    

• Tracer  par>cles  and  nucleosynthesis  

• Gravita>onal  waves  

• Progenitor  parameter  dependence  

• Full  star  simula>ons  -­‐>  True  Petascale  challenge  

P.  Moesta  @  BlueWaters  Symposium,  2014/05/13  

Page 17: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

•  E25  (                        ZAMS)  progenitor  (Heger+’00),  stripped-­‐envelope  Wolf-­‐Rayet  type  star  

•  Strong  differen>al  rota>on;  precollapse  spin  period  2.25s  -­‐>  millisecond  rota>on  of  protoneutron  star    

 

17  

Ini)al  Condi)ons  

Dessart+’12  

Iden>cal  to  Takiwaki+11  model  B12X5    0.1    

Ω(x, z) = Ω0x02

x2+x02

z04

z4+z04

•   Strong  dipolar  magne>c  field  (B0  =  1012  G)  

β

25Msun

Page 18: Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions · Magnetorota)onal++ CoreCollapse SupernovaeinThree+ Dimensions+ Philipp+Mösta+ CaliforniaInstuteofTechnology+ pmoesta@tapir.caltech.edu+

•  1  %  amplitude  perturba>ons  added  5ms  azer  bounce.  

•  Perturba>ons  outside    protoneutron  star-­‐>  disentagle  mul>ple  instabili>es  (e.g.      low-­‐T/|W|,  SASI).  

•  Unperturbed  run  -­‐>  jet  explosion  

18  

Perturba)on  Setup    

Proto-­‐NS  

   

   

Δvi

Standing  accre>on  shock