mane 4240 & civl 4240 introduction to finite elements

33
MANE 4240 & CIVL 4240 Introduction to Finite Elements Constant Strain Triangle (CST) Prof. Suvranu De

Upload: cynthia-nolan

Post on 31-Dec-2015

41 views

Category:

Documents


1 download

DESCRIPTION

MANE 4240 & CIVL 4240 Introduction to Finite Elements. Prof. Suvranu De. Constant Strain Triangle (CST). Reading assignment: Logan 6.2-6.5 + Lecture notes. Summary: Computation of shape functions for constant strain triangle Properties of the shape functions - PowerPoint PPT Presentation

TRANSCRIPT

MANE 4240 & CIVL 4240Introduction to Finite Elements

Constant Strain Triangle (CST)

Prof. Suvranu De

Reading assignment:

Logan 6.2-6.5 + Lecture notes

Summary:

• Computation of shape functions for constant strain triangle• Properties of the shape functions • Computation of strain-displacement matrix• Computation of element stiffness matrix• Computation of nodal loads due to body forces• Computation of nodal loads due to traction• Recommendations for use• Example problems

Finite element formulation for 2D:

Step 1: Divide the body into finite elements connected to each other through special points (“nodes”)

x

y

Su

STu

v

x

px

py

Element ‘e’

3

21

4

y

xvu

1

2

3

4

u1

u2

u3

u4

v4

v3

v2

v1

4

4

3

3

2

2

1

1

v

u

v

u

v

u

v

u

d

44332211

44332211

vy)(x,N vy)(x,N vy)(x,N vy)(x,Ny)(x,v

u y)(x,Nu y)(x,Nu y)(x,Nu y)(x,Ny)(x,u

4

4

3

3

2

2

1

1

4321

4321

v

u

v

u

v

u

v

u

N0N0N0N0

0N0N0N0N

y)(x,v

y)(x,uu

dNu

TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH ELEMENT

...... vy)(x,N

uy)(x,Ny)(x,vy)(x,u

vy)(x,N

vy)(x,N

v y)(x,N

vy)(x,Ny)(x,v

u y)(x,N

u y)(x,N

u y)(x,N

u y)(x,Ny)(x,u

11

11

xy

44

33

22

11

y

44

33

22

11

x

xyxy

yyyyy

xxxxx

Approximation of the strain in element ‘e’

4

4

3

3

2

2

1

1

B

44332211

4321

4321

xy

v

u

v

u

v

u

v

u

y)(x,Ny)(x,Ny)(x,Ny)(x,N y)(x,N y)(x,Ny)(x,Ny)(x,N

y)(x,N0

y)(x,N0

y)(x,N0

y)(x,N0

0y)(x,N

0y)(x,N

0 y)(x,N

0y)(x,N

xyxyxyxy

yyyy

xxxx

y

x

dBε

Displacement approximation in terms of shape functions

Strain approximation in terms of strain-displacement matrix

Stress approximation

Summary: For each element

Element stiffness matrix

Element nodal load vector

dNu

dBD

dBε

eVk dVBDBT

S

eT

b

e

f

S ST

f

V

T dSTdVXf NN

Constant Strain Triangle (CST) : Simplest 2D finite element

• 3 nodes per element• 2 dofs per node (each node can move in x- and y- directions)• Hence 6 dofs per element

x

y

u3

v3

v1

u1

u2

v2

2

3

1

(x,y)

vu

(x1,y1)

(x2,y2)

(x3,y3)

166212 dNu

3

3

2

2

1

1

321

321

v

u

v

u

v

u

N0N0N0

0N0N0N

y)(x,v

y)(x,uu

The displacement approximation in terms of shape functions is

321

321

N0N0N0

0N0N0NN

1 1 2 2 3 3u (x,y) u u uN N N

1 1 2 2 3 3v(x,y) v v vN N N

Formula for the shape functions are

A

ycxbaN

A

ycxbaN

A

ycxbaN

2

2

2

3333

2222

1111

12321312213

31213231132

23132123321

33

22

11

x1

x1

x1

det2

1

xxcyybyxyxa

xxcyybyxyxa

xxcyybyxyxa

y

y

y

triangleofareaA

where

x

y

u3

v3

v1

u1

u2

v2

2

3

1

(x,y)

vu

(x1,y1)

(x2,y2)

(x3,y3)

Properties of the shape functions:

1. The shape functions N1, N2 and N3 are linear functions of x and y

x

y

2

3

1

1

N1

2

3

1

N2

12

3

1

1

N3

nodesotherat

inodeat

0

''1N i

2. At every point in the domain

yy

xx

i

i

3

1ii

3

1ii

3

1ii

N

N

1N

3. Geometric interpretation of the shape functionsAt any point P(x,y) that the shape functions are evaluated,

x

y

2

3

1P (x,y)

A1A3

A2

A

AA

AA

A

33

22

11

N

N

N

Approximation of the strains

xy

u

v

u v

x

y

x

Bdy

y x

332211

321

321

332211

321

321

000

000

2

1

y)(x,Ny)(x,N y)(x,N y)(x,Ny)(x,Ny)(x,N

y)(x,N0

y)(x,N0

y)(x,N0

0y)(x,N

0 y)(x,N

0y)(x,N

bcbcbc

ccc

bbb

A

xyxyxy

yyy

xxx

B

Element stresses (constant inside each element)

dBD

Inside each element, all components of strain are constant: hence the name Constant Strain Triangle

IMPORTANT NOTE:1. The displacement field is continuous across element boundaries2. The strains and stresses are NOT continuous across element boundaries

Element stiffness matrix

eVk dVBDBT

AtkeV

BDBdVBDB TT t=thickness of the elementA=surface area of the element

Since B is constant

t

A

S

eT

b

e

f

S ST

f

V

T dSTdVXf NN

Element nodal load vector

Element nodal load vector due to body forces

ee A

T

V

T

bdAXtdVXf NN

e

e

e

e

e

e

A b

A a

A b

A a

A b

A a

yb

xb

yb

xb

yb

xb

b

dAXNt

dAXNt

dAXNt

dAXNt

dAXNt

dAXNt

f

f

f

f

f

f

f

3

3

2

2

1

1

3

3

2

2

1

1

x

y

fb3x

fb3y

fb1y

fb1x

fb2x

fb2y

2

3

1

(x,y)

XbXa

EXAMPLE:

If Xa=1 and Xb=0

03

03

03

0

0

0

3

2

1

3

3

2

2

1

1

3

3

2

2

1

1

tA

tA

tA

dANt

dANt

dANt

dAXNt

dAXNt

dAXNt

dAXNt

dAXNt

dAXNt

f

f

f

f

f

f

f

e

e

e

e

e

e

e

e

e

A

A

A

A b

A a

A b

A a

A b

A a

yb

xb

yb

xb

yb

xb

b

Element nodal load vector due to traction

eTS

ST

SdSTf N

EXAMPLE:

x

y

fS3x

fS3y

fS1y

fS1x

2

3

1

el S

along

T

SdSTtf

31 31N

Element nodal load vector due to traction

EXAMPLE:

x

y

fS3x

2

31

el S

along

T

SdSTtf

32 32N

fS3y

fS2x

fS2y

(2,0)

(2,2)

(0,0)

0

1ST

tt

dyNtfex l alongS

122

1

)1(32

2 322

0

0

3

3

2

y

x

y

S

S

S

f

tf

f

Similarly, compute

1

2

Recommendations for use of CST

1. Use in areas where strain gradients are small

2. Use in mesh transition areas (fine mesh to coarse mesh)

3. Avoid CST in critical areas of structures (e.g., stress concentrations, edges of holes, corners)

4. In general CSTs are not recommended for general analysis purposes as a very large number of these elements are required for reasonable accuracy.

Example

x

y

El 1

El 2

1

23

4

300 psi1000 lb

3 in

2 inThickness (t) = 0.5 inE= 30×106 psi=0.25

(a) Compute the unknown nodal displacements.(b) Compute the stresses in the two elements.

Realize that this is a plane stress problem and therefore we need to use

psiE

D 72

10

2.100

02.38.0

08.02.3

2

100

01

01

1

Step 1: Node-element connectivity chart

ELEMENT Node 1 Node 2 Node 3 Area (sqin)

1 1 2 4 3

2 3 4 2 3

Node x y

1 3 0

2 3 2

3 0 2

4 0 0

Nodal coordinates

Step 2: Compute strain-displacement matrices for the elements

332211

321

321

000

000

2

1

bcbcbc

ccc

bbb

AB

Recall

123312231

213132321

xxcxxcxxc

yybyybyyb

with

For Element #1:

1(1)

2(2)

4(3)(local numbers within brackets)

0;3;3

0;2;0

321

321

xxx

yyy

Hence

033

202

321

321

ccc

bbb

200323

003030

020002

6

1)1(BTherefore

For Element #2:

200323

003030

020002

6

1)2(B

Step 3: Compute element stiffness matrices

7

)1(T)1()1(T)1()1(

10

2.0

05333.0

02.02.1

3.00045.0

2.02.02.13.04.1

3.05333.02.045.05.09833.0

BDB)5.0)(3(BDB

Atk

u1 u2 u4 v4v2v1

7

)2(T)2()2(T)2()2(

10

2.0

05333.0

02.02.1

3.00045.0

2.02.02.13.04.1

3.05333.02.045.05.09833.0

BDB)5.0)(3(BDB

Atk

u3 u4 u2 v2v4v3

Step 4: Assemble the global stiffness matrix corresponding to the nonzero degrees of freedom

014433 vvuvuNotice that

Hence we need to calculate only a small (3x3) stiffness matrix

710

4.102.0

0983.045.0

2.045.0983.0

K

u1 u2v2

u1

u2

v2

Step 5: Compute consistent nodal loads

y

x

x

f

f

f

f

2

2

1

yf2

0

0

ySy ff2

10002

The consistent nodal load due to traction on the edge 3-2

lbx

dxx

dxN

tdxNf

x

x

xS y

2252

950

250

3150

)5.0)(300(

)300(

3

0

2

3

0

3

0 233

3

0 2332

3 2

3232

xN

lb

ffySy

1225

100022

Hence

Step 6: Solve the system equations to obtain the unknown nodal loads

fdK

1225

0

0

4.102.0

0983.045.0

2.045.0983.0

10

2

2

17

v

u

u

Solve to get

in

in

in

v

u

u

4

4

4

2

2

1

109084.0

101069.0

102337.0

Step 7: Compute the stresses in the elements

)1()1()1( dBD

With

00109084.0101069.00102337.0

d444

442211)1(

vuvuvuT

Calculate

psi

1.76

1.1391

1.114)1(

In Element #1

)2()2()2( dBD

With

44

224433)2(

109084.0101069.00000

d

vuvuvuT

Calculate

psi

35.363

52.28

1.114)2(

In Element #2

Notice that the stresses are constant in each element