mane 4240 & civl 4240 introduction to finite elements numerical integration in 2d prof. suvranu...

28
MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Upload: holly-houston

Post on 18-Dec-2015

283 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

MANE 4240 & CIVL 4240Introduction to Finite Elements

Numerical Integration in 2D

Prof. Suvranu De

Page 2: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Reading assignment:

Lecture notes, Logan 10.4

Summary:

• Gauss integration on a 2D square domain• Integration on a triangular domain• Recommended order of integration• “Reduced” vs “Full” integration; concept of “spurious” zero energy modes/ “hour-glass” modes

Page 3: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

1D quardrature rule recap

M

iii fWdfI

1

1

1)()(

Weight Integration point

Choose the integration points and weights to maximize accuracy

Newton-Cotes Gauss quadrature

1. ‘M’ integration points are necessary to exactly integrate a polynomial of degree ‘M-1’ 2. More expensive

1. ‘M’ integration points are necessary to exactly integrate a polynomial of degree ‘2M-1’ 2. Less expensive3. Exponential convergence, error proportional to M

M

2

2

1

Page 4: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Example

f

-1 13/1 3/1

3/1f 3/1f

)3

1()

3

1()(

1

1 ffdf

A 2-point Gauss quadrature rule

is exact for a polynomial of degree 3 or less

Page 5: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

dtdstsfI

1

1

1

1),(

2D square domain

s

t

1

1

1 1

3

1,

3

1

3

1,

3

1

3

1,

3

1

3

1,

3

1

M

i

M

jjiij

M

i

M

jjiji

M

jjj

tsfW

tsfWW

dstsfW

dtdstsfI

1 1

1 1

1

11

1

1

1

1

),(

),(

),(

),(

Using 1D Gauss rule to integrate along ‘t’

Using 1D Gauss rule to integrate along ‘s’

Where Wij =Wi Wj

Page 6: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

)3

1,

3

1()

3

1,

3

1()

3

1,

3

1()

3

1,

3

1(

),(2

1

2

1

ffff

tsfWIi j

jiij

For M=2

Wij =Wi Wj=1

Number the Gauss points IP=1,2,3,4

IPIP

IP fWdtdstsfI

4

1

1

1

1

1),(

Page 7: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

M

i

M

jjiij tsfWdtdstsfI

1 1

1

1

1

1),(),(

The rule

Uses M2 integration points on a nonuniform grid inside the parent element and is exact for a polynomial of degree (2M-1) i.e.,

121 1

1

1

1

1

MfortsWdtdstsM

i

M

jjiij

exact

A M2 –point rule is exact for a complete polynomial of degree (2M-1)

Page 8: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

CASE I: M=1 (One-point GQ rule)

t

s

1

1

1 1 s1=0, t1=0W1= 4

)0,0(4),(1

1

1

1fdtdstsfI

is exact for a product of two linear polynomials

Page 9: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

CASE II: M=2 (2x2 GQ rule)

)3

1,

3

1()

3

1,

3

1()

3

1,

3

1()

3

1,

3

1(

),(2

1

2

1

ffff

tsfWIi j

jiij

is exact for a product of two cubic polynomials

s

t

1

1

1 1

3

1,

3

1

3

1,

3

1

3

1,

3

1

3

1,

3

1

Page 10: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

CASE III: M=3 (3x3 GQ rule)

is exact for a product of two 1D polynomials of degree 5

s

t

1

1

1 1

3

1

3

1

1

1

1

1),(),(

i jjiij tsfWdtdstsfI

5

3

5

3

5

3

5

3

1

23

4 5

6

7

8

9

81

4081

25

,81

64

9876

5432

1

WWWW

WWWW

W

Page 11: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

ExamplesIf f(s,t)=1

4),(1

1

1

1

dtdstsfI

A 1-point GQ scheme is sufficient

If f(s,t)=s

0),(1

1

1

1

dtdstsfI

A 1-point GQ scheme is sufficient

If f(s,t)=s2t2

9

4),(

1

1

1

1

dtdstsfI

A 3x3 GQ scheme is sufficient

Page 12: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

2D Gauss quadrature for triangular domains

Remember that the parent element is a right angled triangle with unit sides

s

t

1

1

s=1-tt

t

1

0

1

0dsdt),(f

t

t

stsI

The type of integral encountered

M

IPIPIP

t

t

s

fW

tsI

1

1

0

1

0dsdt),(f

Page 13: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Constraints on the weightsif f(s,t)=1

2

1

2

1dsdt),(f

1

1

1

0

1

0

M

IPIP

M

IPIP

t

t

s

W

W

tsI

Page 14: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Example 1. A M=1 point rule is exact for a polynomial

ts

tsf 1~),(

3

1,

3

1

2

1fI

s

t

1

11/3

1/3

Page 15: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Why?

tstsf 321),(

Assume

321

1

0

1

0 !3

1

!3

1

2

1dsdt),(f

t

t

sts

Then

But

131211321

111

1

0

1

0

!3

1

!3

1

2

1

),(dsdt),(f

tsW

tsfWtst

t

s

Hence

!3

1;

!3

1;

2

111111 tWsWW

Page 16: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Example 2. A M=3 point rule is exact for a complete polynomial of degree 2

22

1~),(

tsts

ts

tsf

2

1,0

6

10,

2

1

6

1

2

1,

2

1

6

1fffI

s

t

1

1

1/2

1/22

1

3

Page 17: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Example 4. A M=4 point rule is exact for a complete polynomial of degree 3

3223

22

1~),(

tsttss

tsts

ts

tsf

2.0,6.096

252.0,2.0

96

256.0,2.0

96

25

3

1,

3

1

96

27ffffI

s

t

1

1 2

13 4

(1/3,1/3)

(0.2,0.2)

(0.2,0.6)

(0.6,0.2)

Page 18: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Recommended order of integration“Finite Element Procedures” by K. –J. Bathe

Page 19: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

“Reduced” vs “Full” integration

Full integration: Quadrature scheme sufficient to provide exact integrals of all terms of the stiffness matrix if the element is geometrically undistorted.Reduced integration: An integration scheme of lower order than required by “full” integration.

Recommendation: Reduced integration is NOT recommended.

Page 20: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Which order of GQ to use for full integration?

To computet the stiffness matrix we need to evaluate the following integral

1

1

1

1

T dsdt)det(BDB Jk

For an “undistroted” element det (J) =constant

Example : 4-noded parallelogram

st

tsN i

1

~

~B 1 s t

~BDBT 1 s ts2 st t2

Page 21: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Hence, 2M-1=2M=3/2

Hence we need at least a 2x2 GQ scheme

Example 2: 8-noded Serendipity element

~iN 1 s ts2 st t2

s2t st2

~B 1 s ts2 st t2

Page 22: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

~BDBT 1 s t s2 st t2

s3 s2t st2 t3

s4 s3t s2t2 st3 t4

Hence, 2M-1=4M=5/2

Hence we need at least a 3x3 GQ scheme

Page 23: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

“Spurious” zero energy mode/ “hour-glass” modeThe strain energy of an element

dVDdkdUeV

TT 2

1

2

1

Corresponding to a rigid body mode, 00 U

If U=0 for a mode d that is different from a rigid body mode, thend is known as a “spurious” zero energy mode or “hour-glass” mode

Such a mode is undesirable

Reduced integration leads to rank deficiency of the stiffness matrix and “spurious” zero energy modes

Page 24: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Example 1. 4-noded element

y

x

1

1

1 1 iT

NGAUSS

iiV

T DWdVDUe

12

1

Full integration: NGAUSS=4Element has 3 zero energy (rigid body) modes

Reduced integration: e.g., NGAUSS=1

004

yx

T DU

Page 25: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Consider 2 displacement fields

0v

xyCuxyCv

u

0

y

x

y

x

0

00

U

yxAt xyyx

We have therefore 2 hour-glass modes.

Page 26: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Propagation of hour-glass modes through a mesh

Page 27: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Example 2. 8-noded serendipity element

y

x

1

1

1 1 iT

NGAUSS

iiV

T DWdVDUe

12

1

Full integration: NGAUSS=9Element has 3 zero energy (rigid body) modes

Reduced integration: e.g., NGAUSS=4

Page 28: MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 2D Prof. Suvranu De

Element has one spurious zero energy mode corresponding to the following displacement field

)3/1(

)3/1(2

2

xyCv

yxCu

y

x

Show that the strains corresponding to this displacement field are all zero at the 4 Gauss points

Elements with zero energy modes introduce uncontrolled errors and should NOT be used in engineering practice.