mason abrf single_cell_2017

59
Cells that fell into wells with stories to tell Christopher E. Mason Associate Professor Department of Physiology and Biophysics, The Feil Family Brain and Mind Research Institute (BMRI) & The Institute for Computational Biomedicine (ICB) & the Meyer Cancer Center of Weill Cornell Medicine (WCM) Fellow of the Information Society Project, Yale Law School March 28 th , 2017 . @mason_lab

Upload: christopher-mason

Post on 05-Apr-2017

132 views

Category:

Science


0 download

TRANSCRIPT

Page 1: Mason abrf single_cell_2017

Cells that fell into wells with stories to tell

Christopher E. MasonAssociate Professor

Department of Physiology and Biophysics,The Feil Family Brain and Mind Research Institute (BMRI) &

The Institute for Computational Biomedicine (ICB) & the Meyer Cancer Center of Weill Cornell Medicine (WCM)Fellow of the Information Society Project, Yale Law School

March 28th, 2017.@mason_lab

Page 2: Mason abrf single_cell_2017

(0)

Background

Page 3: Mason abrf single_cell_2017

Genetic alterations can be selected for and potentially drive a tumor’s progression.

Alizadeh et al., “Toward understanding and exploiting tumor heterogeneity.” Nature Medicine, 2015

What else?

Page 4: Mason abrf single_cell_2017
Page 5: Mason abrf single_cell_2017

Li S, Garrett-Bakelman F, et al., Distinct Evolution and dynamics of epigenetic and genetic heterogeneity in AML. Nature Medicine, 2016.

Li S, et al., “Dynamic Evolution of Clonal Epialleles Revealed by Methclone.” Genome Biology, 2014.

Page 6: Mason abrf single_cell_2017

Mosaicism increases with age

Wang Y et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Clinical Chemistry 2014; 60(1):251-9.

% o

f cel

ls w

ith

X Ch

rom

osom

e Lo

ss (X

CL)

Page 7: Mason abrf single_cell_2017

http://2014hs.igem.org/Team:TAS_Taipei/project/abstract

Page 8: Mason abrf single_cell_2017

Epigenetic Drift in Twins

Mario F. Fraga et al. PNAS 2005;102:10604-10609

Page 9: Mason abrf single_cell_2017
Page 10: Mason abrf single_cell_2017

Horvath S. “DNA methylation age of human tissues and cell types.” Genome Biology. 2013;14(10):R115.

Page 11: Mason abrf single_cell_2017
Page 12: Mason abrf single_cell_2017

Prediction and Precision

Predictive Medicine

DiseasePrecision Medicine

Page 13: Mason abrf single_cell_2017

https://www.nasa.gov/content/nasas-journey-to-mars

ETA: 2035

Page 14: Mason abrf single_cell_2017

(1)

Single Cell Revolution

Page 15: Mason abrf single_cell_2017
Page 16: Mason abrf single_cell_2017

Rapid and Efficient Microfluidics•Partition 100-10,000+ cells

per channel in < 7 minutes•Run 1 to 8 channels in

parallel•No lower size limit on cells•Recovers up to 65% of all

loaded cells, including:–T cells, B cells, PBMCs and cell

lines–FACS-isolated cells–MACS MicroBead-enriched cells

•Low doublet rate: 0.9% per 1,000 cells

Page 17: Mason abrf single_cell_2017

Assay Scheme for 5’ Barcoding and V(D)J Enrichment

• RT enzyme and poly(dT) primer delivered to all GEMs as part of master mix

• Barcoded template switch oligo delivered to GEMs from Gel Beads

• RT reaction generates unbiased cDNA with a sequencing adapter, a cell barcode and a UMI on the 5’ end

• PCR with one primer for the 5’ adapter and one or more primers for the desired TCR/Ig constant regions.

• Fragmentation and sequencing optimized for assembly of the full V(D)J sequence (5’ UTR to constant regions) from short reads on a cell-by-cell basis.

Page 18: Mason abrf single_cell_2017

Sc - options

Page 19: Mason abrf single_cell_2017

Many options for single cells

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359768/pdf/jbt.17-2801-006-jbt.17-2801-006.pdf

Page 20: Mason abrf single_cell_2017
Page 21: Mason abrf single_cell_2017

Composite measurements and molecular compressed sensing for highly efficient transcriptomics

http://biorxiv.org/content/early/2017/01/02/091926

Page 22: Mason abrf single_cell_2017

http://biorxiv.org/content/early/2017/01/02/091926

Page 23: Mason abrf single_cell_2017

http://biorxiv.org/content/early/2017/01/02/091926

Page 24: Mason abrf single_cell_2017

data = opportunities1. Quantify heterogeneity

2. Visualize relationships between single cell transcriptomes3. Identify

signatures of response

4. Explore variable isoform expression

5. variant calling from sc-RNAseq

Page 25: Mason abrf single_cell_2017

How can we study the vast transcriptome?

exon1 exon2 exon3

exon1-exon2exon1-exon3exon2-exon3

exon1-exon2-exon3

6 63 15

7 127 21

8 255 28

3 7 3

4 15 6

5 31 10

1 1 0

2 3 1

Exons Variants Junctions

2n-1

Exon 1 Exon 2 Exon 3

Exon 1 Exon 2 Exon 3

n(n-1) 2

Exon4

Exon4

exon4 exon1- exon4exon2-exon4exon3-exon4

exon1-exon2-exon4exon1-exon3-exon4exon2-exon3-exon4

exon1-exon2-exon3-exon4

8x1083 theoretical transcript combinations8x1080 atoms in the universe

(159 atoms/star, 111 stars/galaxy, 110 galaxies)

Li and Mason, “The Pivotal Regulatory Landscape of RNA Modifications.” Annual Review of Genomics and Hunan Genetics, 2014

Page 26: Mason abrf single_cell_2017

What are the differences between cells?Exon 1 Exon 2 Exon 3

Exon 1 Exon 2 Exon 3

Exon4

Exon4

Page 27: Mason abrf single_cell_2017

Need a tool to characterize broken up reads…

Page 28: Mason abrf single_cell_2017

Since we already had Jitterbug for Transposable Element Insertions (TEIs)…

Page 29: Mason abrf single_cell_2017

DISCODistributions of Isoforms in Single Cell

Omics

Page 30: Mason abrf single_cell_2017

https://pbtech-vc.med.cornell.edu/git/mason-lab/disco/tree/master

Page 31: Mason abrf single_cell_2017

Pipeline

1. Align reads to reference genome (STAR, two-pass)2. Use MISO’s probabilistic framework to assign reads to isoforms

and estimate relative abundance of each isoform in each cell3. Run DISCO to

– filter miso results for coverage, presence of isoform in a minimum number of cells, etc.

– compare 2 groups of single cells (or any RNA-seq samples) using Kolmogorov-Smirnov tests

– visualize significant shifts

disco <miso_filelist.txt> <group1> <group2>

Page 32: Mason abrf single_cell_2017

DISCO: Distributions of Isoforms in Single Cell Omics

positional arguments: SampleAnnotationFile filename of tab separated text, no header, with columns: <path to miso summary file> <sample name> <group name> Group1 must match a group name in sample annotation file Group2 must match a group name in sample annotation file

optional arguments: -h, --help show this help message and exit -v, --version show program's version number and exit --outdir Output directory (default: ./disco_output/) --pkldir Directory to store intermediate data processing files (default: ./pkldir) --group1color Color in plots for group 1; can be {y, m, c, r, g, b, w, k} or html code (default: r) --group2color Color in plots for group 2; can be {y, m, c, r, g, b, w, k} or html code (default: b) --group1file output file for sample group 1. If not specified, will save to <outdir>/<group1name>_alldatadf.txt (default: None) --group2file output file for sample group 2. If not specified, will save to <outdir>/<group2name>_alldatadf.txt (default: None) --geneannotationfile Mapping of Ensembl gene IDs to HGNC symbol and gene descriptions (default: None) --transcriptannotationfile Mapping of Ensembl transcript IDs to isoform function (ex. protein coding, NMD, etc) (default: None) --maxciwidth Maximum width of confidence interval of PSI estimate (default: 1.0) --mininfreads Minimum number of informative reads to include PSI estimate (default: 0) --mindefreads Minimum number of definitive reads to include PSI estimate (default: 0) --minavgpsi Do not run statistical tests for isoforms with average PSI in both groups less than minavgpsi (default: 0.0) --minnumcells Do not run statistical test for isoform if less than minnumcells have information (default: 0) --minmedianshift Do not run statistical test for isoform if shift in median between the two groups is less than minmedianshift (default: 0) --stattest Which test to run? options: {KS, T} (default: KS)

usage: disco [-h] [-v] [--outdir] [--pkldir] [--group1color]

[--group2color] [--group1file] [--group2file] [--geneannotationfile] [--transcriptannotationfile]

[--maxciwidth] [--mininfreads]

[--mindefreads] [--minavgpsi] [--minnumcells] [--minmedianshift]

[--stattest] SampleAnnotationFile Group1 Group2

Disco, run-time options

Page 33: Mason abrf single_cell_2017

(2)

MDS

Page 34: Mason abrf single_cell_2017

Myelodysplastic Syndromes (MDS)

• class of bone marrow failure disorders

Page 35: Mason abrf single_cell_2017

Myelodysplastic Syndromes (MDS)

• class of bone marrow failure disorders• accumulation of abnormal hematopoietic

stem cells (HSCs) --> ineffective hematopoiesis

- Pang et al., 2013; Woll et al., 2014 - HSC = Lin-CD34+CD38-

CD90+CD45RA-

HSCs

Progenitors

Normal MDS

Page 36: Mason abrf single_cell_2017

Myelodysplastic Syndromes (MDS)

• class of bone marrow failure disorders• accumulation of abnormal hematopoietic

stem cells (HSCs) --> ineffective hematopoiesis

HSCs

Progenitors

Normal MDS heterogeneity

response totherapy

disease progression

?

? ?

Page 37: Mason abrf single_cell_2017

Myelodysplastic Syndromes (MDS)

• 30% patients progress to acute myeloid leukemia (AML)

• current therapies (ex. decitabine) produce partial or complete remissions in some patients but disease re-emerges in 100% of patients

Page 38: Mason abrf single_cell_2017

Experimental DesignDecitabine responders

Decitabine non-responders

Untreated Normal

Pre-Rx / Untreated serial 1

Post-Rx / Untreated serial 2

Purify HSCs with FACS

single cell processing with Fluidigm C1RNA-seq! (2 x 100)

max 96 cells per run

Lin- CD34+ CD38- CD90+ CD45RA-

Page 39: Mason abrf single_cell_2017

Samples

Patients Pre Post Response1 79 - UT2 63 85 UT3 19 71 NR4 56 31 R5 68 - R6 33 27 NR7 - 17 R9 61 - R

norm1 55 - -norm2 82 - -UT = Untreated

NR = Non-responderR = Responder

Pre = pre-decitabine in R and NR, serial time point 1 in UTPost = post-decitabine in R and NR, serial time point 2 in UT

number of cells

Page 40: Mason abrf single_cell_2017

differentially expressed genes between MDS (pre-treatment) and normal

Z-score of log2(FPKM+1) of DEGs at FDR 0.01

Page 41: Mason abrf single_cell_2017

Pathways enriched in DEGs

Page 42: Mason abrf single_cell_2017

Lineage markers

Lineage Negative PositiveB-cell 3 9

Erythroid/Megakaryocytic 0 5

HSC 15 90Lymphoid 4 10Myeloid 0 7

T-Cell 7 10

number of genes

MEIS1CXCR4HLFMECOMNR4A2

MPOCEBPA

Genes that overlap with MDS v Norm DEGs

Page 43: Mason abrf single_cell_2017

Clouds of patient groups

Page 44: Mason abrf single_cell_2017
Page 45: Mason abrf single_cell_2017

Assign cells to stem cell or myeloid states

Page 46: Mason abrf single_cell_2017

Semi-supervised pseudotime ordering based on 80 marker genes

monocle R package

Page 47: Mason abrf single_cell_2017

Normal HSCs exclusively occupy the lower end of the pseudotime lineage tree

***

Page 48: Mason abrf single_cell_2017

Differences in cell state distributions between disease groups

Page 49: Mason abrf single_cell_2017

Effect of treatment on cell states

Page 50: Mason abrf single_cell_2017

Effect of treatment on cell states

Page 51: Mason abrf single_cell_2017

Normalized expression of genes differentially expressed with pseudotime (FDR 0.01)

Page 52: Mason abrf single_cell_2017

Enriched pathways in genes differentially expressed with pseudotime

Page 53: Mason abrf single_cell_2017

Pathways differentiating branch 1 and 2

branch 1

branch 2

Branch 1

Branch 2

Page 54: Mason abrf single_cell_2017

Participatory medicine with twin astronauts

Page 55: Mason abrf single_cell_2017

Planets are really just big cells

Page 56: Mason abrf single_cell_2017

Conclusions

• Single cell sequencing reveals a complex and heterogeneous transcriptional landscape in hematopoietic stem cells

• Lineage ordering of HSCs based on stem cell and myeloid marker genes reveals distinct cell states between:– MDS and normal HSCs– Decitabine responders and non-responders– Pre- and post-treatment

• Decitabine does not eradicate all (or even most) MDS-specific cell states, suggesting therapies that target these cells may have better long-term success

• Relevant functional processes altered in these cells include ribosome function, p53 signaling, Rap1 signaling, B cell receptor signaling, etc.

• We need a planetary-size capture and sequencing system

Page 57: Mason abrf single_cell_2017

These People are Awesome @mason_lab

Page 58: Mason abrf single_cell_2017

Thanks to the Swabbing Teams! www.pathomap.org/people/

Page 59: Mason abrf single_cell_2017

Deep Gratitude to Many People:

IlluminaGary SchrothMarc Van Oene

Univ. ChicagoYoav Gilad

FDA/SEQC/Fudan Univ.Leming Shi

NIH/UDP/NCBIJean & Danielle Thierry-Mieg

BaylorJeff Rogers

MSKCCDanwei HuangfuChristina LeslieRoss LevineAlex Kentsis

HudsonAlphaShawn LevyBraden Boone

Mason LabEbrahim AfshinnekooSofia AhsanuddinNoah AlexanderPradeep AmbroseDaniela BezdanMarjan BozinoskiDhruva ChandramohanChou ChouTim DonahoeFrancine Garrett-BakelmanJonathan FooxElizabeth Hénaff Alexa McIntyreCem MeydenNiamh O’HaraRachid OunitLenore PipesJake ReedHeba ShabaanPriyanka VijayDavid Westfall

Cornell/WCMScott BlanchardSelina Chen-KiangOlivier ElementoSamie JaffreyAri MelnickMargaret RossEpigenomics Core

DukeStacy HornerNandan Gokhale

Icahn/MSSMEric Schadt, Andrew Kasarskis,Joel Dudley, Ali Bashir, Bobby Sebra

ABRF George GrillsDon BaldwinCharlie Nicolet

MiamiMaria E Figueroa

AMNHGeorge AmatoMark Siddall

@mason_lab

NYUMartin BlaserJane CarltonJulia MaritzChris Park

MIT Media LabKevin SlavinDevora NajjarRegina Flores

RockefellerJeanne GarbarinoCharles Rice

NASAAaron BurtonSarah Castro-WallaceKate RubinsGraham ScottCraig Kundrot

Jackson LabsSheng Li

UCSFCharles Chiu

XMP/MGRGScott TigheKen McGrathRuss CarmicalScott Jackson