mat2305 linear algebra :week2 · outline for week 2 chapter 2 matrices 2.1 matrices and matrix...

223
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAT2305 LINEAR ALGEBRA :Week2 Thanatyod Jampawai, Ph.D. Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 1 / 60

Upload: others

Post on 25-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MAT2305 LINEAR ALGEBRA :Week2

Thanatyod Jampawai, Ph.D.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 1 / 60

Page 2: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Review Week 1

Linear Equation and Linear System of Linear EquationsSolutionConsistent and InconsistentGuass EliminationAugmented MatrixElementary Row Operations (EROs)Row Echelon Form (REF) vs Row Reduced Echelon Form (RREF)Guass-Jordan Elimination

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 2 / 60

Page 3: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline for Week 2

Chapter 2 Matrices2.1 Matrices and Matrix Operations2.2 Inverse Matrix2.3 Linear System with Invertibility

Assignment 2

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 3 / 60

Page 4: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices

Chapter 2 Matrices

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 4 / 60

Page 5: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

2.1 Matrices and Matrix Operations

Aj.Thanatyod Jampwai, faculty of education, SSRU, spent lecture two sujectsduring a certain week for semester 2/2017:

Mon. Tues. Wed. Thurs. Fri. Sat. SunMAP1405: Number Theory 0 6 0 0 0 0 0MAT2305: Linear Algebra 6 0 0 0 0 0 0

The following rectangular array of number with 2 rows and 7 columns iscalled a matrix: [

0 6 0 0 0 0 06 0 0 0 0 0 0

]

Definition (2.1.1)

A matrix is a rectangular array of numbers. The numbers in the array are

called the entries in the matrix.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 5 / 60

Page 6: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

2.1 Matrices and Matrix Operations

Aj.Thanatyod Jampwai, faculty of education, SSRU, spent lecture two sujectsduring a certain week for semester 2/2017:

Mon. Tues. Wed. Thurs. Fri. Sat. SunMAP1405: Number Theory 0 6 0 0 0 0 0MAT2305: Linear Algebra 6 0 0 0 0 0 0

The following rectangular array of number with 2 rows and 7 columns iscalled a matrix: [

0 6 0 0 0 0 06 0 0 0 0 0 0

]

Definition (2.1.1)

A matrix is a rectangular array of numbers. The numbers in the array are

called the entries in the matrix.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 5 / 60

Page 7: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

2.1 Matrices and Matrix Operations

Aj.Thanatyod Jampwai, faculty of education, SSRU, spent lecture two sujectsduring a certain week for semester 2/2017:

Mon. Tues. Wed. Thurs. Fri. Sat. SunMAP1405: Number Theory 0 6 0 0 0 0 0MAT2305: Linear Algebra 6 0 0 0 0 0 0

The following rectangular array of number with 2 rows and 7 columns iscalled a matrix: [

0 6 0 0 0 0 06 0 0 0 0 0 0

]

Definition (2.1.1)

A matrix is a rectangular array of numbers. The numbers in the array are

called the entries in the matrix.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 5 / 60

Page 8: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

The size of a matrix is described in term of the number of rows andcolumns it contains.

[−1 3 0 21 0 1 0

]is a martix that its size is 2 by 4 (written 2× 4).

A matrix with only one column is called a column matrix (or a columnvector),

row matrix:[1 0 2 3 5

]A matrix with only one row is called a row matrix (or a row vector).

column matrix:[12

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 6 / 60

Page 9: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

The size of a matrix is described in term of the number of rows andcolumns it contains. [

−1 3 0 21 0 1 0

]is a martix that its size is 2 by 4 (written 2× 4).

A matrix with only one column is called a column matrix (or a columnvector),

row matrix:[1 0 2 3 5

]A matrix with only one row is called a row matrix (or a row vector).

column matrix:[12

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 6 / 60

Page 10: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

The size of a matrix is described in term of the number of rows andcolumns it contains. [

−1 3 0 21 0 1 0

]is a martix that its size is 2 by 4 (written 2× 4).

A matrix with only one column is called a column matrix (or a columnvector),

row matrix:[1 0 2 3 5

]

A matrix with only one row is called a row matrix (or a row vector).

column matrix:[12

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 6 / 60

Page 11: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

The size of a matrix is described in term of the number of rows andcolumns it contains. [

−1 3 0 21 0 1 0

]is a martix that its size is 2 by 4 (written 2× 4).

A matrix with only one column is called a column matrix (or a columnvector),

row matrix:[1 0 2 3 5

]A matrix with only one row is called a row matrix (or a row vector).

column matrix:[12

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 6 / 60

Page 12: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

Page 13: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

Page 14: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

Page 15: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

Page 16: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n ,

and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

Page 17: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

A general m× n matrix as

a11 a12 · · · a1na21 a22 · · · a2n

......

...am1 am2 · · · amn

The preceding matrix A can be written as

[aij ]m×n or [aij ].

The entry that occurs in row i and column j of a matrix A will be denoted by aij .

A = [aij ]3×5 =

a11 a12 a13 a14 a15a21 a22 a23 a24 a25a31 a32 a33 a34 a35

A matrix A with n rows and n columns is called a square matrix of order n , and entries

a11, a22, ..., ann are said to be on the main diagonal of A.

A = [aij ]3×3 =

a11 a12 a13a21 a22 a23a31 a32 a33

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 7 / 60

Page 18: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Definition (2.1.2)

Two matrices are defined to be equal if they have the same size and thiercorresponding entries are eqaul.

Example (2.1.1)

Compute x and y if A = B.

A =

[1 x+ 13 2

]and B =

[1 y + 2

1− y 2

].

Solution

x+ 1 = y + 2 → x− y = 1

3 = 1− y → y = −2 ∴ x = −1

Therefore, x = −1 and y = −2 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 8 / 60

Page 19: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Definition (2.1.2)

Two matrices are defined to be equal if they have the same size and thiercorresponding entries are eqaul.

Example (2.1.1)

Compute x and y if A = B.

A =

[1 x+ 13 2

]and B =

[1 y + 2

1− y 2

].

Solution

x+ 1 = y + 2 → x− y = 1

3 = 1− y → y = −2 ∴ x = −1

Therefore, x = −1 and y = −2 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 8 / 60

Page 20: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Definition (2.1.2)

Two matrices are defined to be equal if they have the same size and thiercorresponding entries are eqaul.

Example (2.1.1)

Compute x and y if A = B.

A =

[1 x+ 13 2

]and B =

[1 y + 2

1− y 2

].

Solution

x+ 1 = y + 2 → x− y = 1

3 = 1− y → y = −2 ∴ x = −1

Therefore, x = −1 and y = −2 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 8 / 60

Page 21: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Sum and Difference of Matrices

Definition (2.1.3)

Let A = [aij ] and B = [bij ] be matrices of the same size.

The sum of A and B

A+B = [aij + bij ]

The difference of A and B

A−B = [aij − bij ]

Matrices of different sizes cannot be added or substracted.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 9 / 60

Page 22: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.2)

Find A+B, A−B, A+ C and B − C.

A =

1 3 43 2 −20 −1 3

, B =

1 2 3−4 2 15 1 0

and C =

[1 67 2

].

Solution

A+B =

1 3 43 2 −20 −1 3

+

1 2 3−4 2 15 1 0

=

2 5 7−1 4 −15 0 3

#

A−B =

1 3 43 2 −20 −1 3

1 2 3−4 2 15 1 0

=

0 1 17 0 −3−5 −2 3

#

A+ C and B − C are undefined because two matrices are different sizes. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 10 / 60

Page 23: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.2)

Find A+B, A−B, A+ C and B − C.

A =

1 3 43 2 −20 −1 3

, B =

1 2 3−4 2 15 1 0

and C =

[1 67 2

].

Solution

A+B =

1 3 43 2 −20 −1 3

+

1 2 3−4 2 15 1 0

=

2 5 7−1 4 −15 0 3

#

A−B =

1 3 43 2 −20 −1 3

1 2 3−4 2 15 1 0

=

0 1 17 0 −3−5 −2 3

#

A+ C and B − C are undefined because two matrices are different sizes. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 10 / 60

Page 24: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.2)

Find A+B, A−B, A+ C and B − C.

A =

1 3 43 2 −20 −1 3

, B =

1 2 3−4 2 15 1 0

and C =

[1 67 2

].

Solution

A+B =

1 3 43 2 −20 −1 3

+

1 2 3−4 2 15 1 0

=

2 5 7−1 4 −15 0 3

#

A−B =

1 3 43 2 −20 −1 3

1 2 3−4 2 15 1 0

=

0 1 17 0 −3−5 −2 3

#

A+ C and B − C are undefined because two matrices are different sizes. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 10 / 60

Page 25: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Scalar Multiplication

Definition (2.1.4)

Let A = [aij ] be any matrix and c be any scalar. Then the product cA is thematrix obtained by multuplying each entry of the matrix A by c. The matrixcA is said to be a scalar multiple of A .

cA = [caij ]

Example (2.1.3)

For the matrices

A =

[1 −4 4 10 3 −2 10

], B =

[1 6 3 53 2 −1 2

]and C =

[5 0 9 57 2 0 −3

].

Compute 2A, 3B −A, C − (A+ 2B) and 2(A+B)− 3C

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 11 / 60

Page 26: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Scalar Multiplication

Definition (2.1.4)

Let A = [aij ] be any matrix and c be any scalar. Then the product cA is thematrix obtained by multuplying each entry of the matrix A by c. The matrixcA is said to be a scalar multiple of A .

cA = [caij ]

Example (2.1.3)

For the matrices

A =

[1 −4 4 10 3 −2 10

], B =

[1 6 3 53 2 −1 2

]and C =

[5 0 9 57 2 0 −3

].

Compute 2A, 3B −A, C − (A+ 2B) and 2(A+B)− 3C

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 11 / 60

Page 27: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

Page 28: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]

=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

Page 29: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]

=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

Page 30: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

Page 31: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

Page 32: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

Page 33: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]

=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

Page 34: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2A = 2

[1 −4 4 10 3 −2 10

]=

[2 −8 8 20 6 −4 20

]#

3B −A = 3

[1 6 3 53 2 −1 2

]−

[1 −4 4 10 3 −2 10

]=

[3 18 9 159 6 −3 6

]−

[1 −4 4 10 3 −2 10

]=

[2 22 5 149 3 −1 −4

]#

C − (A+ 2B) =

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+ 2

[1 6 3 53 2 −1 2

])

=

[5 0 9 57 2 0 −3

]− (

[1 −4 4 10 3 −2 10

]+

[2 12 6 106 4 −2 4

])

=

[5 0 9 57 2 0 −3

]−

[3 −8 10 116 7 −4 14

]=

[2 8 −1 −61 −5 4 −17

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 12 / 60

Page 35: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

2(A+B)− 3C = 2(

[1 −4 4 10 3 −2 10

]+

[1 6 3 53 2 −1 2

])− 3

[5 0 9 57 2 0 −3

]= 2

[2 2 7 63 5 −3 12

]−

[15 0 27 1521 6 0 −6

]=

[4 4 14 126 10 −6 24

]−

[15 0 27 1521 6 0 −6

]=

[−11 4 −13 −3−15 4 −6 30

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 13 / 60

Page 36: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Matrix Multiplication

Definition (2.1.5)

Let A = [aij ] be an m× r matrix and B = [bij ] be an r × n matrix. Then

AB =

a11 a12 · · · a1ra21 a22 · · · a2r...

......

ai1 ai2 · · · air...

......

am1 am2 · · · amr

b11 b12 · · · b1j · · · b1nb21 b22 · · · b2j · · · b2n...

......

...br1 br2 · · · brj · · · brn

,

the entry cij of product AB which

AB = [aij ]m×r[bij ]r×n = [cij ]m×n

is given bycij = ai1b1j + ai2b2j + · · ·+ airbrj .

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 14 / 60

Page 37: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

Page 38: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

Page 39: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]

=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

Page 40: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

Page 41: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]

=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

Page 42: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

Page 43: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

Page 44: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

Page 45: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Example (2.1.4)

Find AB, BA, BC, CB, CA and AC.

A =

[1 3 45 2 6

], B =

1 67 20 1

and C =

0 6 −15 1 20 1 0

Solution

AB =

[1 3 45 2 6

] 1 67 20 1

=

[1 + 21 + 0 6 + 6 + 45 + 14 + 0 30 + 4 + 6

]=

[22 1619 40

]#

BA =

1 67 20 1

[ 1 3 45 2 6

]=

1 + 30 3 + 12 4 + 367 + 10 21 + 4 28 + 120 + 5 0 + 2 0 + 6

=

31 15 4017 25 405 2 6

#

BC =

1 67 20 1

0 6 −15 1 20 1 0

Undefined #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 15 / 60

Page 46: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

Page 47: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

Page 48: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

Page 49: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]

Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

Page 50: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

Page 51: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

Page 52: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

Page 53: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Solution

CB=

0 6 −15 1 20 1 0

1 67 20 1

=

0 + 42 + 0 0 + 12− 15 + 7 + 0 30 + 2 + 20 + 7 + 0 0 + 2 + 0

=

42 1112 347 2

#

CA =

0 6 −15 1 20 1 0

[ 1 3 45 2 6

]Undefined #

AC =

[1 3 45 2 6

] 0 6 −15 1 20 1 0

=

[0 + 15 + 0 6 + 3 + 4 −1 + 6 + 00 + 10 + 0 30 + 2 + 6 −5 + 4 + 0

]

=

[15 13 510 38 −1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 16 / 60

Page 54: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Theorem (2.1.1)

Assuming that the sizes of the matrices are such that indicated operations can beperformed, the following rules of matrix arithemetic are valid.

1 A+B = B +A (Commutative law for addition)

2 A+ (B + C) = (A+B) + C (Associative law for addition)

3 A(BC) = (AB)C (Commutative law for multiplication)

4 A(B + C) = AB +AC (Left distributive law)

5 (B + C)A = BA+ CA (Right distributive law)

Theorem (2.1.2)

Assuming that the sizes of the matrices are such that indicated operations can beperformed, the following rules of matrix arithemetic are valid. For any scalars a and b,

1 A(B − C) = AB −AC and (B − C)A = BA− CA

2 a(B + C) = aB + aC and a(B − C) = aB − aC

3 (a+ b)C = aC + bC and (a− b)C = aC − bC

4 (ab)C = a(bC) = b(aC) and a(BC) = B(aC) = (aB)C

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 17 / 60

Page 55: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Theorem (2.1.1)

Assuming that the sizes of the matrices are such that indicated operations can beperformed, the following rules of matrix arithemetic are valid.

1 A+B = B +A (Commutative law for addition)

2 A+ (B + C) = (A+B) + C (Associative law for addition)

3 A(BC) = (AB)C (Commutative law for multiplication)

4 A(B + C) = AB +AC (Left distributive law)

5 (B + C)A = BA+ CA (Right distributive law)

Theorem (2.1.2)

Assuming that the sizes of the matrices are such that indicated operations can beperformed, the following rules of matrix arithemetic are valid. For any scalars a and b,

1 A(B − C) = AB −AC and (B − C)A = BA− CA

2 a(B + C) = aB + aC and a(B − C) = aB − aC

3 (a+ b)C = aC + bC and (a− b)C = aC − bC

4 (ab)C = a(bC) = b(aC) and a(BC) = B(aC) = (aB)C

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 17 / 60

Page 56: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Transpose

Definition (2.1.6)

Let A = [aij ] be an m× n matrix. Then the traspose of A , denoted by AT ,is defined to be

AT = [aji]n×m

Example (2.1.5)

Find transposes of the following matrices.

A =

[1 5 62 2 7

], B =

[3 95 8

], C =

[1 3 −2

]and D =

123

Solution

AT =

1 25 26 7

, BT =

[3 59 8

], CT =

13−2

and DT =[1 2 3

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 18 / 60

Page 57: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Transpose

Definition (2.1.6)

Let A = [aij ] be an m× n matrix. Then the traspose of A , denoted by AT ,is defined to be

AT = [aji]n×m

Example (2.1.5)

Find transposes of the following matrices.

A =

[1 5 62 2 7

], B =

[3 95 8

], C =

[1 3 −2

]and D =

123

Solution

AT =

1 25 26 7

, BT =

[3 59 8

], CT =

13−2

and DT =[1 2 3

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 18 / 60

Page 58: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Transpose

Definition (2.1.6)

Let A = [aij ] be an m× n matrix. Then the traspose of A , denoted by AT ,is defined to be

AT = [aji]n×m

Example (2.1.5)

Find transposes of the following matrices.

A =

[1 5 62 2 7

], B =

[3 95 8

], C =

[1 3 −2

]and D =

123

Solution

AT =

1 25 26 7

, BT =

[3 59 8

], CT =

13−2

and DT =[1 2 3

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 18 / 60

Page 59: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Theorem (2.1.3)

Assuming that the sizes of the matrices are such that indicated operations canbe performed, the following rules of transpose of matrices are valid.

1 (A+B)T = AT +BT and (A−B)T = AT −BT

2 (AB)T = BTAT

3 (AT )T = A

4 (aA)T = a(AT ) where a is a scalar.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 19 / 60

Page 60: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Zero Matrix

Definition (2.1.7)

A zero matrix is a matrix whose entries are zero, denoted by 0.

Theorem (2.1.4)

Assuming that the sizes of the matrices are such that indicated operations canbe performed, the following rules of matrix arithemetic are valid.

1 A+ 0 = A = 0 +A (0 is the identity under addition of matrix)

2 A+ (−A) = 0 = (−A) +A (additive inverse of matrix)

3 0−A = −A

4 0A = 0 = A0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 20 / 60

Page 61: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Matrices and Matrix Operations

Zero Matrix

Definition (2.1.7)

A zero matrix is a matrix whose entries are zero, denoted by 0.

Theorem (2.1.4)

Assuming that the sizes of the matrices are such that indicated operations canbe performed, the following rules of matrix arithemetic are valid.

1 A+ 0 = A = 0 +A (0 is the identity under addition of matrix)

2 A+ (−A) = 0 = (−A) +A (additive inverse of matrix)

3 0−A = −A

4 0A = 0 = A0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 20 / 60

Page 62: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

2.2 Inverse Matrix

Definition (2.2.1)

An identity matrix , denoted by I, is a square matrix with 1’s on the maindoagonal and 0’s off the main diagonal.

If it is important to emphasize the size, we shall write In for n× n identitymatrix, such as

I2 =

[1 00 1

], I3 =

1 0 00 1 00 0 1

, I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

, and so on.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 21 / 60

Page 63: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

2.2 Inverse Matrix

Definition (2.2.1)

An identity matrix , denoted by I, is a square matrix with 1’s on the maindoagonal and 0’s off the main diagonal.

If it is important to emphasize the size, we shall write In for n× n identitymatrix, such as

I2 =

[1 00 1

], I3 =

1 0 00 1 00 0 1

, I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

, and so on.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 21 / 60

Page 64: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 65: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 66: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]

=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 67: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 68: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]

= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 69: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 70: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 71: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 72: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]

= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 73: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.1)

Let A = [aij ] be 2× 3 matrix. Find I2A and AI3.

Solution

A =

[a11 a12 a13a21 a22 a23

]

I2A =

[1 00 1

] [a11 a12 a13a21 a22 a23

]=

[a11 + 0 a12 + 0 a13 + 00 + a21 0 + a22 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

AI3 =

[a11 a12 a13a21 a22 a23

] 1 0 00 1 00 0 1

=

[a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23

]

=

[a11 a12 a13a21 a22 a23

]= A #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 22 / 60

Page 74: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Invertible Matrix

Definition (2.2.2)

Let A be a square matrix. If a matrix B of the same size to A can be foundsuch that

AB = I = BA,

then A is said to be invertible and B is called an inverse of A. If no such

matrix B can be found, then A is said to be singular .

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 23 / 60

Page 75: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

Page 76: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]

=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

Page 77: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]

=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

Page 78: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

Page 79: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]

=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

Page 80: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]

=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

Page 81: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

Page 82: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.2)

Show that B is an inverse of A.

A =

[3 51 2

]and B =

[2 −5−1 3

]

Proof .

AB =

[3 51 2

] [2 −5−1 3

]=

[6− 5 15− 152− 2 −5 + 6

]=

[1 00 1

]= I

BA =

[2 −5−1 3

] [3 51 2

]=

[6− 5 10− 10−3 + 3 −5 + 6

]=

[1 00 1

]= I

∴ AB = I = BA. Thus, B is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 24 / 60

Page 83: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Uniqueness of Inverse

Theorem (2.2.1)

If a matrix is invertible, then it has a unique inverse.

Proof .

Let B1 and B2 be inverses of A. Then AB1 = I = B1A and AB2 = I = B2A. We obtain

B2(AB1) = B2(I)

(B2A)B1 = B2

(I)B1 = B2

B1 = B2

We can say of the inverse of an invertible matrix A denoted by A−1 ; that is

A−1A = I = AA−1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 25 / 60

Page 84: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Uniqueness of Inverse

Theorem (2.2.1)

If a matrix is invertible, then it has a unique inverse.

Proof .

Let B1 and B2 be inverses of A. Then AB1 = I = B1A and AB2 = I = B2A. We obtain

B2(AB1) = B2(I)

(B2A)B1 = B2

(I)B1 = B2

B1 = B2

We can say of the inverse of an invertible matrix A denoted by A−1 ; that is

A−1A = I = AA−1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 25 / 60

Page 85: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Uniqueness of Inverse

Theorem (2.2.1)

If a matrix is invertible, then it has a unique inverse.

Proof .

Let B1 and B2 be inverses of A. Then AB1 = I = B1A and AB2 = I = B2A. We obtain

B2(AB1) = B2(I)

(B2A)B1 = B2

(I)B1 = B2

B1 = B2

We can say of the inverse of an invertible matrix A denoted by A−1 ; that is

A−1A = I = AA−1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 25 / 60

Page 86: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Inverse of 2× 2 Matrix

Theorem (2.2.2)

The matrix

A =

[a bc d

]is invertible if ad− bc ̸= 0, in which case the inverse is given by the formula

A−1 =1

ad− bc

[d −b−c a

]

Proof .

AA−1 =

[a bc d

]1

ad− bc

[d −b−c a

]=

1

ad− bc

[ad− bc −ab+ abcd− cd −cb+ ad

]=

[1 00 1

]A−1A =

1

ad− bc

[d −b−c a

] [a bc d

]=

1

ad− bc

[ad− bc bd− bd−ac+ ac −bc+ ad

]=

[1 00 1

]∴ AA−1 = I = A−1A. Thus, A−1 is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 26 / 60

Page 87: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Inverse of 2× 2 Matrix

Theorem (2.2.2)

The matrix

A =

[a bc d

]is invertible if ad− bc ̸= 0, in which case the inverse is given by the formula

A−1 =1

ad− bc

[d −b−c a

]Proof .

AA−1 =

[a bc d

]1

ad− bc

[d −b−c a

]=

1

ad− bc

[ad− bc −ab+ abcd− cd −cb+ ad

]=

[1 00 1

]A−1A =

1

ad− bc

[d −b−c a

] [a bc d

]=

1

ad− bc

[ad− bc bd− bd−ac+ ac −bc+ ad

]=

[1 00 1

]

∴ AA−1 = I = A−1A. Thus, A−1 is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 26 / 60

Page 88: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Inverse of 2× 2 Matrix

Theorem (2.2.2)

The matrix

A =

[a bc d

]is invertible if ad− bc ̸= 0, in which case the inverse is given by the formula

A−1 =1

ad− bc

[d −b−c a

]Proof .

AA−1 =

[a bc d

]1

ad− bc

[d −b−c a

]=

1

ad− bc

[ad− bc −ab+ abcd− cd −cb+ ad

]=

[1 00 1

]A−1A =

1

ad− bc

[d −b−c a

] [a bc d

]=

1

ad− bc

[ad− bc bd− bd−ac+ ac −bc+ ad

]=

[1 00 1

]∴ AA−1 = I = A−1A. Thus, A−1 is an inverse of A.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 26 / 60

Page 89: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]

Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 90: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]=

(−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 91: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 92: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]

= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 93: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 94: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]

=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 95: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 96: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]

=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 97: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 98: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]

=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 99: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 100: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]=

(1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 101: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.3)

Find A−1, B−1, A−1B−1, B−1A−1 and (AB)−1.

A =

[1 42 7

]and B =

[−3 −51 2

]Solution

A−1 = 17(1)−4(2)

[7 −4−2 1

]= (−1)

[7 −4−2 1

]=

[−7 42 −1

]#

B−1 = 12(−3)−1(−5)

[2 −(−5)−1 −3

]= (−1)

[2 5−1 −3

]=

[−2 −51 3

]#

A−1B−1=

[−7 42 −1

] [−2 −51 3

]=

[14 + 4 35 + 12−4− 1 −10− 3

]=

[18 47−5 −13

]#

B−1A−1=

[−2 −51 3

] [−7 42 −1

]=

[14− 10 −8 + 5−7 + 6 4− 3

]=

[4 −3−1 1

]#

AB =

[1 42 7

] [−3 −51 2

]=

[−3 + 4 −5 + 8−6 + 7 −10 + 14

]=

[1 31 4

]

(AB)−1 = 11(4)−(−1)(−3)

[1 −3−1 4

]= (1)

[4 −3−1 1

]=

[4 −3−1 1

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 27 / 60

Page 102: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Theorem (2.2.3)

Let A and B be square matrices of the same size. If A and B are invertible,then

(AB)−1 = B−1A−1

Proof.

Let A and B be square matrices of the same size. Assume that A and B are invertible. Then

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B

= B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1

= AA−1 = I

Thus, B−1A−1 is the inverse of AB. Hence, (AB)−1 = B−1A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 28 / 60

Page 103: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Theorem (2.2.3)

Let A and B be square matrices of the same size. If A and B are invertible,then

(AB)−1 = B−1A−1

Proof.

Let A and B be square matrices of the same size. Assume that A and B are invertible.

Then

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B

= B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1

= AA−1 = I

Thus, B−1A−1 is the inverse of AB. Hence, (AB)−1 = B−1A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 28 / 60

Page 104: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Theorem (2.2.3)

Let A and B be square matrices of the same size. If A and B are invertible,then

(AB)−1 = B−1A−1

Proof.

Let A and B be square matrices of the same size. Assume that A and B are invertible. Then

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B

= B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1

= AA−1 = I

Thus, B−1A−1 is the inverse of AB. Hence, (AB)−1 = B−1A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 28 / 60

Page 105: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Theorem (2.2.3)

Let A and B be square matrices of the same size. If A and B are invertible,then

(AB)−1 = B−1A−1

Proof.

Let A and B be square matrices of the same size. Assume that A and B are invertible. Then

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B

= B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1

= AA−1 = I

Thus, B−1A−1 is the inverse of AB. Hence, (AB)−1 = B−1A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 28 / 60

Page 106: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Power of Matrix

Definition (2.2.3)

Let A be a square matrix. Then we define the nonnegative integer n power of A to be

the nonnegative integer power of A to be

A0 = I and An = AA · · ·A︸ ︷︷ ︸n−factors

for n > 0

if A is invertibleA−n = (A−1)n = A−1A−1 · · ·A−1︸ ︷︷ ︸

n−factors

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 29 / 60

Page 107: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.4)

Let A be invertible matrix and n and m be integers. Then

1 AmAn = Am+n

2 (An)m = (Am)n = Anm

Theorem (2.2.5)

Let A be invertible matrix and n be an integer. Then

1 (A−1)−1 = A

2 (An)−1 = (A−1)n

3 (AT )−1 = (A−1)T

4 (kA)−1 = 1kA−1 where k ∈ R and k ̸= 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 30 / 60

Page 108: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.4)

Let A be invertible matrix and n and m be integers. Then

1 AmAn = Am+n

2 (An)m = (Am)n = Anm

Theorem (2.2.5)

Let A be invertible matrix and n be an integer. Then

1 (A−1)−1 = A

2 (An)−1 = (A−1)n

3 (AT )−1 = (A−1)T

4 (kA)−1 = 1kA−1 where k ∈ R and k ̸= 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 30 / 60

Page 109: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 110: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]

=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 111: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]

=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 112: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 113: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 114: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 115: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]

=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 116: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 117: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]

A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 118: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1

= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 119: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

]

[3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 120: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]

= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 121: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]

=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 122: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]

=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 123: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]

=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 124: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 125: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4

= 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 126: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3

= 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 127: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]

= 116

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 128: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]

= 116

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 129: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]

=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 130: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.4)

Find A2, (AT )−1, A−3 and (2A)−4 if A =

[1 21 3

]

Solution

A2 = AA =

[1 21 3

] [1 21 3

]=

[1 + 2 2 + 61 + 3 2 + 9

]=

[3 84 11

]#

(AT )−1 =

([1 21 3

]T)−1

=

[1 12 3

]−1

= 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]#

A−1 = 11(3)−1(2)

[3 −2−1 1

]=

[3 −2−1 1

]A−3 = A−1A−1A−1= A−1

[3 −2−1 1

] [3 −2−1 1

]= A−1

[9 + 2 −6− 2−3− 1 2 + 1

]=

[3 −2−1 1

] [11 −8−4 3

]=

[33 + 8 −24− 6−11− 4 8 + 3

]=

[41 −30−15 11

]#

(2A)−4 = 2−4A−4 = 116

A−1A−3 = 116

[3 −2−1 1

] [41 −30−15 11

]= 1

16

[123 + 30 −90− 22−41− 15 30 + 11

]= 1

16

[153 −112−56 41

]=

[ 15316

−7

− 72

4116

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 31 / 60

Page 131: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Polynomial Matrix

Definition (2.2.4)

Let A be a square matrix. If

p(x) = a0 + a1x+ a2x2 + · · ·+ anx

n

is any polynomial, the we define

p(A) = a0I + a1A+ a2A2 + · · ·+ anA

n.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 32 / 60

Page 132: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Polynomial Matrix

Definition (2.2.4)

Let A be a square matrix. If

p(x) = a0 + a1x+ a2x2 + · · ·+ anx

n

is any polynomial, the we define

p(A) = a0I + a1A+ a2A2 + · · ·+ anA

n.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 32 / 60

Page 133: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.5)

Let p(x) = 2x2 − 3x+ 4 and A =

[−1 20 3

]. Find p(A).

Solution

p(A) = 2A2 − 3A+ 4I

= 2

[−1 20 3

]2− 3

[−1 20 3

]+ 4

[1 00 1

]= 2

[−1 20 3

] [−1 20 3

]+

[3 −60 −9

]+

[4 00 4

]= 2

[1 + 0 −2 + 60 + 0 0 + 9

]+

[7 −60 −5

]= 2

[1 40 9

]+

[7 −60 −5

]=

[2 80 18

]+

[7 −60 −5

]=

[9 20 13

]#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 33 / 60

Page 134: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Take a BreakFor 10 Minutes

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 34 / 60

Page 135: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

Page 136: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]

I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

Page 137: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

Page 138: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

Page 139: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

Page 140: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

Page 141: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

Page 142: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

Page 143: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Elementary Matrix

Definition (2.2.5)

An n× n matrix is called an elementary matrix if it can be obtained from then× n identity matrix In by performing a single elementary row operation.

Example (2.2.6)

Listed below are elementary matrices. What is a single ERO produce them ?

1.

[1 00 2

]I2 =

[1 00 1

]2R2−−−→

[1 00 2

]

2.

1 0 00 1 00 −5 1

I3 =

1 0 00 1 00 0 1

R3−5R2−−−−−−−→

1 0 00 1 00 −5 1

3.

1 0 00 1 00 0 1

I3 =

1 0 00 1 00 0 1

(1)R1−−−−−→

1 0 00 1 00 0 1

4.

0 0 0 10 1 0 00 0 1 01 0 0 0

I4 =

1 0 0 00 1 0 00 0 1 00 0 0 1

R14−−−→

0 0 0 10 1 0 00 0 1 01 0 0 0

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 35 / 60

Page 144: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.7)

For matrices E =

1 0 00 1 02 0 1

and A =

1 1 2 32 −1 3 51 3 7 0

Compute EA.

Solution

EA =

1 0 00 1 02 0 1

1 1 2 32 −1 3 51 3 7 0

=

1 1 2 32 −1 3 5

2(1) + 1 2(1) + 3 2(2) + 7 2(3) + 0

=

1 1 2 32 −1 3 53 5 11 6

I3 =

1 0 00 1 00 0 1

R3+2R1−−−−−−→

1 0 00 1 02 0 1

= E

A =

1 1 2 32 −1 3 51 3 7 0

R3+2R1−−−−−−→

1 1 2 32 −1 3 53 5 11 6

= EA

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 36 / 60

Page 145: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.7)

For matrices E =

1 0 00 1 02 0 1

and A =

1 1 2 32 −1 3 51 3 7 0

Compute EA.

Solution

EA =

1 0 00 1 02 0 1

1 1 2 32 −1 3 51 3 7 0

=

1 1 2 32 −1 3 5

2(1) + 1 2(1) + 3 2(2) + 7 2(3) + 0

=

1 1 2 32 −1 3 53 5 11 6

I3 =

1 0 00 1 00 0 1

R3+2R1−−−−−−→

1 0 00 1 02 0 1

= E

A =

1 1 2 32 −1 3 51 3 7 0

R3+2R1−−−−−−→

1 1 2 32 −1 3 53 5 11 6

= EA

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 36 / 60

Page 146: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.7)

For matrices E =

1 0 00 1 02 0 1

and A =

1 1 2 32 −1 3 51 3 7 0

Compute EA.

Solution

EA =

1 0 00 1 02 0 1

1 1 2 32 −1 3 51 3 7 0

=

1 1 2 32 −1 3 5

2(1) + 1 2(1) + 3 2(2) + 7 2(3) + 0

=

1 1 2 32 −1 3 53 5 11 6

I3 =

1 0 00 1 00 0 1

R3+2R1−−−−−−→

1 0 00 1 02 0 1

= E

A =

1 1 2 32 −1 3 51 3 7 0

R3+2R1−−−−−−→

1 1 2 32 −1 3 53 5 11 6

= EA

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 36 / 60

Page 147: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.7)

For matrices E =

1 0 00 1 02 0 1

and A =

1 1 2 32 −1 3 51 3 7 0

Compute EA.

Solution

EA =

1 0 00 1 02 0 1

1 1 2 32 −1 3 51 3 7 0

=

1 1 2 32 −1 3 5

2(1) + 1 2(1) + 3 2(2) + 7 2(3) + 0

=

1 1 2 32 −1 3 53 5 11 6

I3 =

1 0 00 1 00 0 1

R3+2R1−−−−−−→

1 0 00 1 02 0 1

= E

A =

1 1 2 32 −1 3 51 3 7 0

R3+2R1−−−−−−→

1 1 2 32 −1 3 53 5 11 6

= EA

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 36 / 60

Page 148: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

][1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

][1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

Page 149: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

][1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

][1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

Page 150: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

]

[1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

][1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

Page 151: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

][1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

]

[1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

Page 152: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.6)

If the elementary matrix E results from performing a certain row operation on Imand if A is an m× n matrix, then the product EA is the matrix that results whenthis same row operation is performing on A.

If an ERO is applied to an identity matrix to produce an elementary matrix E, thenthere is a second row operation that, when applied to E, produces I back again.

Row operation on I that produce E Row operation on E that reproduce I

Multiply row i by c ̸= 0 Multiply row i by 1c

Interchang row i and j Interchang row i and j

Add c times row i to row j Add −c times row i to row j

[1 00 1

]5R2−−→

[1 00 5

]15R2−−−→

[1 00 1

][1 00 1

]R12−−→

[0 11 0

]R12−−→

[1 00 1

][1 00 1

]R1+7R2−−−−−→

[1 70 1

]R1−7R2−−−−−→

[1 00 1

]Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 37 / 60

Page 153: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

Page 154: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

Page 155: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

Page 156: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

Page 157: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Theorem (2.2.7)

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem (2.2.8)

Let A be an n× n matrix. Then the following statements are equivalent.

1 A is invertible.

2 The RREF of A from A is In.

3 A is expressible as a product of elementary matrices.

We estabish a method for determining the inverse of an n× n invertible matrix A. We can findelementary matrices E1, E2, .., Ek such that

Ek · · ·E2E1A = In.

Multiplying this equation on the right by A−1 yields

A−1 = Ek · · ·E2E1In

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 38 / 60

Page 158: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

Page 159: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

Page 160: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

Page 161: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

Page 162: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.8)

Find inverse of A =

1 2 32 5 31 0 8

Solution

[A|I] =

1 2 3 1 0 02 5 3 0 1 01 0 8 0 0 1

R2−2R1−−−−−−→R3−R1

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

−→

1 2 3 1 0 00 1 −3 −2 1 00 −2 5 −1 0 1

R1−2R2−−−−−−→R3+2R2

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 39 / 60

Page 163: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Solution

−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

(−1)R3−−−−−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 1 5 −2 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −40 16 90 1 0 13 −5 −30 0 1 5 −2 −1

Thus,

A−1 =

−40 16 913 −5 −35 −2 −1

#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 40 / 60

Page 164: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Solution

−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

(−1)R3−−−−−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 1 5 −2 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −40 16 90 1 0 13 −5 −30 0 1 5 −2 −1

Thus,

A−1 =

−40 16 913 −5 −35 −2 −1

#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 40 / 60

Page 165: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Solution

−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

(−1)R3−−−−−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 1 5 −2 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −40 16 90 1 0 13 −5 −30 0 1 5 −2 −1

Thus,

A−1 =

−40 16 913 −5 −35 −2 −1

#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 40 / 60

Page 166: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Solution

−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 −1 −5 2 1

(−1)R3−−−−−→

1 0 9 5 −2 00 1 −3 −2 1 00 0 1 5 −2 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −40 16 90 1 0 13 −5 −30 0 1 5 −2 −1

Thus,

A−1 =

−40 16 913 −5 −35 −2 −1

#

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 40 / 60

Page 167: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Recheck

AA−1 =

1 2 32 5 31 0 8

−40 16 913 −5 −35 −2 −1

=

−40 + 26 + 15 16− 10− 6 9− 6− 3−80 + 65 + 15 32− 25− 6 18− 15− 3−40 + 0 + 40 16 + 0− 16 9 + 0− 8

=

1 0 00 1 00 0 1

A−1A =

−40 16 913 −5 −35 −2 −1

1 2 32 5 31 0 8

=

−40 + 32 + 9 −80 + 80 + 0 −120 + 48 + 7213− 10− 3 26− 25 + 0 39− 15− 245− 4− 1 10− 10 + 0 15− 6− 8

=

1 0 00 1 00 0 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 41 / 60

Page 168: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.9)

Find inverse of A =

1 2 3 00 1 −4 52 0 2 00 4 0 1

Homework

A−1 =1

60

−38 −4 −49 20−8 −4 4 2038 4 −19 −2032 16 −16 −20

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 42 / 60

Page 169: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

Page 170: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

Page 171: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

Page 172: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

Page 173: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.10)

Find inverse of A =

1 0 0 01 1 0 01 2 1 01 3 2 1

Solution

1 0 0 0 1 0 0 01 1 0 0 0 1 0 01 2 1 0 0 0 1 01 3 2 1 0 0 0 1

R3−R1,R2−R1−−−−−−−−−−−−→R4−R1

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 2 1 0 −1 0 1 00 3 2 1 −1 0 0 1

R3−2R1−−−−−−−→R4−3R2

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 2 1 2 −3 0 1

R4−2R3−−−−−−−→

1 0 0 0 1 0 0 00 1 0 0 −1 1 0 00 0 1 0 1 −2 1 00 0 0 1 0 1 −2 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 43 / 60

Page 174: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.11)

Find inverse of A =

1 2 −3 00 1 5 06 0 1 00 0 0 1

Homework

A−1 =1

79

1 −2 13 030 19 −5 0−6 12 1 00 0 0 79

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 44 / 60

Page 175: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.12)

Show that matrix A is not invertible (singular) A =

1 6 42 4 −1−1 2 5

Solution 1 6 4 1 0 02 4 −1 0 1 0−1 2 5 0 0 1

R2−2R1−−−−−−→R3+R1

1 6 4 1 0 00 −8 −9 −2 1 00 8 9 1 0 1

R3+R2−−−−−→

1 6 4 1 0 00 −8 −9 −2 1 00 0 0 −1 1 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 45 / 60

Page 176: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.12)

Show that matrix A is not invertible (singular) A =

1 6 42 4 −1−1 2 5

Solution 1 6 4 1 0 0

2 4 −1 0 1 0−1 2 5 0 0 1

R2−2R1−−−−−−→R3+R1

1 6 4 1 0 00 −8 −9 −2 1 00 8 9 1 0 1

R3+R2−−−−−→

1 6 4 1 0 00 −8 −9 −2 1 00 0 0 −1 1 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 45 / 60

Page 177: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.12)

Show that matrix A is not invertible (singular) A =

1 6 42 4 −1−1 2 5

Solution 1 6 4 1 0 0

2 4 −1 0 1 0−1 2 5 0 0 1

R2−2R1−−−−−−→R3+R1

1 6 4 1 0 00 −8 −9 −2 1 00 8 9 1 0 1

R3+R2−−−−−→

1 6 4 1 0 00 −8 −9 −2 1 00 0 0 −1 1 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 45 / 60

Page 178: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Inverse Matrix

Example (2.2.12)

Show that matrix A is not invertible (singular) A =

1 6 42 4 −1−1 2 5

Solution 1 6 4 1 0 0

2 4 −1 0 1 0−1 2 5 0 0 1

R2−2R1−−−−−−→R3+R1

1 6 4 1 0 00 −8 −9 −2 1 00 8 9 1 0 1

R3+R2−−−−−→

1 6 4 1 0 00 −8 −9 −2 1 00 0 0 −1 1 1

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 45 / 60

Page 179: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

2.3 Linear Systems with Invertibility

Marix multiplication has an important application to system of linearequations. Consider any linear system of m linear equation in n unknowns.

a11x1 + a12x2 + ...+ a12xn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

...am1x1 + am2x2 + ...+ amnxn = bm

We can replace the m equations in this system by product matrices.a11 a12 ... a12a21 a22 ... a2n

......

...am1 am2 ... amn

x1

x2

...xn

=

b1b2...bm

If we designate matrices by A, x and b, respectively, the original systembecomes to

Ax = b

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 46 / 60

Page 180: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

2.3 Linear Systems with Invertibility

Marix multiplication has an important application to system of linearequations. Consider any linear system of m linear equation in n unknowns.

a11x1 + a12x2 + ...+ a12xn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

...am1x1 + am2x2 + ...+ amnxn = bm

We can replace the m equations in this system by product matrices.a11 a12 ... a12a21 a22 ... a2n

......

...am1 am2 ... amn

x1

x2

...xn

=

b1b2...bm

If we designate matrices by A, x and b, respectively, the original systembecomes to

Ax = b

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 46 / 60

Page 181: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

2.3 Linear Systems with Invertibility

Marix multiplication has an important application to system of linearequations. Consider any linear system of m linear equation in n unknowns.

a11x1 + a12x2 + ...+ a12xn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

...am1x1 + am2x2 + ...+ amnxn = bm

We can replace the m equations in this system by product matrices.a11 a12 ... a12a21 a22 ... a2n

......

...am1 am2 ... amn

x1

x2

...xn

=

b1b2...bm

If we designate matrices by A, x and b, respectively, the original systembecomes to

Ax = bThanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 46 / 60

Page 182: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

The matrix A is called the cofficient matrix of the system. The argumentedmatrix for the system is obatined by

[A | b ] =

a11 a12 · · · a1n b1a21 a22 · · · a2n b2

......

......

am1 am2 · · · amn bm

Theorem (2.3.1)

Every system of linear equations has either no solutions, exactly one solution,or infinitely many solutions.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 47 / 60

Page 183: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

The matrix A is called the cofficient matrix of the system. The argumentedmatrix for the system is obatined by

[A | b ] =

a11 a12 · · · a1n b1a21 a22 · · · a2n b2

......

......

am1 am2 · · · amn bm

Theorem (2.3.1)

Every system of linear equations has either no solutions, exactly one solution,or infinitely many solutions.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 47 / 60

Page 184: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.2)

Let A be an n× n matrix and let b be an n× 1 matrix. If the linear equationsAx = b has exactly one solution, then, namely,

x = A−1b

Example (2.3.1)

Use theorem 2.3.2 to find the system of linear equations

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3and (b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 48 / 60

Page 185: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.2)

Let A be an n× n matrix and let b be an n× 1 matrix. If the linear equationsAx = b has exactly one solution, then, namely,

x = A−1b

Example (2.3.1)

Use theorem 2.3.2 to find the system of linear equations

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3and (b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 48 / 60

Page 186: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3↔

[3 27 5

] [x1

x2

]=

[53

]

Then,

[x1

x2

]=

[3 27 5

]−1 [53

]=

1

1

[5 −2−7 3

] [53

]=

[25− 6−35 + 9

]=

[19−26

]Hence, x1 = 19, x2 = −26 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 49 / 60

Page 187: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3↔

[3 27 5

] [x1

x2

]=

[53

]Then,

[x1

x2

]=

[3 27 5

]−1 [53

]=

1

1

[5 −2−7 3

] [53

]=

[25− 6−35 + 9

]=

[19−26

]

Hence, x1 = 19, x2 = −26 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 49 / 60

Page 188: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(a)

{3x1 + 2x2 = 5

7x1 + 5x2 = 3↔

[3 27 5

] [x1

x2

]=

[53

]Then,

[x1

x2

]=

[3 27 5

]−1 [53

]=

1

1

[5 −2−7 3

] [53

]=

[25− 6−35 + 9

]=

[19−26

]Hence, x1 = 19, x2 = −26 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 49 / 60

Page 189: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

1 2 32 5 31 0 8

x1

x2

x3

=

5311

Then,

x1

x2

x3

=

1 2 32 5 31 0 8

−1 5311

=

−40 16 913 −5 −35 −2 −1

5311

=

−200 + 48 + 9965− 15− 3325− 6− 11

=

−53178

Hence, x1 = −53, x2 = 17, x3 = 8 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 50 / 60

Page 190: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

1 2 32 5 31 0 8

x1

x2

x3

=

5311

Then,

x1

x2

x3

=

1 2 32 5 31 0 8

−1 5311

=

−40 16 913 −5 −35 −2 −1

5311

=

−200 + 48 + 9965− 15− 3325− 6− 11

=

−53178

Hence, x1 = −53, x2 = 17, x3 = 8 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 50 / 60

Page 191: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution

(b)

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 11

1 2 32 5 31 0 8

x1

x2

x3

=

5311

Then,

x1

x2

x3

=

1 2 32 5 31 0 8

−1 5311

=

−40 16 913 −5 −35 −2 −1

5311

=

−200 + 48 + 9965− 15− 3325− 6− 11

=

−53178

Hence, x1 = −53, x2 = 17, x3 = 8 #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 50 / 60

Page 192: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Linear systems with a common coefficient matrix: One is concerned withsolving a seguence of systems

Ax = b1, Ax = b2, Ax = b3, ..., Ax = bk

If A is invertible, then the solutions

x1 = A−1b1, x2 = A−1b2, x3 = A−1b3, ..., xk = A−1bk

can be obtained with one matrix inversion and k matrix multiplications. Amore effient method is to form the matrix (argumented matrix)

[ A | b1 | b2 | · · · | bk ]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 51 / 60

Page 193: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Linear systems with a common coefficient matrix: One is concerned withsolving a seguence of systems

Ax = b1, Ax = b2, Ax = b3, ..., Ax = bk

If A is invertible, then the solutions

x1 = A−1b1, x2 = A−1b2, x3 = A−1b3, ..., xk = A−1bk

can be obtained with one matrix inversion and k matrix multiplications. Amore effient method is to form the matrix (argumented matrix)

[ A | b1 | b2 | · · · | bk ]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 51 / 60

Page 194: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Linear systems with a common coefficient matrix: One is concerned withsolving a seguence of systems

Ax = b1, Ax = b2, Ax = b3, ..., Ax = bk

If A is invertible, then the solutions

x1 = A−1b1, x2 = A−1b2, x3 = A−1b3, ..., xk = A−1bk

can be obtained with one matrix inversion and k matrix multiplications. Amore effient method is to form the matrix (argumented matrix)

[ A | b1 | b2 | · · · | bk ]

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 51 / 60

Page 195: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.2)

Use Gauss-Jodan elimination to find two systems of linear equations

(a)

x1 + 2x2 + 3x3 = 4

2x1 + 5x2 + 3x3 = 5

x1 + 8x3 = 6

(b)

x1 + 2x2 + 3x3 = 1

2x1 + 5x2 + 3x3 = 6

x1 + 8x3 = −6

1 2 3 4 12 5 3 5 61 0 8 6 −6

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 52 / 60

Page 196: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.2)

Use Gauss-Jodan elimination to find two systems of linear equations

(a)

x1 + 2x2 + 3x3 = 4

2x1 + 5x2 + 3x3 = 5

x1 + 8x3 = 6

(b)

x1 + 2x2 + 3x3 = 1

2x1 + 5x2 + 3x3 = 6

x1 + 8x3 = −6

1 2 3 4 12 5 3 5 61 0 8 6 −6

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 52 / 60

Page 197: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

Page 198: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

Page 199: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

Page 200: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

Page 201: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

Page 202: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

Page 203: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 4 12 5 3 5 61 0 8 6 −6

R2−2R1−−−−−−→R3−R1

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

−→

1 2 3 4 10 1 −3 −3 40 −2 5 2 −7

R1−2R2−−−−−−→R3+2R2

1 0 9 10 −70 1 −3 −3 40 0 −1 −4 1

(−1)R3−−−−−→

1 0 9 10 −70 1 −3 −3 40 0 1 4 −1

R1−9R3−−−−−−→R2+3R3

1 0 0 −26 20 1 0 9 10 0 1 4 −1

Thus, x1 = −26, x2 = 9, x3 = 4 is the solution of (a) and x1 = 2, x2 = 1, x3 = −1 is thesolution of (b). #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 53 / 60

Page 204: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.3)

Let A be a square matrix.

1 If B is a square matrix satisfying BA = I, then B = A−1.

2 If B is a square matrix satisfying AB = I, then B = A−1.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 54 / 60

Page 205: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.4)

Let A be an n× n matrix. Then TFAE.

1 A is invertible.

2 Ax = 0 has only trivial solution.

3 The RREF of A is In.

4 A is expressible as a product of elementary matrices.

5 Ax = b is consistent for every n× 1 matrix b.

6 Ax = b has exactly one solution for every n× 1 matrix b.

Theorem (2.3.5)

Let A and B be square matrices of the same size. If AB is invertible, then Aand B must also be invertible.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 55 / 60

Page 206: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Theorem (2.3.4)

Let A be an n× n matrix. Then TFAE.

1 A is invertible.

2 Ax = 0 has only trivial solution.

3 The RREF of A is In.

4 A is expressible as a product of elementary matrices.

5 Ax = b is consistent for every n× 1 matrix b.

6 Ax = b has exactly one solution for every n× 1 matrix b.

Theorem (2.3.5)

Let A and B be square matrices of the same size. If AB is invertible, then Aand B must also be invertible.

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 55 / 60

Page 207: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.3)

What conditions must a, b and c satisfy in order for the system of equationsx1 + x2 + 2x3 = a

x1 + x3 = b

2x1 + x2 + 3x3 = c

to be consistent ?

1 1 2 a1 0 1 b2 1 3 c

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 56 / 60

Page 208: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.3)

What conditions must a, b and c satisfy in order for the system of equationsx1 + x2 + 2x3 = a

x1 + x3 = b

2x1 + x2 + 3x3 = c

to be consistent ?

1 1 2 a1 0 1 b2 1 3 c

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 56 / 60

Page 209: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

Page 210: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

Page 211: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

Page 212: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

Page 213: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 1 2 a1 0 1 b2 1 3 c

R2−R1−−−−−−→R3−2R1

1 1 2 a0 −1 −1 b− a0 −1 −1 c− 2a

(−1)R2−−−−−→

1 1 2 a0 1 1 a− b0 −1 −1 c− 2a

R3+R2−−−−−→

1 1 2 a0 1 1 a− b0 0 0 c− a− b

Thus, the linear system is consistent if c− a− b = 0 or c = a+ b. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 57 / 60

Page 214: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.4)

What conditions must a, b and c satisfy in order for the system of equationsx1 + 2x2 + 3x3 = a

2x1 + 5x2 + 3x3 = b

x1 + 8x3 = c

to be consistent ?

1 2 3 a2 5 3 b1 0 8 c

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 58 / 60

Page 215: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Example (2.3.4)

What conditions must a, b and c satisfy in order for the system of equationsx1 + 2x2 + 3x3 = a

2x1 + 5x2 + 3x3 = b

x1 + 8x3 = c

to be consistent ?

1 2 3 a2 5 3 b1 0 8 c

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 58 / 60

Page 216: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

Page 217: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

Page 218: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

Page 219: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

Page 220: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

Page 221: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

Page 222: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Solution 1 2 3 a2 5 3 b1 0 8 c

R2−2R1−−−−−−→R3−R1

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

−→

1 2 3 a0 1 −3 b− 2a0 −2 5 c− a

R1−2R2−−−−−−→R3+2R2

1 0 9 5a− 2b0 1 −3 b− 2a0 0 −1 c+ 2b− 5a

(−1)R3−−−−−→

1 0 9 5a− 2b0 1 −3 b− 2a0 0 1 5a− 2b− c

R1−9R3−−−−−−→R2+3R3

1 0 0 −40a+ 16b+ 9c0 1 0 13a− 5b− 3c0 0 1 5a− 2b− c

Thus, x1 = −40a+ 16b+ 9c, x2 = 13a− 5b− 3c, x3 = 5a− 2b− c is the solution wherea, b, c ∈ R. #

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 59 / 60

Page 223: MAT2305 LINEAR ALGEBRA :Week2 · Outline for Week 2 Chapter 2 Matrices 2.1 Matrices and Matrix Operations 2.2 Inverse Matrix 2.3 Linear System with Invertibility Assignment 2 Thanatyod

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Matrices Linear Systems with Invertibility

Assignment 2

1. In each part use the information to find A

(a) (EVEN) (5AT + 2I)−1 =

[8 55 3

](b) (ODD) (A+ 3I)−1 =

[9 −295 −16

]T

2. Solve the linear system by x = A−1b.

(a) (EVEN)

x1 + 2x2 + 3x3 = 1

x2 + 4x3 = 2

5x1 + 6x2 = 3

(b) (ODD)

x2 + 7x3 = 1

x1 + 3x2 + 3x3 = 2

−2x1 − 5x2 = 3

3. (EVEN and ODD) What conditions must a, b and c satisfy in order for the system ofequations

2x1 + x2 + 3x3 + x4 = a

x1 + x3 + 2x4 = b

x1 + x2 + 2x3 + 4x4 = c

to be consistent ?

Thanatyod Jampawai, Ph.D. MAT2305 LINEAR ALGEBRA :Week2 60 / 60