measurement of the top quark pair production cross section...

50
Measurement of the Top Quark Pair Production Cross Section using a Topological Likelihood and using Lifetime b-Tagging page page 1 Tobias Golling Tobias Golling - SCIPP - August 24th 2004 with the DØ Detector in Run II at the Fermilab Tevatron at a center of mass energy of √s = 1.96 TeV

Upload: others

Post on 31-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Measurement of the Top Quark PairProduction Cross Section using

    a Topological Likelihood and using Lifetime b-Tagging

    page page 11Tobias Golling

    Tobias Golling - SCIPP - August 24th 2004

    with the DØ Detector in Run II at the Fermilab Tevatron at a center of

    mass energy of √s = 1.96 TeV

  • Overview

    Physics Motivation Tevatron & DØ Top Quark Production and Decay Overview over the Analyses Methods

    1) Common W+Jets Preselection

    2a) Topological Analysis 2b) Lifetime b-Tagging Analysis

    Summary & Outlook

    page page 22Tobias Golling

    tt

    tt--

    WW++

    WW - -

    bb

    bb--

    qq

    q'q'

    µ

    µ

    pppp --

  • The Top Quark in the Standard Model

    page page 33Tobias Golling

    Why is the Top Quark so interesting ? completes the quark sector large mass m

    top ~ 180 GeV / c2

    short lifetime ~ 5 · 10-25 s sensitive to physics beyond the Standard Model

    Discovery of the Top Quark in 1995by the CDF and DØ Collaborations.

    Top-antitop production cross section test of perturbative QCD sensitive to

    top decays to New Physics particles (e.g. charged Higgs) Physics beyond the SM decaying to top-antitop

    Higgs-Boson coupling to fermions: f ~ m

    f

    t ~ 1

  • The Top Quark in the Standard Model

    page page 44Tobias Golling

    1

    Corrections to W and Z boson mass from top quark and Higgs boson loops allow prediction of the top quark and the Higgs boson mass

    Comparison of precision EW measurement ↔ corrections⇒ prediction of top quark mass

    zero order

    discoveryobservation

  • The Top Quark in the Standard Model

    page page 55Tobias Golling

    corrections to W and Z boson massfrom top quark and Higgs boson loopsallow prediction of the top quark and the Higgs boson mass

    corrections: ~ Mt

    2

    corrections: ~ ln (MH)

    Goal for Tevatron in Run II:M

    t = 3 GeV

    MW

    = 20 MeV

  • The Tevatron at Fermilab

    page page 66Tobias Golling

    Main Injector & Recycler

    Tevatron

    Booster

    p p

    p source

    Chicago

    _

    _

    CDF DØ

    p p

    √s =1.96 TeV ∆t = 396 ns

    Run I 1992-95 Lint

    ~ 125 pb-1

    Run II 2001-09(?) 40 × larger dataset at increased energy

    Only place to study the top Only place to study the top

    quark before the LHC eraquark before the LHC era

  • DØ Detector at Fermilab

    page page 77Tobias Golling

    new silicon and fibre tracker new ~2 T solenoid

    upgraded muon system upgraded trigger/DAQ

  • The Silicon Microstrip Tracker

    page page 88Tobias Golling

    axial, double-sided small-angle stereo and double-sided 90° detectors 800k channels, SVX2 readout

    Silicon Microstrip Tracker (SMT): 6 barrels, 16 disks tracking out to ~ = 3

  • Data Set

    page page 99Tobias Golling

    analyseddata

    installation finishedand detector

    commissioning Analysed data setin Run I (1992-1995):

    ~ 125 pb -1

    Analysed data setin Run II (08/2002-10/2003)for winter and summer '04

    conferences:~ 140 - 165 pb -1

    Data set in Run II until 2009:

    ~ 4-9 fb -1

    N = σ ∙ ÿ∫ L dt

    Run I record

  • Top Quark ProductionTop quarks mainly produced in pairs at Tevatron and LHC

    page page 1010Tobias Golling

    Tevatron LHCtypical S/B: ~1/1 10-100

    qq gg

    ttbarNLO (pb) qq->tt gg->tt

    Run I (1.8 TeV) 4.87±10% 90% 10%

    Run II (2.0 TeV) 6.70±10% 85% 15%

    LHC (14 TeV) 803±15% 10% 90%

    σtt 

    Run I:

    ttbar=5.7±1.6 pb

    (statistics limited)

  • Top Quark Decay

    lepton

    neutrino

    b -jet

    b -jet

    jetjet

    page page 1111Tobias Golling

    τ+Xµ+jetse+jetse+ee+µµ+µhadronic

    1.4 % 1.4 %2.8 %

    14.8 %

    14.8 %

    22 %44 %

    Top quarks decay predominantlyTop quarks decay predominantly

    (~100%) to a W-Boson and a b-quark(~100%) to a W-Boson and a b-quark

    Top-Antitop SignaturesTop-Antitop Signatures

    determined by the W decay modes:determined by the W decay modes:

    `dilepton channel'`dilepton channel'

    ~5% :~5% : 2 jets, 2 charged leptons, 2 neutrinos2 jets, 2 charged leptons, 2 neutrinos

    `lepton+jets channel'`lepton+jets channel'

    ~30%:~30%: 4 jets, 1 charged lepton, 1 neutrino4 jets, 1 charged lepton, 1 neutrino

    - Large statistics compared to dilepton channel- Large statistics compared to dilepton channel

    - Clear signature compared to all-jets channel- Clear signature compared to all-jets channel

    `all-jets channel'`all-jets channel'

    ~40%:~40%: 6 jets 6 jets

    always 2 jets are b-jetsalways 2 jets are b-jets

    I will concentrate on theI will concentrate on the

    'muon+jets channel''muon+jets channel'

  • page page 1212Tobias Golling

    Analyses Overview – 2 Methods

    QCD

    W+jetstt-

    QCD

    W+jetstt-

    QCD

    W+jets

    tt-

    Topological Likelihood Method: Isolate and estimate signal content, fit ttbar fraction by shape comparison

    Apply Lifetime b-Tagging(Counting Experiment): Further enhance signal content, subtract estimated backgrounds

    Common W+jets selection(W decays leptonically to muon or electron) Enhance signal content

    1. 2.

  • page page 1313Tobias Golling

    Hard scatter primary vertex

    Isolated high p

    T lepton

    Neutrino reconstructedas missing transverse energy

    ≥ 3 jets with p

    T > 15 GeV

    and || < 2.5

    Signature - W+Jets Selection

    tt

    WW++bb

    tt--

    WW - - bb--

    qq

    q'q'

    pppp --

  • page page 1414Tobias Golling

    Jet Reconstruction and IdentificationThe jet reconstruction and identification efficiency in data is notreproduced by the MC: DØ identifies jets in the calorimeter only (cone-algorithm) Determine efficiency in data and in MC and determine MC correction factor Use pT-balanced physics processes

    q

    q-

    , Z, J/,

    tracks calorimeter cluster

    }}jet and (Z, J/, ): back-to-back in balanced in p

    T

    not balanced in due to z-boost

    Efficiency determination: Select the away-object (,Z, J/, ) Select jet reconstructed only from tracks back-to-back to (Z, J/, ) check how often an associated calorimeter jet is found

    gjet

  • Muons are reconstructed in the muon system and in the tracking systemMuons coming from a leptonic decay of a W boson tend to be isolated from jets have a relatively high transverse momentum

    page page 1515Tobias Golling

    Muon Isolation

    R=22Loose muon isolation:

    R , je t 0.5

    Tight muon isolation:

    E Tcalorimeter cells R0.4−E T

    calorimeter cells R0.1

    P T 0.08

    E Ttracks R0.5

    P T 0.06

    Muon = MIP(Minimum Ionizing Particle)

  • 1. Topological AnalysisStatus Moriond 04

    page page 1616Tobias Golling

  • Instrumental Background (fake lepton, fake MET):QCD multijet production

    Electron Fakes:Electrons faked by (electromagnetic) jets

    Muon Fakes:Muon-fakes are real muons which are fakely isolated(muons from semileptonic b-decays, where the b-jet is not reconstructed)

    page page 1717Tobias Golling

    Backgrounds

    Physics Background:Electroweak W production W ℓ+

    additional ≥ 4 jets from ISR

    W+1jet W+2jets ...

    MET Fakes:Misreconstructed calorimeter energy

  • Solve linear system of equations for NQCD

    and NW+ttbar

    tight lepton:

    Nloose

    = NQCD

    + NW+ttbar

    Ntight

    = QCD

    * NQCD

    + W+ttbar

    * NW+ttbar

    QCD

    = 8% W+ttbar

    = 82%

    QCD

    W+jetstt-

    QCD

    W+jetstt-

    Determine instrumental QCD multijet background purely from data

    page page 1818Tobias Golling

    loose lepton:

    Determination of QCD Background

  • Topological Analysis OverviewQCDW+jets

    QCD

    QCD W+jetsW+jets

    loose Wselection+ ≥ 4 jets

    tight Wselection+ ≥ 4 jets

    DetermineQCD

    Background

    Combine topological event information in a likelihood discriminant, and perform a fit to the data

    tt-

    tt-

    tt-

    tt-

    page page 1919Tobias Golling

  •  Define variables which describe the event topologyCriteria: - Good separation power - Low sensitivity to the jet energy scale (dominant systematic uncertainty)

    WW++qq

    q'q'

    qq q'q'µ µ --qqqqtt

    tt--

    WW++

    WW - -

    bb

    bb--

    qq

    q'q'

    µ

    µ

    pppp --

    Jets: high-energetic isotropic

    Jets dominated by QCD-Bremsstrahlung: low-energetic in the forward region

    page page 2020Tobias Golling

    ElectroweakW production

    ttbar signal

    Event Topology

  • page page 2121Tobias Golling

    Topological Variables

    Sphericity

    AplanarityKTmin

    '

    HT2'

    Variables describing theangular distributions ofthe physics objectsin the final state:

    Sphericity Aplanarity

    Ratios of energy dependent variables:

    HT2' (describes centrality)

    KTmin

    ' (=Rmin

    (jet,jet)·ETmin/E

    TW)

  • Si = ttbar signal

    Bi = W+jets background

    i runs over the 4 topological variables

    L D=∏ i S i

    ∏ i S i∏ i B i

    page page 2222Tobias Golling

    Likelihood Discriminant (LD)

     Describe data by a linear combination of ttbar, W+4jet and multijet (QCD)

    Constrain QCD by using the loose and tight system of equations

    Fit the relative fractions

  • page page 2323Tobias Golling

    Fit linear combination of QCD (inverted tight selection in data), W+4jet and ttbar to data

    Likelihood Fits for µ+Jets & e+Jets

    µ+jetsL=144pb-1

    e+jetsL=141pb-1

    Likelihood Discriminant Likelihood Discriminant

  • page page 2424Tobias Golling

    Kinematic Distributionse+jets

    µ+jets

  • page page 2525Tobias Golling

    Dominant uncertainties: Jet energy scale Jet reconstruction efficiency

    ResultComparison with Run I & Summer 03

    p p t t Xl jets =7.2−2.4

    2.6 stat −1.71.6 syst ±0.5 lum i pb

    p p t t X jets =6.0−3.0

    3.4 stat −1.61.6 syst ±0.4 lum i pb

    p p t t Xe jets =8.8−3.7

    4.1 stat −2.11.6 syst ±0.6 lum i pb

    =N t t

    BR⋅L⋅selBR=0.44

    sel=10%L=143 pb−1

    Run I summer 03

  • sum m er 03

    sum m er 03

    page page 2626Tobias Golling

    Summer 03 NOW:Large improvement instatistical and systematicuncertainties

    Outlook: Publication this fall L = 230 pb-1 Improved systematics

    Summary of Topological Analysis& Outlook

  • 2. Lifetime b-Tagging AnalysisStatus ICHEP 04

    page page 2727Tobias Golling

  • page page 2828Tobias Golling

      Count the number of tracks with Count the number of tracks with large positive DCA significancelarge positive DCA significance    Jet is tagged if Jet is tagged if NN

    trackstracks((>2) > 3 or>2) > 3 or

    NNtrackstracks

    ((>3) > 2>3) > 2

    Explicitly reconstruct vertices whichExplicitly reconstruct vertices which are significantly displaced from theare significantly displaced from the primary vertexprimary vertex VV 00 Filter: Filter: Remove track pairs in the mass Remove track pairs in the mass windows corresponding to Kwindows corresponding to K

    SS, ,

    and photon conversions (and photon conversions ( -> e -> e++ee--))

    Counting Signed Impact Parameter (CSIP)Counting Signed Impact Parameter (CSIP) Secondary Vertex Tagger (SVT)Secondary Vertex Tagger (SVT)

    B-Tagging at DØ

    I will concentrate on the SVT resultsI will concentrate on the SVT results

    DCA

    Secondary VertexPrimaryVertex

    (DCA = Distance to Closest Approach)

  • page page 2929Tobias Golling

    Estimate QCD background purely from data:using the loose and tight system of equations(Can be done before or after tagging)

    Backgrounds

    Subtract small backgrounds using known cross sections: Diboson production: WW l+jets, WZ l+jets, WZ jjll, ZZ lljj Single top production in s- and t-channel Z l+jets

    Main background: W+jets Use W+jets sample generated with ALPGEN and interfaced to PYTHIA Rely on ratios of the cross sections of the generated sub-processes:

    W+light W+c W+cc W+b W+bb

    Apply a matching procedure of partons from the matrix element generator and reconstructed jets

    eliminate double counting of the exclusive processes reduce sensitivity to parton generation cuts

    tightloose

  • page page 3030Tobias Golling

    Philosophy of this B-Tagging Analysis

    N tag=N untagged×P eventtag

    P eventtag n≥1tag =1−∏ jets 1− jet flavor E T ,

    Present versions of DØ MC do not reproduce the b-tagging efficiency and mistag rate observed in data

    Tagging algorithm not applied in MC

    Instead: Measure jet tagging efficiencies in data (for jet flavor = b,c,light) Parameterize as a function of jet E

    T and :

    jet(flavor)(E

    T,)

    Apply tagging parameterisations jet(flavor)

    (ET,) to the Monte Carlo

    Derive event tagging probabilities: Ptagevent

    Determine number of expected tagged events in the MC: Ntag

    In particular for the W+njets background:

    P W njetstag =∑flavor F flavor P W njets flavor

    tagF flavor P W b b j j

    tag =42%

    P W j j j jtag =1%

  • page page 3131Tobias Golling

    Estimate ttbar production cross section from observed excess in the actual number of tagged events with 3 and ≥4 jets with respect to the background expectation Optimum use of the statistical information:

    single tags and double tags

    Visualize B-Tag Philosophy

    P t ttag=45% P t t

    double tag=14%

  • page page 3232Tobias Golling

    Challenge: Select pure sample of b-jets in data

    Enrich dijet data sample in bbbar QCD heavy flavor production:Select jets which contain muons (muon-in-jet)

    2 Methods: Use Shape of P

    Trel to discriminate

    between heavy and light flavor P

    Trel = transverse momentum of the

    muon relative to the (µ+jet) axis

    Apply Lifetime Tagger and Soft Lepton Tagger to two samples (purely from data) muon-in-jet muon-in-jet with away jet lifetime tagged

    (further enriched in heavy flavor) Clearly solvable system of 8 equations with 8 unknowns

    B-Tagging Efficiency

    jet PTrel

    µ

    µ+jet

    B-Tagging Efficiency in Data

  • page page 3333Tobias Golling

    Mistag Efficiency +light flavor

    Mistag Efficiency = Tagging efficiency for light flavor jets “Mis-Tagging” not due to lifetime but due to decay length resolution

    ligh t flavor+ =SF heavy flavor×SF long lived×

    -

    Idea: Measure negative tagging efficiency -

    in a multijet data sample Correct for heavy flavor jets SF

    heavy flavor

    (which have a higher negative tagging rate than light flavor jets) Correct for the remaining long lived particles which are not present in negative tagged jets SF

    long lived

    Primary Vertex

    JetTracks

    SecondaryVertex

    SecondaryVertex

    positive tag negative tag

  • µ-

    IP

    SV

    Jet 1

    IP

    SV

    Jet 2MTC

    mip signalmip signalin calorimeterin calorimeterr

    page page 3434Tobias Golling

    IP

    SV

    Jet 1

    Muon+Jets Candidate Event

    Jet 3

    Jet 4

    Jet 5

  • page page 3535Tobias Golling

    Result for SVT Tagger

    =8.2−1.21.3 stat −1.6

    1.9 syst ±0.5 lum i pb

    Dominant systematic uncertainties: Jet energy scale Jet reconstruction efficiency b-tagging efficiency in data

    Single Tags: Double Tags:

    Luminosity =164 pb-1

    Control bins

  • page page 3636Tobias Golling

    Summary & Outlook

    Topological Analysis: World best systematics for a topological analysis Forthcoming publication with 230 pb-1

    B-Tagging Analysis: Just got ready for ICHEP Forthcoming publication with improved systematics

    Understanding of data set:Understanding of data set:jets, jets, leptonsleptons, met, b-tagging, triggering,..., met, b-tagging, triggering,...Development of powerful high massDevelopment of powerful high massanalysis techniques analysis techniques Prepared for Prepared for LHC LHC

    Direct input toDirect input tovarious analyses...various analyses...

  • page page 3737Tobias Golling

    R=B(tWb)/B(tWq) Measurement

    In the SM, unitary of the CKM matrix:In the SM, unitary of the CKM matrix: R=∣V tb∣

    2

    ∣V tb∣2∣V ts∣

    2∣V td∣2=∣V tb∣

    2

    R=0.7−0.240.27 stat −0.10

    0.11 syst

    R=0.65−0.300.34 stat −0.12

    0.17 syst

    SVT:SVT:

    CSIP:CSIP:

    CSIPCSIP

    CSIPCSIP

    SVTSVT

    SVTSVT

    tttt versus R (R fixed in the fit) versus R (R fixed in the fit)

    68% and 90% CL contours68% and 90% CL contours

    Good agreement with SM: R=1Good agreement with SM: R=1

    R deduced from the numberR deduced from the numberof single tagged and the of single tagged and the number of double tagged eventsnumber of double tagged events

  • page page 3838Tobias Golling

    Top Mass MeasurementMeasurements in l+jets channel (~150 pbMeasurements in l+jets channel (~150 pb-1-1))- - template methodtemplate method uses templates for signal and background mass spectra uses templates for signal and background mass spectra- - ideogram methodideogram method uses analytical likelihood for event to be signal or uses analytical likelihood for event to be signal or background – for each selected eventbackground – for each selected event

    template methodtemplate method

    ideogram methodideogram method

    systematics limited:systematics limited:- jet energy scale- jet energy scale- ttbar modeling- ttbar modeling- W+jets modeling- W+jets modeling- ...- ...

  • W-

    W0

    sum

    page page 3939Tobias Golling

    Helicity of the W in ttbar Events

    FF++ 

  • Backup Slides

    page page 4040Tobias Golling

  • Probability for a jet to be tagged conveniently broken downin two components: Probability for a jet to be “taggable” (=“taggability”) Probability for a taggable jet to be tagged (=“tagging efficiency”)

    Motivation:Decouple tagging efficiency from issues related to

    tracking efficiency calorimeter noise

    which are absorbed in the taggability

    Taggability: Probability to match (R

  • Challenge: Select pure sample of b-jets in data

    Enrich dijet data sample in bbbar QCD heavy flavor production:Select jets which contain muons (muon-in-jet): b (->c) -> µ (b-jets) c -> µ (c-jets) /K -> µ (light flavor jets)

    PTrel

    = transverse momentum of the

    muon relative to the (µ+jet) axis

    PTrel

    discriminates between b-jets and non-b-jets

    Templates: Shape of P

    Trel distribution for c- and b-jets from MC

    Shape of PTrel

    distribution for light flavor jets from data

    (random tracks in a jet)

    jet PTrel

    µ

    µ+jet

    page page 4242Tobias Golling

    B-Tagging Efficiency in Data

  • 1.) ST vs. NT (Single Tag vs. No Tag): PTrel

    Fit

    Derive b-fraction in data from PTrel

    fit to the templates

    before and after lifetime tagging the muon jet:

    2.) DT vs. ST (Double Tag vs. Single Tag): PTrel

    Fit

    Same as 1.) but require that away-jet is lifetime tagged to further enrich the sample in b-jets:

    3.) System8: Solely from data 2 samples with different b-fractions

    muon-in-jet muon-in-jet with away jet lifetime tagged

    2 tagging algorithms soft muon tagger SVT tagger

    Solvable system of 8 equations: before and after tagging with any or both of the taggers

    b−data =

    N − jettag F b−

    tag

    N − jet F b−

    b−data =

    N Dtag F b−Dtag

    N away− jettag F b−

    tag

    use Method 3. fo r b−data in c l

    data=inc lM C b−

    data

    b−M C

    page page 4343Tobias Golling

    B-Tagging Efficiency in Data – 3 Methods

  • ttbar MC:

    page page 4444Tobias Golling

    inc ldata=in c l

    M C b−data

    b−M C

    Inclusive b-Tagging Efficiency

  • Method 1: Determine N

    QCD in untagged

    sample (topological approach)

    Event tagging Probability PQCD

    from data

    NQCD

    tag = PQCD

    NQCD

    Caveat:P

    QCD has to be determined on

    sample with same heavy flavor fraction same kinematicsas the signal sample

    Method 2: Determine N

    QCDtag directly in

    tagged sample (topological approach)

    Caveat: Large statistical uncertainty One has to verify that

    QCDtag =

    QCD

    large statistical uncertainty

    page page 4545Tobias Golling

    QCD Background Determination

  • Use W+jets samples generated by ALPGEN interfaced to PYTHIA Don't use absolute values of cross sections, but rely on their ratios Apply matching procedure between Matrix Element partons and reconstructed jets (à la Mangano)

    reduce double counting and sensitivity to parton generation cuts

    Remarks: Use matching of Matrix Element partons and parton-jets in the future LO estimate of Wbb / Wjj reproduced by NLO ? Qualified “yes” for scale choices >= 50 GeV and pT cuts of about 15 GeV or greater

    page page 4646Tobias Golling

    Flavor Composition of W+Jets

  • page page 4747Tobias Golling

    Kinematic Distributions of Tagged Events

  • page page 4848Tobias Golling

    Result for CSIP Tagger

    =7.2−1.21.3 stat −1.4

    1.9 syst ±0.5 lum i pb

    Dominant systematic uncertainties: Jet energy scale Jet reconstruction efficiency b-tagging efficiency in data

    Single Tags: Double Tags:

    Luminosity =164 pb-1

    Control bins

  • page page 4949Tobias Golling

    DØ Tracking System

  • page page 5050Tobias Golling

    Particle Identification at DØ

    Had.Layers

    Tracking Systemwith magnetic field

    Calorimeterinduces showersin dense material

    InnerSilicon

    Detectors

    Muon Detectors

    InteractionPoint

    Absorber Material

    Curvature  > Momentum

    Electrons

    Quarks and Gluons

    Muons

    Jets

    EM Layers