metal complexes of weakly coordinating anions. precursors ... · hydride cpw(co)~h reacts with ph3c...

17
Chem. Rev. 1988, 88, 1405-1421 1405 Metal Complexes of Weakly Coordinating Anions. Precursors of Strong Cationic Organometallic Lewis Acidst WOLFGANG BECK* and KARLHEINZ SUNKEL Institut fur Anorganische Chemie, UniversMt Munchen, 8000 Munchen 2, FRO Received February 4, 1988 (Revised Manuscript Received May 2, 1988) Conlenls I. Introduction 1405 1406 111. Methods of Preparation 1406 1406 Lewis Acid 1. Abstraction of Anionic Group X with 1406 Triphenylcarbenium Salts 2. Abstraction of Halide by Silver(1) and 1407 Thallium( I) Salts 3. Protonation of Hydrido, Alkyl, and 1407 $-Allyl Complexes 4. Reactions Using BF,, AICi,, NO’, R,O+, 1408 CH,OSO,F, CoBr,, and Hg2+ B. Oxidation of Neutral Monomeric or Dimeric 1409 C. Oxidative Addition of RX to Metal de 1409 D. Miscellaneous 1409 IV. Proof of Coordination 1409 A. Crystal Structure Determinations 1410 B. IR Spectroscopy 1410 C. NMR Spectroscopy 1411 V. Reactivity 141 1 A. Relative Donor Strengths of Several 1411 B. Substitution of Weakly Coordinating Ligands 1412 C. Reaction of Tetrafluoroborato and 1413 11. Scope of the Review A. Abstraction of an Anionic Ligand by a Complexes Systems Weakly Coordinating Anions by Neutral 6- and *-Donors Hexafluorophosphato Complexes with Water 1. Formation of Aqua Complexes 1413 2. Condensation Reactions 1413 3. Hydrolysis of the Anion 1413 1413 1414 Complexes 1. Neutral Ligand-Bridged Bimetallic 1414 2. Formation of Ligand-Bridged Cationic 1414 3. Formation of Cationic Hydride- and 1415 F. Miscellaneous Reactions 1415 1. Stoichiometric Reactions 1415 2. Catalytic Reactions 1416 D. Reaction with Monoanionic Ligands E. Directed Synthesis of Ligand-Bridged Complexes Complexes Acyl-Bridged Complexes Dedicated to Professor Heinrich Noth on the occasion of his 60th birthday. VI. Addendum VI I I. Abbreviations VII. Acknowledgment 1416 1416 1416 I. Introductlon Organometallic compounds of weakly coordinating anions, e.g., BF4-, PF,, AsF;, and SbF6-, have been the object of many studies in recent years. These complexes contain a hard anion coordinated to a soft metal center in a low oxidation state with a-acceptor ligands (e.g., CO, PR3).l They are highly reactive; the anions are excellent leaving groups and can easily be replaced by other ligands under very mild conditions, so they have proven to be useful starting materials in preparative organometallic synthesis. The first metal carbonyl compounds of this type that could be isolated were MC1(FBF3)(NH=NR)(CO)- (PPh3)2(M = Ru, OS),^ R~(CO)&FASF~),~ and Cr- (C0)3(PMe3)(=CMe)(FBF3).4 Our group in Munich entered this field when Klaus Schloter in his Master’s thesis examined the reaction between Mo(CO)~(C~)- (SiMe3) and Ph3C+BF4-. Instead of the desired Me&3i=CH2 ligand, he discovered Mo(CO),(C~)(FBF~)~ as a byproduct. Other good examples of such complexes are Re(C0)5(FBF3) and Au(PPh3)X. They react as coordinatively and electronically unsaturated Re(C0)5+ or Au(PPh3)+ with a series of nucleophiles analogously to the isolobal carbenium ions or to the proton.6 We call these compounds “organometallic Lewis acids”, in contrast to the “organometallic bases”.’ It was recog- nized early that all the anions mentioned above have coordinating abilities, at least in the solid state;8how- ever, examples are known in which in spite of electronic unsaturation of the metal, the anion remains uncoor- dinated [e.g., [Rh(PPh3)3]+9@’ or [ C O ( P ( O R ) ~ ) ~ ] + P F ~ - ; ~ ~ also in Cu(CO)(AsF6) the anion is apparently not co- ordinated to the metal, in contrast to the corresponding sulfonato complexes”]. The cationic fragment in these complexes must have low-lying acceptor orbitals as was shown for the ds M(C0)5fragment.12a A theoretical investigation of the [CpzZrC1]*moiety showed two low-lying 6- and a-ac- ceptor MOs.lZb It appears that the more acidic the corresponding hydrides L,MH are, the lower are the LUMOs and the higher is the electrophilicity of ML,+. There are many such complexes of metals in “normal” oxidation states which can only be mentioned briefly here. Examples include M(N-vinylimidaz~le)~SiF~ (M = Mn, Fe, Co, Ni, Cu, Zn), [N~(~II)~(H~O)BF~]BF~, CU(PP~~)~BF~, and Mn(2,g-lutidineN-oxide) (F) (BF4).I3 Often the anions BF4- and C104- occur as bridging or “semicoordinating” ligands.14 0009-266518810788-1405$06.50/0 @ 1900 American Chemical Society

Upload: others

Post on 06-Dec-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Chem. Rev. 1988, 88 , 1405-1421 1405

Metal Complexes of Weakly Coordinating Anions. Precursors of Strong Cationic Organometallic Lewis Acidst

WOLFGANG BECK* and KARLHEINZ SUNKEL

Institut fur Anorganische Chemie, UniversMt Munchen, 8000 Munchen 2, FRO

Received February 4, 1988 (Revised Manuscript Received May 2, 1988)

Conlenls

I. Introduction 1405 1406

111. Methods of Preparation 1406 1406

Lewis Acid 1. Abstraction of Anionic Group X with 1406

Triphenylcarbenium Salts 2. Abstraction of Halide by Silver(1) and 1407

Thallium( I ) Salts 3. Protonation of Hydrido, Alkyl, and 1407

$-Allyl Complexes 4. Reactions Using BF,, AICi,, NO’, R,O+, 1408

CH,OSO,F, CoBr,, and Hg2+ B. Oxidation of Neutral Monomeric or Dimeric 1409

C. Oxidative Addition of RX to Metal de 1409

D. Miscellaneous 1409 IV. Proof of Coordination 1409

A. Crystal Structure Determinations 1410 B. IR Spectroscopy 1410 C. NMR Spectroscopy 1411

V. Reactivity 141 1 A. Relative Donor Strengths of Several 141 1

B. Substitution of Weakly Coordinating Ligands 1412

C. Reaction of Tetrafluoroborato and 1413

11. Scope of the Review

A. Abstraction of an Anionic Ligand by a

Complexes

Systems

Weakly Coordinating Anions

by Neutral 6- and *-Donors

Hexafluorophosphato Complexes with Water 1. Formation of Aqua Complexes 1413 2. Condensation Reactions 1413 3. Hydrolysis of the Anion 1413

1413 1414

Complexes 1. Neutral Ligand-Bridged Bimetallic 1414

2. Formation of Ligand-Bridged Cationic 1414

3. Formation of Cationic Hydride- and 1415

F. Miscellaneous Reactions 1415 1. Stoichiometric Reactions 1415 2. Catalytic Reactions 1416

D. Reaction with Monoanionic Ligands E. Directed Synthesis of Ligand-Bridged

Complexes

Complexes

Acyl-Bridged Complexes

Dedicated to Professor Heinrich Noth on the occasion of his 60th birthday.

VI. Addendum

VI I I. Abbreviations VII . Acknowledgment

1416 1416 1416

I . Introductlon

Organometallic compounds of weakly coordinating anions, e.g., BF4-, PF,, AsF;, and SbF6-, have been the object of many studies in recent years. These complexes contain a hard anion coordinated to a soft metal center in a low oxidation state with a-acceptor ligands (e.g., CO, PR3).l They are highly reactive; the anions are excellent leaving groups and can easily be replaced by other ligands under very mild conditions, so they have proven to be useful starting materials in preparative organometallic synthesis.

The first metal carbonyl compounds of this type that could be isolated were MC1(FBF3)(NH=NR)(CO)- (PPh3)2 (M = Ru, OS),^ R~(CO)&FASF~) ,~ and Cr- (C0)3(PMe3)(=CMe)(FBF3).4 Our group in Munich entered this field when Klaus Schloter in his Master’s thesis examined the reaction between Mo(CO)~(C~)- (SiMe3) and Ph3C+BF4-. Instead of the desired Me&3i=CH2 ligand, he discovered Mo(CO),(C~)(FBF~)~ as a byproduct. Other good examples of such complexes are Re(C0)5(FBF3) and Au(PPh3)X. They react as coordinatively and electronically unsaturated Re(C0)5+ or Au(PPh3)+ with a series of nucleophiles analogously to the isolobal carbenium ions or to the proton.6 We call these compounds “organometallic Lewis acids”, in contrast to the “organometallic bases”.’ It was recog- nized early that all the anions mentioned above have coordinating abilities, at least in the solid state;8 how- ever, examples are known in which in spite of electronic unsaturation of the metal, the anion remains uncoor- dinated [e.g., [Rh(PPh3)3]+9@’ or [CO(P(OR)~)~]+PF~- ;~~ also in Cu(CO)(AsF6) the anion is apparently not co- ordinated to the metal, in contrast to the corresponding sulfonato complexes”].

The cationic fragment in these complexes must have low-lying acceptor orbitals as was shown for the ds M(C0)5 fragment.12a A theoretical investigation of the [CpzZrC1]* moiety showed two low-lying 6- and a-ac- ceptor MOs.lZb It appears that the more acidic the corresponding hydrides L,MH are, the lower are the LUMOs and the higher is the electrophilicity of ML,+. There are many such complexes of metals in “normal” oxidation states which can only be mentioned briefly here. Examples include M(N-vinylimidaz~le)~SiF~ (M = Mn, Fe, Co, Ni, Cu, Zn), [ N ~ ( ~ I I ) ~ ( H ~ O ) B F ~ ] B F ~ , C U ( P P ~ ~ ) ~ B F ~ , and Mn(2,g-lutidine N-oxide) (F) (BF4).I3 Often the anions BF4- and C104- occur as bridging or “semicoordinating” ligands.14

0009-266518810788-1405$06.50/0 @ 1900 American Chemical Society

Page 2: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Beck and Sunkel

where appropriate. Pentaammine fluorosulfato and triflato complexes of Os"', Co"', and Ru"' [M(NH,),- (OSOzR)]2+, which have been used extensively as starting materials for many interesting complexes, e.g., #-benzene or q2-acetone,'s will not be discussed here. Reactions of cationic with anionic metal complexes to give metal-metal-bonded compounds will also not be covered.

I I I . Methods of Preparation

Several methods of preparation of organometallic Lewis acids or their precursors have been developed.

A. Abstraction of an Anionic Ligand by a Lewis Acid

1406 Chemical ReVIeWS. 1988. Vol. 88. No. 7

\

Prof. Woltgang Ewch was bom in 1932 in Munchen. West Germany. He received his Ph.D. under the supervision of Professor Waiter Heber at the Technische Hochschule Munchen in 1960. He was appointed Professor of Inorganic Chemistry at the Ludwigs-Max- imilians Universtat Munchen and Director of the Institute of In- organic Chemistry in 1968. I n 1977 he spent a term as Visiting Professor at the University of Wisconsin, Madison. Prof. Beck is the author of over 300 publications. He started his research with pseudohalide complexes, particularly fulminate and azido com- plexes, and with reactions at coordinated ligands. HIS current interests involve metal complexes of biologically important ligands. especially palladium and platinum compounds of admino acids and their derivatives and organometallic chemistry. I n the latter field he presently studies with his co-workers metal complexes of weakly coordinating anions and nucleophilic attack of organo- metallic anions on coordinated unsaturated hydrocarbons.

Dr. Karlhelnz Sunkel was born in 1955 in Munchen. West Germany. He received his Diplomchemiker degree in 1979 and his Dr. rer. mat. degree with a thesis on organometallic compounds of weakly cwrdinating anions under the supervision of Prof. W. Beck In 1982 at the University of Munich. ARer postdoctoral study with prof. R. Bau at the University of Southern California. Los Angeles, he re- turned to Munich and is presently working for his "Habilitation" on complexes of functionalized cyclopentadienyls and of other un- saturated hydrocarbons.

Reviews on perch lor at^,'^ trifluoroacetato,'6 tri- fluoromethanesulfonato, and fluorosulfonato" com- plexes and of palladium(I1) and platinum(I1) com- pounds with such anions' have been published. A re- view on the synthesis of such complexes by ion ex- change has also appeared.'* The preparation of several of the compounds described here will appear in Vol. 26 of Inorganic Synthesis.

I I . Scope of the Revlew

Here, we try to focus on complexes with *-acidic ligands and with the very weakly coordinating anions. CIO; and CF,SO< usually are stronger ligands and will be considered here only for the sake of comparison,

a01" L,M-Y + Lewis acid - L,M-X -

[L,M(solv)]+X- (1)

Y Lewis acid X- solvent H- H+, Agt FBF< THF CH; TI*, NO+ F P F i Me&O Hal- R30*, Ph3C' FASF< H20 NO- BF.. AICL FSbF; CH,CL

OClOl

..... .__ SbCiK OTe6; coc1, CH(S02R); HgC& CIA1C13-

In the complexes L,M-X-EX. the organometallic Lewis acid competes with the Lewis acid EX, for the base X-. In A1C14- complexes, the transition metal is usually the "winner"; i.e., formation of A1C13 and L.M- C1 is often observed. In the presence of coordinating solvents (e.g., THF, CH,CN, liquid SOz) the cationic solvent complexes [L,M(solv)]+ are formed. From some cationic SOz complexes the neutral L,MX can he ob- tained by simple

1. Abstraction of Anionic Group X with Triphenylcarbenium Salts

The reaction of iridium hydrido complexes with trityl salts to give triphenylmethane was first reported in 19622l The organometallic product was not studied. A ruthenium dihydride yielded a cationic monohydrido complex with no coordination of anion or

RuH2(PPh3), + Ph3C+BF4- - [RuH(PPhJ4]+BF4- + Ph,CH (2)

However, phosphine transfer was observed in the analogous reaction of the corresponding iron hydride.%

A cationic complex [CpW(NO)zNCMe]+ with coor- dinated solvent was obtained in the reaction of CpW- (NO)*H with Ph3C+BF4- in CH,CN?, The first time a complex of coordinated BF; could be obtained by this route was the synthesis of Cp(CO),MoFBF, from C ~ M O ( C O ) ~ H and Ph3CBF4 in CHzCI,.5 A similar re- action of Mn(CO),(PR3)H in moist CHZClz gave the aqua complex [Mn(CO)4(PTS)(Hz0)]+BF,;24 (OC),ReH and Ph3C+BF4- afford (OC)5ReFBF,.42 Molybdenum and tungsten compounds of coordinated PF,, AsF,,

Page 3: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Metal Complexes of Weakly Coordinating Anions

or SbF, could be obtained in the same manner:" CH2C12

CpMo(C0)3H + Ph3C'X- - CpMo(C0)3X (X = FBF3, FPF,, FASF,, FSbF5) + Ph3CH (3)

Recently, the synthesis of the analogous penta- methylcyclopentadienyl complexes (C,M~,)MO(CO)~- (BF4, PF6) by this method and its reactions have been reported.26a "It may be noted in this context that the hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Fenske-Hall calculations show the more acidic character of the hydrogen atom in C ~ M O ( C O ) ~ H com- pared to C ~ M O ( N O ) ~ H ? ~ but as these reactions show, the hydrogen atom can be abstracted as hydride in both cases. The dinuclear dihydride [CpFe(CO)HIz(p-dppe) gave the hydride-bridged [ [CpFe(C0)l2(p-H)(p- dppe)]+BFbB Interestingly, in one case an intermediate $-triphenylmethane complex could be isolated29a

Cp(ON)(OC)Re-H + Ph3C+PF6- - [Cp(ON)(OC)Re(~2-C6H5CHPh2)]+PFe- (4)

in which the v2-arene ligand is readily displaced by PPh3 and can be deprotonated to give Cp(ON)(OC)Re($- CeH4CHPh2). The abstraction of hydride from hydrido complexes in the presence of ligands has been used for the preparation of various cationic complexes (L = HzO, THF, NCMe): [C~OS(CO),(L)]+,~~ [CpRe(NO)(CO)- L]+,31 [Mn(CO)4(PR3)L]+,24 [Mn(C0)3(P(OR)~)zLl+,32 [CPW(NO)~L]+,~~ and [CpzNb(CO)(L)]+.33 The [Co- (CO),L]+ system (L = CO, PPh3) is obviously too unstable to be isolated, since the reaction of HCO(CO)~L with Ph3C+ gave only [CO(CO)~L]~ and ~ o b a l t ( I I ) . ~ ~ * ~ ~ However, H C O ( P ( O P ~ ) ~ ) ~ is oxidized to [HCo(P- (OPh),),]+ by Ph3C+ 36 (for the reaction with acid see below). The abstraction of hydride from the anionic complex [CPV(CO)~H]- led to CPV(CO)~L.~~ The po- lyhydride OS(PR~)~H, gave [ O S ( P R ~ ) ~ ( C H ~ C N ) ~ ] ~ + . ~ ~ Formation of Ph3CH from metal hydrides and trityl salts is further evidence for the negative ~ h a r g e ~ ~ p ~ on the hydrogen atom in these metal hydrides.

Abstraction of a methyl group by trityl cation has been reported first for CpFe(CO)zMe to yield the aqua complex [ C pFe (CO ) 2(H20)]+.41 Also Mn (C 0) 4( PR3) - Me" and M(CO),Me (M = Mn, Re)42 gave with Ph3C+ [Mn(C0)4(PR3)(Hz0)]+ and M(C0)$BF3, respectively. On the other hand, Ph3C+ abstracts hydride from the methyl group in C P R ~ ( N O ) ( P P ~ ~ ) ( C H ~ ) ~ ~ and Cp,W- (CHzR)t4 to afford the cationic methylene complexes [CPR~(NO)(PP~~)(CHZ)I+ and [CPZW(CHZR)(CHR)I+, respectively. Carbene complexes of metals in higher oxidation states are also obtained by hydride abstrac- tion from alkyl ligands.,,

Evidence for initial electron transfer from the met- al-alkyl compound to the trityl cation has been found in a few cases.43C-ep- Usually, with longer alkyl groups p-hydride elimination occurs and cationic $-alkene complexes can be i ~ o l a t e d . ~ ~ ? ~ Use of acylium cations instead of trityl salts leads to the formation of #- aldehyde and ketone complexes.4g

L,M-R + PhCO'SbFe- - [L,M(PhCOR)]+SbF6- ( 5 )

L,M = Re(CO),, CpW(CO),; R = H, CH3

Chemical Reviews, 1988, Vol. 88, No. 7 1407

2. Abstraction of Halide by Silver(I) and Thallium(I) Salts

The simple metathesis of halide with the weaker co- ordinating anions by means of silver salts has been used in numerous cases and not all examples can be cited here. Either cationic solvent complexes or complexes with coordinating anions could be obtained, e.g., [CpFe(L)L'(sol~)]+,~~ [CpFe(C0)2(FBF3,53 OTeF6&)], [ (Mn,Re)(CO)3L2(OC103,55~56a*b FBF3,* ORe03,57 FAs- F5,3 OS02CF3,58 OSOzF,598 CH(S02F)25gb)] [L = CO, PR31, (Mn,Re) (CO) 3LdH20) [CpCr(NO) 2- (NCMe)]+,60 [Pd(L)2(so1v)2]2+ (L = 1/2dppe,61a COD, nbd61b), Ir(C0) (PPh3)2(0C103) and [ Ir(C0) (PPh3l2- (s0lv)]+,6~ Pt(nbd) (OTeF5)2,63 [ R ~ ( d p p e ) ~ L ~ ] ~ + , ~ [Ru- (COD) (NCMe)4] 2+,65a [Rh( COD) ( S O ~ V ) , ] + , ~ [ Cp,Zr- (Me)(NCMe)]+,67a Cp2Zr(OS02CF3)2(THF),67b and [(C5Me5)M(NCMe)3]2+ (M = Rh, Ir).68 [MII(CO)~- (NCMe),]+ has been shown to be a useful precursor for cationic manganese carbonyl compounds.66b The com- plex C P F ~ ( C O ) ~ F B F ~ from CpFe(C0)21 and AgBF, is formed via the iodo-bridged complex [ (CpFe(CO)&(p- I)]+BF4-.53 The mechanism of chloride abstraction in Mo(N0)2L2C12 has been also inve~t igated.~~ These re- actions have been carried out often in the presence of other ligands without isolation of any organometallic Lewis acids.

It should be pointed out that sometimes the silver atom gets attached to the m o l e c ~ l e . ~ ~ ~ ~ ~ ~ ~

In a few cases T1+ salts could also be used; e.g., WC12H2(PMe3), and TlBF, in CH3CN give [WCl- (NCMe)Hz(PMe3)4]+BF4-, while in C6H5C1 the 16e complex [WC1H2(PMe3)4]+ is formedy2 Also [AuPI&]+ can be generated in situ from AuPR3C1 and T1BFq.73 CpFe(dmpe)I and T1BF4 give [CpFe(dmpe)(solv)]+- BF4,7, while with AgBF, the 17e cation [CpFe(dmpe)I]+ is obtained.

3. Protonation of Hydrido, Alkyl, and 773-Al~l Complexes

The elimination of hydrogen by reaction of hydrido complexes with strong acids in the presence of other neutral ligands has often been studied, since the pro- tonation of several hydrido complexes in several strong acids was examined in 1962:75

ML,H + HX + L' ---+ [ML,L']+X- +H, (6) In several cases the first step of this reaction may be the formation of $-dihydrogen complexes, as has been proven by the isolation of [P(CH2CH2PPh2)3RhI-12]+,7Ba [FeH3(dppe)z]+,76btd and [CpRu(CO) (PR3)H2]+BF4-.76C Also other protonated hydrido complexes, like [H2Co- [P(OR)3]4]+,'o originally formulated as dihydrido com- pounds, might be $dihydrogen c ~ m p l e x e s . ~ ~ Nitrosyl hydrides as CpW(N0)2H23 or M I I ( N O ) ~ ( P P ~ ~ ) ~ H ~ ~ yield with acids HX CpW(N0)20Ts and Mn(N0)2(PPh3)2X (X = FBF,, OSOzCF3), respectively.

Many polyhydrides, e.g., MOL,H~,'~'~ OSH,L~,~@ and ReH5(PR3)2L,81 have been reacted with acids. Whereas sometimes all hydrogens remain in the complex after protonation,80*81b982 it also happens that one or more molecules of Hz are A few interesting reactions have been observed with dihydrides. Thus, while ReH2NO(PPh3)3 yields with HClO, in the presence of CO and alcohols the complexes ReH(OR)(CO)(NO)- (PPh3)2,84a a fluoro cation [Re(F)(CO)(NO)(PPh,),]+ is

Page 4: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

1408 Chemical Reviews, 1988, Vol. 88, No. 7

obtained with HBF4/C0.84b R u H ~ ( P P ~ ~ ) ~ yields on protonation with ~ - T S O H , ~ ~ H2C(S02CF3)2/toluene,s5b or HBF4 or phenol85c $-arene complexes [RuH- (PPh3)2(arene)]n+ (n = 0, l), where the arene is either the phenyl ring of OTs-, toluene, PPh3, or OPh-. Also OSH,(PP~,)~ undergoes a similar reaction with sulfonic acids in refluxing benzene.85d

This method is especially convenient for metal car- bonyl systems where the carbonyl metalate can be protonated without isolation of the intermediate hy- dride: complexes [Fe(CO)3(NO)L]+sG and Mn(CO)50- S02CF387 have been produced from [Fe(CO),(NO)]- and [Mn(C0)5]-, respectively.

The best and cleanest method for the isolation of organometallic Lewis acids seems to be the protonation of methyl complexes:

L,M-CHS + HX - L,M-X + CH4 (7) This method made the isolation of the following com- plexes possible: Re(C0)$BF3,88 CpM(CO)(L)(OS02R) (M = Fe, Ru, L = CO, PMe3),89 Cp(OC)2FeOTeF5,54 CPM(CO)~X (M = Mo, W; X = FBF3, OS02R),w M- (C0)50TeF5 (M = Mn, Re),54 CpRe(NO)(PPh3)X (X = OS02CF3, FBF3, FPF5).91

However, it could be shown that isolation of these complexes and of "(C6H6)Ru(PR3)(CH3)+" is not nec- essary for many reaction^.^^-^^ Also ethyls6 and other a-alkyl and a-allylg7 complexes can be used. H3CCo- [P(OR),], can be protonated by NH4PF6 to give

Some mechanistic investigations on the reaction of metal alkyl complexes with strong acids have been un- dertaken.98*99 The protonation of the optically active CpRe*(NO)(PPh3)R* by HBr proceeds with retention of configuration at both carbon and which "can be visualized as a net addition of HX across the rhenium-carbon a-bond".

The intermediate complex [Cp(Me3P)2Ru(CH3)H]+- BF4- from the protonation of Cp(Me3P),Ru(CH3) with HBF4 could be isolated.99b Further examples for the cleavage of the metal-carbon a-bond by protonic acids are summarized in ref 100.

The cleavage of the cyclopentadienyl ligand from nickelocene via [NiCp]' has led to the first "triple- decker" compound [Ni2Cp3]+,101a which can be used as an excellent source for the extremely reactive [NiCp]+ unit.lOlb

Interestingly, protonation of ( T ~ - C ~ H ~ ) M ( C O ) ~ (M = Mo, W) by HBF4 yields the 16e system [(C7Hg)M- (C0)3]+BF4- with no coordination of the anion.lo2 In contrast to the analogous tungsten compound, the molybdenum atom is not electrophilic, since addition of phosphine takes place at the C7Hg group.

In contrast to these reactions, the cyclohexadienyl complex CpFeC6H7 is protonated by HBF4-OEh to give the very reactive diene-tetrafluoroborato complex C ~ F ~ ( T ~ - C ~ H ~ ) ( F B F ~ ) . ~ ~ ~ Protonation of the q3-allyl complex C ~ M O ( C O ) ~ ( C ~ H ~ ) with HBF4 yielded Cp- (C0)2Mo(CH2=CHMe)(FBF3), an organometallic Lewis acid bearing two accessible coordination sites (eq

Similarly, protonation of q3-allyl complexes (C3H5)ML, (ML, = C O [ P ( O M ~ ) ~ ] ~ , ' ~ Mn(CO)2[P(O-i- C3H7)3]2,104b and R u ( ~ ~ - d i e n e ) ' ~ ) gives compounds with two reactive coordination sites. N~(T~-C,H~)~, PMe3, and HBF, yield (v3-C3H5)Ni(PMe3)(FBF3), which was characterized by 31P NMR (eq 9).lo5

[(H~N)CO[P(OR)~]~]+PF~-.'~

Beck and Sunkel

CP(OC)~MO(CH~CHCH~) + HBF4 -+

C~(OC)~MO(CH~=CHCH~)(FBF~) (8)

Ni(CH2CHCH2)2 + HBF4 + PMe3 - (CH2CHCH2)Ni(PMe3)(FBF3) + CH2=CHCH3 (9)

The aryl complexes CpRe(CO)(NO)(C6H4R) gave cationic T2-arene complexes [CpRe(CO)(N0)(v2- C6HJ3)]+ upon protonation with HBFbmb Evidence for the formation of C P F ~ ( C O ) ~ B F ~ from CpFe- (CO)2S020R and HBF4 has been reported.lM

Closely related are the reactions of metal alkyl com- plexes with metal hydrides to give alkanes and dimeric species with metal-metal bonds.lo7

4. Reactions Using B F , AICI, NO', R,O+, CH,OSOf, CoBr, and H#+

A general applicable method for the synthesis of cationic metal carbonyl complexes is the halide ab- straction promoted by BF3 or AlC13 in the presence of neutral ligands;lO&lll e.g.

L,M-Cl + AlC13 - L,MC1A1C13 - Thus the first homoleptic metal carbonyl cations [M- (co)6]+ (M = Mn, Re) could be isolated.'*'09 In several cases evidence for the intermediacy of coordinated AlC14- and similar anions could be found.'12 Due to their sensitivity to water and the easy loss of AlC13, relatively few AlC14- complexes could be isolated. Ad- dition of AlC13 to chloro complexes yielded the struc- turally characterized Sm(s6-C6Me6)(~2-C12A1C12)3,113a,b

+L'

[LnM-L']+A1C14- (10)

U(T6-C6Me6)(ClA1C13)3,113b [u(~~-cl)2(~2-cl)3(~l-T2- C12AlC12) 3( ?f-C&e~)] [ AlCll] ,113' [ Pd (~~-ClAlC13) ( ~ 2 - g6-C6H6)]2,114 (~~-C6R6)Ti(~~-C12A1C12)2,~~~~ (v3-C3H5)- [ (C6H11)3P]NiC1A1Me2C1,105c and Cp2Ti(C1)- (C1AlC12Me).115b Other examples are 1:l adducts of AlC13 with Cp2TiC12116a and (H)(OC)(Ph3P)21rC12.116b An unusual tricoordinate ylide complex [Pt- (CH2PPh3)(PPh3)C1]AlC1, could be obtained by chlo- ride abstraction from Pt(CH2PPh3)(PPh3)C12 by Al- Cl3.'l7 Abstraction of a SiC13 group from Re(CO)5SiC13 by SbC15 produced Re(C0)5C1SbC15.118 The carbon- iron bond in [(HNC5H4)CH2Fe(C0)2Cp]+ can be cleaved by Hg2+ salts in aqueous solution to give the [CpFe(CO)2(H20)]+ cation.llg

Reaction of several Fischer-type carbene complexes with BF3 led to the isolation of (MeC)Cr(C0)3- (PMe3)FBFt and (RC)W(C0)4FBF3.120 A niobium hydride was reported to react with BF3 to give a com- plex of BF3H-.121 Also a general examination of the interaction of metal carbonyl hydrides with Lewis acids BC13 and AlBr, was undertaken.122 The titanium bo- ranate complex Cp2TiBH4 and BF3.0Eh give Cp2TiBF4 with bidentate BF4-.123

Trialkyl oxonium salts have also been used for the abstraction of halide,M*'" methyl,% or azide" ligands. Halide and pseudohalide abstraction using R30+, S02F(OMe), NO+, or BF3 is a directed way for the preparation of halide- and pseudohalide-bridged com- p l e ~ e s . ~ ~ " ' ~ ~ (C8Hl4)AuC1 and S02F(OMe) give the fluorosulfate complex (C8H14)3A~OS02F.127 Cp2ReH and AlX3 form the hydride-bridged compounds Cp2ReH-AlX3,1m while with CoBr2 in MeCN, hydride abstraction and formation of ( C ~ ~ R e ) ~ c o B r ~ are ob- served.128b

Page 5: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Metal Complexes of Weakly Coordlnatlng Anions Chemical Reviews, 1988, Vol. 88, No. 7 1400

[M(C0)3Cp]2 and Mn2(CO)lo the radicals [M(C0)3Cp]' and [Mn(CO)S]' are key i n t e r m e d i a t e ~ . ' ~ J ~ ~ Electro- chemical preparations of cationic complexes include [CpFe(CO)2(solv)]+,168 [IrR(CO)(PPh3)3]+,1s9 [CpRh- (CO)(PPh3)]+,ls0 and [CpCr(NO)2(solv)]+.161

Recently, a complex of coordinated SbF6- could be prepared by oxidation of W(CO)s(PPh3) with NOSbF6:le2

W(CO)S(PR3) + NOSbF6 - CH&

W(CO)&NO)(PR3)(FSbFS) + 2CO (13)

6. Oxidation of Neutral Monomeric or Dimeric Complexes

The oxidation of dimeric metal carbonyls in coordi- nating solvents has been used to produce cationic com- plexes of many metals.

-2e- [LnM(C0),l2 + solv - 2[L,M(CO),(solv)]+ (11)

A quite general method for the preparation of cationic complexes is oxidation of neutral monomeric and di- meric carbonyl complexes by nitrosyl salts;lB e.g., from M2(CO)lo and NO+ in MeCN the cations [(OC)5MNCMe]+ (M = Mn, Re) have been obtained, which are useful starting compounds for other cations [(OC)sML]+.129d

Other oxidants that have been used to produce [ (OC)sMNCMe]+ are Cu2+, Fe3+, and TCNE.129e*f

[ C P F ~ ( C O ) ~ ] ~ and its derivatives can be oxidized by Fe3+,130 O2 in the presence of HBF4*OEt2,131 Ag+,ls2 Ph3C+,133 quinone,lM or Cp2Fe+ 13s to give [CpFe(CO)- L(solv)]+. Similarly, from [CpM(C0)3]2 (M = Cr, Mol and Ag+,lW Cp2Fe+,136C or Ph3C+,137 [CpRu(CO& and Ag+,138 and [CpCr(NO)2]2 and HBF4.0Et239 the or- ganometallic Lewis acids [CpM(CO)3]+, [CpRu(C0)21+, and [CpCr(NO)2]+ have been generated in situ. Oxi- dation of the bis(carbene) complex Mo(CO)~L~ with H03SCF3 gave the bidtriflato) complex Mo(CO)~L~(O- S02CF3)2140 (L = =&N(Et)(CH,),NEt). It should be noted that in the oxidation of the dimeric rhodium complexes Cp2Rh2(p-CO)(p-L) (L = CO, dppm) with AgX, the cluster compounds (p-AgX) [Cp2Rh2(p-CO)- (p-L)] are ~ b t a i n e d . l ~ l J ~ ~

An elegant way for the synthesis of [CPF~(CO)~- (S02)l+, [Mn(Co)~(So2)1+, [Re(Co)~(So2)1+, and [Co- (C0),(SO2)]+ is the oxidation of the corresponding neutral dimers with AsFs in liquid S02;143 e.g. Re2(CO)lo + 3AsFs + 2S02 -

2[Re(C0)s(S02)]+AsF6- + AsF3 (12)

Another interesting example is Re(CO)$ReFs, which can be obtained from Re2(CO)lo and ReF6 or XeF2, respectively.lU

The hydrido complex CpFeL2H and [CpFe(C0)2L"]+ (L" = olefin, carbene) undergo redox reactions to give [CpFeL2(solv)]+ and CpFe(C0)2(alkyl).14S Cp2ReH is oxidized by CuC12 to [Cp2Re]+[CuC12-].146

Examples of dicationic complexes obtained by the oxidation of monomeric complexes include [Pd- (PPh3)4]2+ (from Pd(PPh3)4 and Ph3C+),147 [MoH2- (PR3)4(NCMe)2]2+ (from M o H ~ ( P R ~ ) ~ and AgBF4),'8 [CpCoL2I2+ (from CpCoL2 and AgBF4),lM [CpCoL3I2+ (from C ~ C O ( C O ) ~ , L, and [Cp2Fe]+BF4-),149 [M(NO),- (NCCH3)4]2+ (from M(CO)6 (M = Mo, W) and NOBF4),lM) and [ Mo(CO)~(~~~)~(OH~)]~+(BF~-)~ (from M0(C0)~(bpy), and AgBF4).lS1

A report of the synthesis of [MO(NO)~]~+[BF~-]~ from Mo(CO)~ and NOBF, in C12C2H4 is highly surprisinglS2 and certainly wrong. Reactions of M(CO), with NOX (X = C1, PF6) give polymeric [M(N0)2X2]n.1S3J8S "[MO(NO)~]~+[BF~-]~" and Mo(NO)2(PF6)2186 show identical v(N0) bands.

Seventeen-electron species can also be obtainedlMJ" by oxidation of 18-electron complexes, e.g., [CpFe- (dppe)I]+PF6-.155 In the electrochemical oxidation of

C. Oxidative Addition of RX to Metal d8 Systems

The oxidative addition of strong acids, of alkyl fluo- rosulfates, or of oxonium salts to Vaska's compound IrC1(CO)(PPh3)2 gives the complexes Ir(CO)(Cl)- (PPh,),(R)(X) (where R = H or Me and X = FBF3, FPFs, OPOF2, OS02CF3, OSO2C4Fs, OS02F, or 0C103).1Ma*b1163*1a Similarly, Ir(N2)(PPh3)2Cl and RX give Ir(N~(PPh3),(C1)(R)(X) (R = H, Me; X = OSOZF, OS02CF3, FBF3),163*16s which have two good leaving groups, similar to the above-mentioned [CpMo(CO)z- (CHTCHM~)(FBF,)] .~~ The Bronsted acidity of strong acids HX is transferred to Lewis acidity a t the metal by these reactions. Reacting Pt(PPh3)2(C2H4) with HBF4 or HS03CF3 gives Pt(PPh3),H2X2 (X = BF4, CF3S03] ,166 and addition of H2C(S02CF3)2 yields (PPh3)2PtH[HC(S02CF3)2].167 Pt(PPh3)2C12 adds two molecules of RX to ive Pt(PPh3)2HC1X2166 or [Pt2-

Addition of HBF4 to the dinuclear complex [RhCl(p- dppm)I2(p-CO) gives the mixed Rh'/Rh"' dimer [R~C~(~-~PP~)~I~(IL-C~)(C~-H)(FBF~).~~

D. Miscellaneous

Photochemical-induced disproportionation of dimeric complexes [ ( M ~ C ~ ) M O ( C O ) ~ ] ~ to give [ (MeCp)Mo- (CO)3(solv)]+ and [ (M~C~)MO(CO)~]- has been re- ported.168 The highly reactive "[CpFe(dppe)]+" is formed by irradiation of [CpFe(CO) (dppe)]+; it coor- dinates a large variety of ligands.lm Abstraction of Cl- from CpCr(N0)2CH2C1 by Ag+ leads via the interme- diate [CpCr(NO)2=CH2]+ to "(C6H4CH3)Cr(NO)2+".170 The disporportionation of cationic methylene complexes gives the intermediate organometallic Lewis acids and cationic ethylene c o m p ~ u n d s : ~ J ~ ~ - ' ~ ~

(PPh3),C12] [FSO3I2,lM % depending on the nature of RX.

2[LnM=CH2]+ - [LnM(C2H4)]+ + "L,M+" (14)

where L,M = CpL2Fe,171 CP(OC)~LMO, Cp- (OC)2LW,90J72 or C P ( O N ) ( P ~ ~ P ) R ~ ~ ~ ~ (L = CO, PR3). Triflato complexes can be isolated by this r ~ u t e . ~ J ' l ~ ~ * ~ An unusual weak ligand is V(CO), in V(THF),[(p- OC)V(CO)s]2174 and (CsMeS)2V(p-OC)V(C0)s,17s which is coordinated via the oxygen atom of one carbonyl ligand to the Lewis acid [V(THF)4I2" and [(C&e&V!+, respectively. In the latter complex V(CO), is easily displaced by nitrogen donors.17s

IV. Proof of Coordinatlon

In Table I a listing of isolated and characterized complexes of coordinated fluoro anions, OTeFS-, and carborane anions is given.

Page 6: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

1410 Chemical Revlews, 1988, Vol. 88, No. 7 Beck and Sunkel

TABLE I. Representative Examples of Proposed or Isolated Complexes with Fluoro-, Teflate- and Carborane anions comdex x. L ref

CrCp(NO)zX X = FBF,, FPF,, FASF, 20,60,161 X = FBF, 4 L = CO, 6Ph3, PEt3, P(OPh),; X = FBF3 L = co; x = FPF,, FASF,, FSbF, L = CO, PR3; X = FBF3 L = CO; X = FPF,. FAsFn. FSbF,

5, 182 5, 25 5, 186a 5.202

X = FBF, X = FSbF,; PR3 = PMezPh, PMe, X = FBF3, F h F 6 , OTeF, L = bpy, tmen; X = FBF3 FAsF, L = co; X = FBF3, FASF,, OTeF,, FReF, X FBF,, FPF, x = FBF, X = FSbF,, BlICHlZ X = FBF3 L CO, Nz; X = FBF3 L = CO, X = FPF, X = FZBFZ X = [HC(SOZCF3),]

222 162 3, 54, 183 56c 3, 42, 54, 88, 144 91b 53 179, 180 39 164 252 176 167

TABLE 11. Bond Lengths in Some M-F-EF, Complexes compd d(M-Fi,) d(Fi,-E) d(E-FJ ref

Cu(PPha)SFBF3 2.31 1.39 1.35 13c [UCP”Z(P-BF~)(P-F) Iz 2.41 1.34 1.38/1.23 176 [CU(~PY)Z(FZBF~)I+BF~- 2.56/2.66 1.3711.35 1.39 14a IrC1CO(PPh,),(H)(FBF3) 2.27 1.45 1.34 164b AdCNR)zFzPF4 2.67 1.56 1.51 178 Fe(”PP)FSbF, 2.11 1.90 1.88-1.93 180a (Me2PhP)(CO)zONWFSbF6 2.17 1.95 1.86 162 (OC)&eFReF, 2.13/2.20 1.98/1.95 1.84 144

TABLE 111. v(E-F) Bands (om-’) of EfexafluoroDhosphato. -arsenate. and -antimonato ComDlexes L,M-Xa LnM X Ai(vi) A i ( d Bibz) A i ( 4 Eb3) Alba) E(v4) ref

CU(PY)4 (FPF6)z 742 852 828 551 181 CpMo(CO), FPF6 739 879 810 488 5 IrHC1(PPh3)&O FPF6 734 880 810 488 116b CpMo(c0)~ FASF, 669 511 550 699 726 395,384,367 25 CpW(C0)3 FASF, 668 697 726 34 Re(CO)f, FASF6 675 712 730 3 Mn(CO), FA SF^ 676 710 725 3 Re(C0)dbpy) FASF, 530 705 765 390 56c CpMo(c0)~ FSbFb 642 662 679 25

“The v(E-F) bands (Flu) of the free octahedral anions are at ca. 830 cm-‘ (PF,-), 700 cm-’ (AsF,), and 670 cm-’ (SbF,).

A. Crystal Structure Determinations A series of crystal structures of non-carbonyl com-

plexes show BF4- as a monodentate or bidentate bridging ligand.13J4J76J77 Also the structures of com- plexes with PF6-,178 AlC14-, and A1C12R2- 105c~113-115 have been elucidated. A group of Fe(TPP)X complexes, particularly with the weak anionic ligands X = SbF6-17’ and B11CH12-,180 was examined by X-ray crystallogra- phy. The crystal structure of AgB11CH12*2C6H61soC shows a bridging carborane and an ql-coordinated benzene ligand, which is “interpreted as resulting from the poor ligation properties of the closo-carborane anion”. Only a few crystal structures of carbonyl com- plexes with BF4-, SbF6-, ReF6-, and OTeF,- have been reported, e.g., IrCl(C0) (PPh,),(H) ( F B F s ) , ~ ~ ~ ~ (Me2PhP) (C0)&NO)WFSbF5,ls2 (OC)&FReF5,14 and (OC)6MnOTeF5.64 In most of these compounds the bridging E-F bonds are longer than the terminal E-F bonds. The metal-fluorine interaction is stronger in complexes of ?r-acceptor ligands than it is in complexes of metals in normal oxidation states with nitrogen do- nors. The two very different terminal B-F bond lengths in [UCp”2(p-BF4)(p-F),] (@” = C5H3(SiMe3),) are un- ~ s u a 1 . l ~ ~

The coordination of CH(S02CF3),- to platinum via the carbon atom was shown in a crystal structure de- termination of Pt(PPh3)2(H)(CH(S02CF3)2).167b This appears interesting since RHC(S02CF3), are strong protic acids and the negative charge of the corre- sponding anion should be delocalized.

Bond lengths of relevant examples are summarized in Table 11.

B. I R Spectroscopy

Coordination of the highly symmetric anions BF4- (Td), PF6-, AsF6-, or SbF6- (Oh) to a metal center leads to a significant lowering of the symmetry. This results in a characteristic splitting of the E-F stretching vi- b r a t i o n ~ ’ ~ ~ * ~ ~ ~ (Table 111). The v(BF4) vibrations are especially sensitive to changes in the neighborhood of the BF4- anion. Four v(BF) bands are expected for the C, symmetry of the M-F-BF3 group, as has been ob- served with M(C0)5FBF3 (M = Mn, Re); sometimes only three bands are visible (Table IV).

Splitting of the v(BF4) band may also be observed without coordination of the anions to a metal center, due to hydrogen bonds to coordinated water or amines.436cv184

Page 7: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Metal Complexes of Weakly Coordinating Anions Chemical Reviews, 1988, Vol. 88, No. 7 1411

TABLE IV. v(l1B-F) Bands of Tetrafluoroborato Complexes’

compd v(”B-F)

CPMO(CO)~FBFS 1130 884 722 CpMo(C0)2(PPha)FBFS 1119 901 732 C ~ M O ( C O ) ~ ( P E ~ ) F B F S 1137 891 730 Cu(PPh3)gFBFS 984 769

Re(CO)$BFS 1162 1128 902 738 MXI(CO)~FBF~ 1145 1118 919 738 [ C U ( ~ P Y ) ~ F ~ B F ~ I + B F C 1105 1070 1030 [SnMeaF2BF2]+BF4- 1170 1085 1005 758

The free BFI ion absorbs a t ca. 1050-1080 cm-’.

C I ( C M ~ ) ( C O ) ~ ( P M ~ ~ ) F B F ~ 1110 910 745

ref 5 182 182 13c 4 42 183 14a 14a

We have found that some very labile complexes can react with the material of the IR cell windows rapidly under formation of halide compounds. Then only the IR spectrum of the free anions is observed. In other cases the presence of water leads also to splitting of v(BF4) bands (see below).

Evidence for bridging F2PF4 groups in polymeric [MO(NO),(PF~)~],, has been obtained by IR spectros-

C. NMR Spectroscopy

In a few cases it has been possible to demonstrate the coordination by NMR spectroscopy. The l9F NMR low-temperature spectra of CpM(CO)2(L)(FBF3)186 in CD2C12 show two widely separated signals; a doublet due to the terminal fluorine nuclei close to free BF4- and a quartet a t very high field due to the bridging fluorine atom. Similarly, coordination of BF4- in CpFe(C6H6) (FEW3) was proven by 19F NMR spectros- copy.lo3 In phosphorus-containing compounds (L = PR3) additional coupling to the 31P nuclei can be ob- served.lMJ8’ The 31P NMR spectra of these complexes as well of (M~CZ)C~(CO)~(PM~~)FBF~,~ W(CO)3- (PR3)(NO)(FSbF5),162 and ( V ~ - C ~ H , ) ( M ~ ~ P ) N ~ F B F ~ ~ ~ also reveal a doublet at low temperature due to coupling of the 31P nucleus to a single fluorine atom. At higher temperatures typical coalescence behavior in both 31P and 19F NMR spectra is observed, which is consistent with an intramolecular exchange of coordinated and noncoordinated fluorine atoms.

In some cases only signals of freely rotating or un- coordinated fluoro anions could be ~ b t a i n e d . ~ “ - Q ~ ~ ~ J ~ This was explained by an equilibrium between the co- ordinated and free BF4- anionsc or by rapid rotation of PF6- on the NMR time scale;60 a fast exchange of solvent and coordinated PF, may also be an explana- tion.lesa For CpRe(NO)(PPh3)BF4 13C NMR evidence of coordinated CD2C12 in CD2C12 solution has been ob- taineda9lb The relatively small number of NMR “proofs” is a consequence of the low solubility of many of these complexes in weakly coordinating solvents. In stronger donor solvents substitution of the coordinated anion by the solvent occurs.

copy. 165

v. Reacllvliy

Organometallic Lewis acids such as “Re(CO)5+” or “AuPPh3+” can serve as a probe for the behavior of all kinds of ligands, including ambivalent ligands. “Re- (CO)5+” is especially useful since the pentacarbonyl group can easily be detected by its characteristic pattern of the v(C0) bands in the IR spectrum.

TABLE V

A. CO Frequencies (cm-‘) of Carbonyl Complexes L,(CO),MX of Weakly Weakly Coordinating Anions

v(C0) L,(CO),M X (in CH2C12) ref

Mn(CO), FBFS 2163 2081 2023 183 oclO3 2158 2074 2023 54

OTeF, 2155 2070 2016 54

I 2129 2045 2008 54

OSOZCF, 2158 2073 2020 54

OCOCFS 2149 2063 2012 54

Re(CO), FBF3 2166 2066 2008 42 OSOzCFS 2166 2059 2004 54 OTeF, 2164 2055 1998 54 OReO3 2163 2051 1995 239d c1 2157 2046 1985 54

CpFe(CO)2 FBFS 2078 2032 53 OTeF, 2069 2024 54 I 2043 1998 53

CP(CO)SMO FSbF6 2079 2001 25 FPFs 2079 1997 5 FASF, 2072 1985 25 FBFq 2067 1975 5 c1 2057 1977 5

Ir(PPh~)Z(CO)(Cl)H FPFs 2072 252 (in Nuiol) FBFq 2061 164b. 190

OSO&FS 2055 164b; 190 OSOzF 2048 90 ORe03 2044 57 c1 2027 190

B. NO Frequencies (cm-’) of Complexes CPW(NO)~X

X vWO) ref FBFs 1770 1640 222 OTs 1737 1650 222 c1 1705 1625 222

TABLE VI. 6(CsHs) Signals of Several Cyclopentadienyl Complexes CpL,MX of Weakly Coordinated Anions

FASF; 6.02 FBF3 5.98 OSOZF 5.88 OSO2CF3 5.85b c1 5.70

CP(C0)SW FBFS 6.11 OSOzF 6.00 OSOZCFS 5.96b c1 5.79

(I In CD,C12 unless otherwise noted. In CDC1,.

25 90 90 90 5 90 90 90 5

A. Relatlve Donor Strengths of Several Weakly Coordinating Anions

The cationic character of the metal carbonyl frag- ment, corresponding to a weak donor strength of the coordinated anions, can easily be derived from the Y- (CO) data. The complex “CU(CO)ASF6” shows the highest v ( C 0 ) frequency (2180 cm-’) for mono- carbonyls.ll* In the complexes M(CO)5X (M = Mn, Re), CpM(CO)3X (M = Mo, W), or C P F ~ ( C O ) ~ X the v(C0) frequencies are considerably higher for X = EF;, C104-, OTeF5-, etc. than in the corresponding halides. In the nitrosyl complex CPW(NO)~X the same obser- vation can be made for v(N0) (Table V).

Similar results can be obtained by comparing the ‘H NMR spectra of CpM(CO),X (M = Mo, W), where the shifts for the cyclopentadienyl group occur a t lower fields for weaker a-donor ability of X (see Table VI). The IR and NMR data indicate the following order of

Page 8: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

1412 Chemlcal Reviews, 1988, Vol. 88, No. 7 Beck and Sunkel

TABLE VI1

A. ‘H NMR Chemical Shifts and u(1r-H) Wavenumbers for Ir(PPh,),(CO) (Cl) (H)XlB0

FBFi -26.5 2333 X b(1r-H) u(1r-H)

OSO;CF8 -21.77 2305

c1 2240 SeCN -11.4 2180

B. ,lP NMR Data for trans-[(OC)~(ON)(MerP)WL1+ lgl

NCSe -16.1

L b(31P) ‘J(P-W) FSbF, -16.25 282.9 FBF, -17.46 282.0 OPOFT -21.48 274.4 NCMe -27.03 263.8 c1- -28.34 263.8 PPhB -35.96 252.4

relative a-donor ~ t r e n g t h : ~ @ - ~ ~ p ~ FASF,, FSbF5-, FPF5- < FBF3- < OSOZF-, OS02CF3- < OC103- C OTeFc, ORe03- << C1-.

A similar order was found earlier from electronic spectra and magnetic data of complexes M(en)2X2 and M(py)4X2.14cJ88 Calculations of the “group electronegativities” 189 of the coordinating anions are consistent with this series. For complexes of the same type this trend is qualitatively also observed in the chemical reactivity. For instance, the reaction of HRh(PP3) (PP3 = P(CH2CH2PPh2)3) with HBF4 yields an complex [H2Rh(PP3)]+BF4-, which spontane- ously loses H2 on addition of CF3SOf to give the triflato complex ( PP3) RhOS02CF3. 76a

Two correlations have been found by comparing ei- ther the G(1r-H) chemical shifts and v(1r-H) in com- pounds HIr(CO)(PPh3)2(L)C11W or the 31P NMR data of LW(NO)(PMe3)(C0)3191 (L = anionic or neutral lig- and). Linear relationships between the G(1r-H) shift and the electronegativity of the ligand trans to hydrogen in the first case and between 31P NMR shifts and one-bond coupling constants 1J(31P-183W) in the second case were found. Both measurements allow one to derive a general order of a-donor strengths for both anionic or neutral ligands: F donor C 0 donor < N donor (Table VII).

From the porphyrin core coordination parameters of five-coordinate ferric porphyrins, e.g., the iron-nitrogen distances, or the distance of iron atoms from the por- phyrin plane, the following order of decreasing strength of anion bonding has been found:Imb I- > OC103- > FSbF5- > BI1CHl2-. Thus the carborane ligand is the least coordinating anion, a t least for the Fe(TPP)+ m ~ i e t y . ’ ~ ~ J ~ A “new” candidate for the least coordi- nating anion is the B(OTeF5)4- anion.lg2 An “old” candidate for this position may be the C(S02R)3- ion, which has been shown to be a very weak ligand.lg3

B. Substttution of Weakly Coordinating Ligands by Neutral Q- and Ir-Donors

The weakly coordinated anions are readily displaced under very mild conditions by a large number of neutral CJ- and +donors to give ionic complexes

L,M-X + L’ -+ [L,M-L’]+X- (15) where X = BF4-, PF,, AsF6-, SbF6-, OTeF5-, OC103-, CFSSOa-, AlC14-, and SbCl6- and L’ = H20, ROH,848,194,195 R&,58,195,196 R2C=0,5,42,49,50,55,56a,134,194,198,199

RN02,134200 H s ~ 4 , 2 0 ~ 2 0 2 RSH 202,203 R~E, (n = 1, 2; E

3 (E = P, AS, Sb, Bi),135ev2059214-218 R3EX (E = P, As, Sb; X = S, Se, Te,

9 9 2, 9 ,and N heterocycle^,^^^^^^^^ and guanine239c and xanthine derivative^.^^ Easy uptake of HS even in the solid state

= S, Se, Te) 2 9 ,103,200,202,204,206 R2S0,202,205 N 74,169

27 9

NR3,169,206-209,282 R-CN 134,21C-213 ER

0, NR),219,282 RNGC 220,245 R C‘CR 10,134,136a,182,221-226 R-CrC-R 5,5I3136b,225,227-229 CO 5,42,62 SO 194,213 0 S , 2 29

has been reported for [c~(P(bMvle)~)~]+PF~- to give IH.,Co(P(OMe)n)dl+PFc-.lo

The systems wCpFe(e0)2X,231a CpML2X (M = Ru, Os),231b and CPM(CO)~(L)X (M = Mo, W) have been intensively studied. It should be noted that the starting compounds CPM(CO)~(L)X (M = Mo, W) are ex- tremely sensitive to moisture. The formation of the much less reactive red aqua complexes [CPM(CO)~L- (HZO)]+X- from the violet BF4- complexes can easily be recognized. In the system CpM(CO),(L)X we ob- served the following order of increasing ability to sub- stitute weaker ligands:5J95J96*202 CH2C12 - PF6- - &F6- - SbF, C OEh < BF4- H2S < THF < Me2C0 C H 2 0 < CF3S0y < CO - MeCN - PR3.

Other systems examined for substitution reactions include C P W ( N O ) ~ B F ~ , ~ ~ ~ CpCr(N0)2PF6,60 Mn- (C0)50C103,55756a9217 (Mn,Re)(C0)50S02CF3,58 (Mn,- Re) ( C0)5FBF3,42*56c*224,23ga>b Mn (CO) 4(L)BF4,24 Mn- (CO)B(L)~X (X = C104-, P02F2-,66a,220 (Mn,Re)(C0)5F- A s F ~ , ~ ~ ~ , ~ ~ ~ , ~ ~ ~ C P ’ O S ( C O ) ~ B F ~ , ~ ~ (Rh,Ir)(CO)- (PPh3)2C104,62~210~211 HI r(C1) (CO) (PPh3)2FBF3,164 Cp2TiX2,198~206,212 and W(CO)3(PR3)(NO)X.191 (OC),- ReOS02CF3 undergoes substitution of triflate with nucleophiles according to an associative process.58 In- terestingly, the reactions of CpRe(NO)(PPh3)X (X- = BF4-, PI?,-) with u- and .rr-donors proceed with retention of configuration at rheniumSglb

Many substitution reactions have been carried out by in situ generation of L,M-X or from cationic solvent complexes in the presence of donors. As far as these syntheses have been carried out in dichloromethane, coordination of CH2C12 may O C C U ~ . ~ ~ ~ ~ * ~ ~ ~ ~ ~ * ~ ~ ~ J ~ ~ * ~ ~ ~

Interesting ligands that could be coordinated to the metal via this method in cationic complexes are acetic and trifluoroacetic CH 3 I,233a-e1236 C 6 H 4 I 29 233b NS+ 234a (thus a dicationic carbonyl complex [(OC)&eNS]2+ could be obtained), NSF3,=” HNS0,234c HNSOF2,234d Ph3PCHCOCH3,235 and Et3PCS2.237 The alkyl iodide complexes [Ir(PPh3)2H2(MeI)2]+ 233a and [CpRe(NO) (PPh3)(ICH2SiMe3)]+BF4-236 have been characterized by crystal structure determination. Closely related are [(COD)Ir(V2-(P,Br)- (Ph2PC6H4Br))]+ 233c and [IrH2(PPh3)2(s2- (8-fluoro- quinoline))] .233d

With diphosphines mono- and dinuclear cationic complexes can be obtained, e.g., [(C0)5Re-PPh2-X- PPh2-Re(C0)5]2+, with X = CH2, NH, or 0, or the two tautomers [ (CO)5Re-PPh2-NH-PPh2]+ and [(CO)5Re PPh2-N-PPh2H]+.238 Several polyfunctional neutral ligands, such as p y r a ~ i n e , ~ ~ ~ ~ TCNE, TCNQ,239a 1,3- or 1,4-dithiane, 1,3,5-trithiane,219biBM or l,4-dioxane,ls6 can also be metalated by more than one Re(C0)5+ to give ligand-bridged cations; e.g.

L-L + 2Re(C0)5+ - [ (OC)5Re-L-L-Re(CO)5]2+ (16)

Trithiane and TCNQ can be trimetallated by Cp(OC),Fe+ 219b or Re(C0)5+,239a respectively.

Page 9: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Metal Complexes of Weakly Coordinating Anions

CO readily displaces AlC14-, BF4-, or ReF6- in (Mn,- Re)(C0)5X42*108J09*144 in a CO atmosphere, while for X = OTeF5- or CF3S0< no reaction occurs under these

On the other hand, in (O05MnX with X = OTeFc and CF3S03- ligands CO is substituted by nucleophiles while the anionic ligand remains coordi- n a t e d . " ~ ~ ~ Interestingly, the metal-triflate bond of (OC)5MOS02CF3 (M = Mn, Re) is seriously weakened in superacidic solvents (CF3S03H, FS03H, SbF5). In these systems the triflate complexes react with CO to give [M(co)6]+.58

Introducing alkenes or alkynes to form cationic com- plexes with coordinated unsaturated hydrocarbons is particularly easy by this method. Cationic complexes are important starting materials for nucleophilic ad- dition reactions at coordinated unsaturated hydro- carbons, carbon monoxide, isonitriles, or ke- t o n e ~ . ~ ~ ~ * ~ ~ * ~ ~ & ~ ~ ~ The use of carbonyl metalates, e.g., Re(CO)<, instead of organic nucleophiles for the attack on the coordinated unsaturated hydrocarbon leads to a series of hydrocarbon-bridged bimetallic complexes in a directed way;244 e.g.

[(OC)5Re(C&)I+ + [Re(C0)51- - ( OC)&eCH2CH2Re(C0)5

Chemical Reviews, 1988, Vol. 88, No. 7 1413

[(C7H7)Mo(acac)(H20)]+BF4-253 show a cyclic structure of two water molecules doubly hydrogen bridged to two different bridging BF4- anions. BF4- and was shown to be hydrogen bonded to two coordinated water molecules of [Re(CO)3(tmen)(H20)]+.56c Also in [Cp2Zr(H20)2(OTs)]+ hydrogen bridges between H20 and the sulfonato group have been proven.2"

2. Condensation Reactions

In the presence of weak bases cationic aqua com- plexes can be deprotonated, and condensation gives dinuclear hydroxo-bridged or tris(metal1aoxonium) species. With [CpCr(NO)2(OH2)]+ 139 or [Cp,Zr- ( H20)3]2+ 255 the hydroxo-bridged { [ CpCr(NO)2] 2(p- OH)J+BF4- and [Cp2Zr2(p-OH)2(H20)6]4+ have been obtained. On the other hand, [C~MO(CO)~(H~O)]+ and [CpMo(NO),(H,O)]+ give ( [C~MO(CO)~]~O)+ and ( [C~MO(NO)(OH)],OJ+.~ ( [C~MO(CO)~]~O)+ contains semibridging CO groups, while the homologous ( [C~MO(CO)~]~S)+ does not.257 Oxonium salt formation is also observed in the system AuPPh3C1/AgBF4, where ( [Au(PP~~)]~O)+ is the reaction product in the presence of moisture.2ss Oxo- and/or hydroxo-bridged oligomers are also obtained by alkaline hydrolysis of Fe(TPP)- Cl,259 [ C ~ ' C O X ~ ] ~ , ~ ~ ~ or Cp2ZrC1261 and have been structurally characterized.

Nucleophilic attack of hydroxide on a carbon atom of a carbonyl ligand (Hieber base reactions2) gives the C02-bridged complex201*263

(0C)sRe \ 0

C. Reaction of Tetrafluoroborato and Hexafiuorophosphato Complexes with Water

been observed.

1. Formation of Aqua Complexes

The anion can be substituted by H20 to give cationic aqua complexes. So [Mn(C0)5(H20)]+,246 [Re(CO)5- ( H20)] +,42*56cJ94*201 [ Mn( CO),( PPh3) ( H20)]+,24 [ (Mn,- Re)(C0)3L2(H20)l+,56c [CP(M~,W)(CO)~(L)(H~O)I+,~,~~~ [ C ~ O S ( C O ) ~ ( H ~ O ) I + , ~ ~ [C~(CO)~(PM~S)(CM~)(H~O)I+,~ [ C P F ~ ( C O ) ~ ( H 0)]+,41*53 [Pt(PPh3)2(C1)(H20)]+,247 [ Cp2Ti(H20),] 9+,248 [ Cp2Zr(H20)3] 2+,249 and [ W- (PMe3)4(H20)H2F]+ 250 have been obtained. The origin of the water can be moist solvent" or traces of water in the silver saltsMc used in synthesis.

A variable-temperature 19F NMR study of [Re- (CO)3(tmen)(H20)]+ has been ~ n d e r t a k e n . ~ ~ The coalescence of two singlets was interpreted as evidence for an equilibrium:

Three different types of reaction with water have

LnM-FBF3 + H20 [LnM-OH2]+***FBF3- (17)

However, the characteristic pattern of coordinated BF, has not been observed.

In complexes [LnM-OH2]+BF4- IR spectroscopy clearly reveals hydrogen bridges between coordinated H20 and BF4-.495966cJ849"79251 The characteristic pattern of the v(BF) absorptions in H-bridged species can easily be distinguished from the pattern of coordinated BF4- and of free BF4-, as was shown for [CpMo(CO),- (H20)]+.5J84 When more than stoichiometric amounts of water are present, hydrates are formed and the IR spectrum of free BF4- is observed. LnM-OH2+..*FBF3 + H2O -+

[LnM(OH,)(OH,)nI+BF4- (18) The crystal structure determinations of the aqua

complexes [Ir(PPh3)2(C1)H(H20)]+BF4- 252 and

I I F'O,

O T C '1 I 0 \

Re(C0)5

as the final product.

3. Hydrolysis of the Anion

Hydrolysis of the anion occurs especially with the PF6- anion, where the very stable P02F2- ion is

which is also a much stronger donor. Ex- amples are Mn(C0)3(L)20POF2M and IrC1(H)(PPh3)2- (CO) (P02F2),252 the crystal structures of which have been determined.

In some cases hydrolysis of BF4- and BPh4- to give BF30H- and BPh30H- is observed.42J39*201*265 The structure of (OC)5Re(OH)BF3, which crystallized with {[(CO)5Re]3S)+BF4- in the same crystal, has been de- termined.% Interestingly, the BF30H- ion was formed also by the reaction of AgF2H with Re(C0)3(tmen)Br in a glass apparatus to give ([Re(CO)3(tmen)F]2H)+- BF30H-, as was shown by crystal structure determi- nation.267

D. Reaction with Monoanionic Ligands

Particularly for Re(CO)5X compounds the substitu- tion of the BF4- ion in Re(CO)5BF4 by a large number of anionic ligands is a straightforward way under very mild conditions. In these reactions the Re(CO)5 moiety remains intact, whereas in reaction of the corresponding

Page 10: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

1414 Chemical Reviews, 1988, Vol. 88, No. 7

halides with silver salts loss of CO may occur. In several cases Re(C0)pBF3 can be reacted in aqueous solution, where substitution of the aqua ligand in [Re(CO),- (H,O)]+ takes place. Thus complexes Re(CO)& with X = SCN, SeCN, ORe03, ONOz, NO2, OCHO, NCNC- N-, NCC(CNI2-, or TCNQ- could be obtained.57*201p239a Dicyanamide and tricyanomethanide have been shown to coordinate through the nitrile N atom to the met- al.239a Related substitutions with halide, pseudohalide, or nitrate ligands have been reported for [CpFe(C0)2- (OHz)]+BF4-,131 W(C0)4(CR)FBF3,120 Cp2Ti- (CF3S03)2,268 and W(C0)2(NO)(PPh3)2(0C103).269 In the perchlorato complexes Mn(C0)&0C103) the C104- anion can be substituted by a~ety l ide .~"~ Similar re-

i-pr,)Iz/AgPF~ and an alkyne272 also yield a-acetylide complexes L,M-C=C-R. Carboxylate complexes are obtained from [ (Rh,Ir)(CO)(PPh,),(MeCN)]+ and peroxocarbo~ylates,~~ from halide complexes with silver carboxylate^,^"^ or from [ (Me2NCH2)2C6H3(Ni,- Pt)(H20)]+ and NaOCH0.275 In an interesting reaction the highly electrophilic [ (OEP)Rh]+ (from (0EP)RhCl and AgBF4 or AgClO,) yields in the presence of arenes Ph-X the o-aryl compounds (OEP)Rh-C6H4X.276 Re- cently, the reaction of (C5R5)M(C0)3CH3/HBF4 (M = Mo, W) with hydrogen selenide was reported to give (C5R5)M(C0)3SeH.n7 Metal-metal-bonded complexes can be obtained from the substitution of the weakly coordinated anion by an organometallic e.g., (OC)5MnRe('3C0)5 from (0'3C)5ReOS02CF3 and KMn (CO) 5.

E. Dlrected Synthesls of Llgand-Bridged Complexes

1. Neutral Ligand-Bridged Bimetallic Complexes

It is well-known that Lewis acids of main-group ele- ments (BF3, SiF,, AlR,) add to the nitrogen atom of cyanide complexes.279 Similarly, the Lewis acids [Me- (CO) (PR3)2( C1) Ir] +,280 [ Cp,Zr] 2+f281 and [Re (CO),] + '01 form cyanide-bridged complexes with [Pt(CN),I2- or [Au(CN),]-, e.g., NCAUCNR~(CO)~ and (NC)2Pt[CN- Re(C0),I2. By the reaction of anionic carbonyl halide or pseudohalide complexes with Re(C0),FBF3 the neutral compounds L,M-X-Re(CO), can be obtained

[L,M-XI- + Re(CO),FBF3 - L,M-X-Re(CO), + BF4- (19)

where L,M = Cr(CO), or W(CO), and X = C1, Br, I, CN, NCS, NCO, SH, or NCC(CN)2.282 Three Re(CO),+ groups can be added to [Cr(NCS),13- to afford (SCN)3Cr[NCSRe(CO)5]3.201 Examples of chalcogen- ide-bridged complexes obtained in a similar fashion are [(C,R,)(CO),M],(p-E), with M = Mo or W and S or Se.95

An interesting compound, [(OC)SRe-O(0)2CrOCr- (0)20-Re(CO)s], that shows that high and low oxidation states are compatible within one complex is precipitated from an aqueous solution of [Re(C0),(H2O)]+BF4- and KzCrz07.239d

From anionic acyl complexes and Re(C0),FBF3 Fischer-type bimetallic carbene complexes can be pre- pared. These reactions are another example for the isoloba16 analogy between Re(CO),+ and carbenium ions.

actions with ''[CpFe(CO)L]+" g' and with OS(c&)(P-

Beck and Sunkel

L,M-COR- + Re(C0)6FBF3 - L,M=C(R)O-Re(C0)5 + BF4- (20)

where L,M = Cr(CO),, W(CO),, Cr(C0),(PPh3), or W(CO),(PPh3) and R = Me, Ph, or Fc.2829283

CpRe(C0) (N0)COOH and Cp,Zr(Cl)Me yield Cp- (ON) (OC)Re(p-( o'-C:$-O,O '))ZrCp2C1; CpRe(N0)- (CO) CHzOH and Cp2Zr (C1)Me give Cp( ON) (OC) Re- CH20-ZrCp2C1.2&L The anionic 02-acetaldehyde com- plex [ C ~ M O ( C O ) ~ ( ~ ~ - M ~ C H O ) ] - and C~MO(CO)~BF, give C~MO(CO)(~-~~,~~-M~CHO)(~-CO)MO(CO)~C~.~

Closely related is the reaction of Cp(CO)(NO)Mo- (CR0Li)- with [CpFe(CO)2(THF)]+BF4-, which led to the crystallographically characterized Cp(NO)Mo(p- CO) [p-C(0)R]FeCp(CO)2M with a a-bonded p-acyl bridge. Here, however, metal-metal bonds are involved. From iron-bonded enolates and the Lewis acid pre- cursors AuPPh3C1 or Cp2ZrC12 bimetallic complexes with either a "keto" or an "enol" bridge are obtained [ Cp(Ph3P) (0C)Fe-C ( CH2)O-ZrCp2C1] and [ Cp- (Ph3P) (0C)Fe-C(0)CH2-AuPPh3] .287 Bimetallic p malonyl compounds have been obtained from in situ generated Cp*Re(NO)(PPh3)(COCH2Li) and M(CO),- (CF3S03) (M = Mn, Re).288 Also oxalate, squarate, and tetrathiosquarate dianion can function as bridges be- tween two Re(CO), or CpM(CO), (M = Mo, W) moie-

2. Formation of Ligand-Bridged Cationic Complexes

Metalation of halide, pseudohalide, or chalcogenide ligands by organometallic Lewis acids has led to a large variety of dimeric metal cations:

Multifunctional compounds L,MX, can be metalated more than once. Examples for these reactions include { [CPM(CO)~]~I)+ (M = Mo, W),m [Cp(CO)2Fe-X-Re- (CO),]' (X = C1, Br, I, N3, NCO, NCC(CN)CN, SR, CSSMe, PPh2,282 [ ( P ~ , P A U ) ~ ( P - C ~ ) ] + , ~ ~ ~ {[(CO)6M]2(p- X))' (M = Mn, Re; X = C1, Br, I, NCS,292 CN, HCOO, F,201 N3324), ~[M~(CO)~(~PP~)~I~(P-F))+,~~~ ([CpFe- (CO)2]2(p-X))+ (X = 1 , 2 ° 3 5 3 C1, Br,294 02CR296), ([CpCr- ( N O ) ~ I Z ( ~ L - C U ~ + , ~ ~ [ P d 3 ( d ~ ~ e ) 3 ( p - C N ) 3 1 ~ + , ~ ~ ~ [Pd- (C~F,)LZ]~(F-X))+ (X = CN, SCN, N3),297 ([((Me2NCH2)2C6H3)Pt12(CL-X)1' (X = c1, Br, I, CNLm {[CPW(CO)~I~(CL-SH))+,~~~ {[Re(C0)514(114-C4S4))2+,201 {Au[CNRe(C0),l2)+, {Pt[CNRe(C0)5j4]2+,201 and {[Ir- (PPh3),(C1) (H) ( C0)I2(p-SeCN) )+.= A compound [ Cp- (OC)2Fe]2(p3-CS2)Re(C0)5]+, in which carbon disulfide bridges three metals, has been obtained and structurally characterized.282 It is isoelectronic with the neutral [ Cp(OC)2Fe]2(p3-CS2) [W (CO),] .300 Tricyanomethanide coordinated to three metals via its nitrile N atoms has been obtained in {(OC)5WNCC[CNRe(CO)5]2)+BF4-.282 Cationic thiolate-bridged heterometallic complexes [CpNi(p-SR)2MCp2]+BF4- can be obtained from thio- lates C P ~ M ( S R ) ~ (M = Ti, Mo) and Tris(metalla)sulfonium, tris(metalla)selenonium, or tris(metal1a)telluronium salts [ (L,M),E]+ (E = S, Se, Te) have been obtained from chalcogenides and or- ganometallic Lewis acids. Structurally characterized were the star-shaped cations { [Re(C0),l3E)+ (E = S, Se, Te)266 and {[CpFe(CO)2]3Se)'.301 Unexpectedly, the compounds { [ CpFe (CO) J3SeJ+ and { [Cp(CO)2Fel ,Se- Se-Fe(CO)2Cp}+ are formed by reaction of [CpFe- (CO)2]2Sen (n = 1, 2) with Re(C0)5FBF3.302 They are

ties.20139

L,M-X + L,M+ - [L,M-X-ML,]' (21)

Page 11: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Metal Complexes of Weakly Coordinating Anions

closely related to the [E(HgX)3]+303 and ([Au- (PPh,)] ,E}+ salts,So4 which were obtained in a different way.

Di- and tricationic ligand-bridged systems with neu- tral bridge ligands have been mentioned before. Other examples are ([ (OC)SRe]2(p-(NS)2NMe)}2+,m {[CpFe- (CO)2](p-Ph2E2)}2+ (E = S, Se, Te),,07 and ([Re-

3)).23ga Two interesting types of ligand bridges occur with acetylides. From Re(C0)5FBF3 and S i M e 3 m H or CpFe(CO)zC=CPh the a-, s-bridged complexes

I I

(co)s],(p-LcN))”+ (LCN = TCNE (n = 2), TCNQ (n =

1’ (OC)5Re - C n C - H I + (OC)5Re-CeC -Ph

Chemical Reviews, 1988, Vol. 88, No. 7 1415

diated methyl m i g r a t i ~ n . ~ ~ Careful reexamination of the reaction of CpMo(CO),H with “C~MO(CO)~+” showed that actually hydrido bridges are formed and-due to the stable metal-hydrogen bond- migration of hydride to a carbonyl ligand does not oc- cur.316

Coordination of the acyl oxygen atom in [Cp- (OC)2Fe-CH2CO-FeCp(C0)2] to “CpFe(C0)2+” or “Cp2ZrMe” yields cationic trinuclear p3-773-(C,C,0)- ketene complexes [Cp(OC)zFe-CH2C(OML,)-Fe- (CO),Cp]+ (ML, = CpFe(CO)z, C ~ ~ z r M e ) . , ~ ,

F. Miscellaneous Reactions 1. Stochiometric Reactions

Organometallic Lewis acids are sufficiently electro- philic to cleave M-C linkages in organo derivatives of the main-group elements (M = B, Al, Si, Sn). Thus from the reaction of CPW(NO)~BF, with A R 3 or SnR4 the compounds CpW (N0)2R are produced.222 CpW- (N0)2BF4 and Re(CO)SBF4 react with NaBPh4 to give C P W ( N O ) ~ P ~ ~ ~ ~ and Re(CO)sPh,324 respectively. C ~ R U ( L ) ~ X and NaBPh, yield either C ~ R U ( L ) ~ P ~ , [ C ~ R U ( L ) ~ ] ~ , or [CpRu(s6-Ph-BPh3)], depending on the reaction condition^.^^ Alkynylstannanes and -silanes and Re(CO)SFBF3 give a-alkynyl complexes Re- (C0)s-C=LR.908 For R = H the upethynide-bridged ( [(OC)sRe-C=CH]Re(CO)s}+BF4- is formed as the stable product, as was mentioned before. This com- pound can easily be deprotonated in a reversible reac- tion by Bronsted bases to give (OC)sRe-C=C-Re(C- O)6.308 In a similar manner, the reaction of Re(C0)P- BF3 and Me3SiCH=CHz produced the a,s-vinyl- bridged complex238

(OC)sReCH CHz I 1’

are ~ b t a i n e d . ~ ~ ~ % O ~ The unexpected formation of the latter compound with a rhenium-carbon a-bond was confirmed by X-ray crystal structure determination.282 CpW(CO),C=CPh and HBF4 yield the structurally c h a r a c t e r i ~ e d ~ ~

I Cp0C)sW-C E C P h I

WCp(CO)(PhCCH) BF4-

[HPtLz(acetone)]+BF4- and PtL2(C=CPh)2310 or Cp- (C0)2W=CAr311 give p-alkylidene complexes.

3. Formation of Cationic Hydride- and Acyl-BrUged Complexes

The concept of Lewis acid-Lewis base coupling, i.e., the reaction of organometallic Lewis acids with metal hydrides, has been proven to be a directed way for the synthesis of homo- and heterobimetallic hydrido- bridged complexes, which has been reviewed:,12

Thus the complexes [(R3P)z(R’)Pt(p-H)M(PR”3)]+ (M

[CP~W(~-H)~P~(P~)(PE~~)I+,~~~ [(CpFe)2(~-dppe)(p-

([CPM(NO)~]~(~-H)}+ (M = Mo, W),17 have been ob- tained. Protonation of the dihydride CpRh(P&)H2 by CF3COOH yields ( [CpRh(PR3)]2(p-H)3}+.318 Also pro- tonation of bimetallic neutral complexes [CPM(CO)~]~ (M = Mo, W),76 [CpFe(C0)2]2,13g or Mn2(C0)s- (dppm)2l9 gives hydride-bridged cationic complexes.

From transition-metal acyl complexes and organo- metallic Lewis acids cationic acyl-bridged bimetallic complexes can be obtained

L,M-H + L,M+ 4 [L,M-H-ML,]’ (22)

= Ag, Au),S1’ [Cp2M&-H)2Rh(PPh&]+ (M = Mo, W),314

H)]+,28 ([CpMo(C0)3]2(p-H)}+ (M = Mo, W)>,16 and

L,M-C(=O)R + L,M+ 4 [L,M-C(R)-0-ML,]’ (23)

e.g., [ Cp(C0) (L)F~-C(CH~)O-MO(CO)~(L)C~]+ 26~320~321 and [ Cp(L) (OC)2Mo-C(CH3)0-Mo(CO)2(L)Cp]3.320b These compounds can also be obtained by the reaction of transition-metal alkyl complexes with organometallic Lewis acids. It could be confirmed by a crystal struc- ture determinat i~n~~l that a symmetric acyl bridge can also be formed:320 CpMo(CO),+ + CpMo(CO),Me -

[ [CP(OC)~MOI~(CL-~~~-OCCH~)I+ +

This reaction is another example of a Lewis acid me- [C~(OC),MO-C(CH,)O-MO(CO)~C~]+ (24)

While with the organometallic Lewis acids CpMo- (C0)2(L)FBF3 and alkynes cationic n-alkyne com- pounds [CpM(CO)(L)(RCCR)]+BF4-sv136*227 are ob- tained, M(CO)SFBF3 (M = Mn, Re) and MeCCMe produce derivatives of a (2n + 2s)-cycloaddition: Mn- (CO)SFBF3 yields the n-cyclobutadiene compound Mn(C0)4(q4-C4Me4)+BF4- with loss of carbon mon- oxide.,% With Re(CO)SFBF3 a 1,3-H shift is observed and the pentacarbonyl complex

is formed as a consequence of the more stable Re(CO)S unit.@

Terminal alkynes and [CpRu(L),(MeOH)]+ give rise to cationic vinylidene complexes [Cp(L2)Ru=C= CHR]+,2288pb while [CpRu(CO),(MeCN)]+BF,- and to- lane afford the cyclobutadiene complex TCpRu(v4- - - C4Ph4)(MeCN)]+BF4-.138 Similar to other Lewis acids CDMO(CO)$BF~ induces

ring opening and dimerization bf oxirk:, a n 8 the 1,4- dioxane complex [CpMo(CO),0(CH2),0]+ is formed.’%

Page 12: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

1416 Chemical Reviews, 1988, Vol. 88, No. 7

C ~ C O ( C O ) ~ reacts with C ~ M O ( C O ) ~ F B F ~ ~ ~ but not with Re(C0)5FBF?82 to yield a cationic bimetallic complex with a metal-metal bond.25 Similarly, CpM- (PMe3)2 (M = Co, Rh) or (C6H6)Os(PMe3)(CNR) and AuPPh3C1 yield [CP(M~~P)~M-AUPP~~]+X-~~~ and [ (q6-c6H6) (Me3P)(RNC)Os-AuPPh3]+X-,328 respective- ly. 2. Catalytic Reactions

The acetone complex [C~MO(CO)~(OCM~~) ]+BF~- catalyzes the reaction of acetone with oxirane to form 1,3-dioxolane.lg6 E.g., alkene polymerization, oligom- erization, or rearrangements can be catalyzed by [Fe- ( NO)2C1]2/AgPF6,329 [ Mo(NO),( MeCN)4] 2+ 150 Cp W- (N0)2BF4,222 L2PdC12/AgBF4 mixtures,3;O or (q3- C3H5)Ni(PMe3)(FBF3) and related systems Ni(q3- C3H5)(PR3)(ClA1R3).lo5 Olefin metathesis can be in- duced by MOC~,(NO)~(PR~)~/A~E~C~~ mixtures and similar systems, where the intermediate formation of a Mo-C1-A1Cl3 moiety is discussed.331 Claisen ester condensation reactions as well as the formation of 1,3- dicarbonyl compounds from 1-alkynes and acid anhy- drides are catalyzed by TiC12(0S02CF3).332 Diene po- lymerization and Diels-Alder reactions are catalyzed by (Me3P)(ON)(OC)3WFSbF5;333 the X-ray structure of the presumed catalytic intermediate [ (Me3P)(ON)- (0C)3W (acrolein)]+ was determined. Hydroformylation of olefins is catalyzed by [ (PPh3)3Rh(CO)]+[HC-

Ir(CO)(PPh3),(0C1O3) catalyzes the hydrogenation of unsaturated aldehydes.335 The most important cat- ionic complexes are [ (R3P)2Rh(solv)2]+ and [IrH2L2- (~olv)~]+ for olefin hydrogenation or C-H bond cleavage reactions, e.g., benzene formation from cyclohexane.336 This subject appears to be, however, beyond the scope of this review.

(S02CF3)2]-.334

Beck and Sunkel

FBFd have been NMR spectra and crystal structure determination confirmed that the anions are coordinated to tungsten both in solution and in the solid state. Apparently the strongly electron-withdrawing NO ligand-trans to the coordinated anion-. increases the Lewis acidity of the metal. "Spinning" of the co- ordinated SbF6- and BF4- ligands in these complexes also has been observed by 19F NMR spectroscopy. Bond length comparison has been made in a series of adducts of SbF6-', BF,, PF6-, and ReF6-. The order of binding strength in these tungsten complexes is SbF6- > BF4- > PF6-.347 c104-, BF,, and PF6- complexes of Cd2+, Pb2+, and T1+ have been electrochemically gen- erated in noncoordinating solvents and the equilibrium constants show that PF, ligation is considerably weaker than that of C104- and BF4-.348 Cp(Ph3P)2RuOS02CF3 reacts with thiirane to give [ C P ( P ~ ~ P ) ~ R U - (CH2CH2S)]+S03CF3-.349 Protonation of H2Ru[P- (CH2CH2CH2PMe2)3P] by HBF4 yields the coordina- tively unsa tu ra t ed complex HRu[P- (CH2CH2CH2PMe2)3P]+BF4-.360 The reaction of arenes with (OC)5MFBF3 (M = Mn, Re) provides an efficient route to cationic complexes [ (q6-arene)M(C0),]+-

I

BF4-.351p352

VI. Addendum

The rapid growth of this field is documented by a series of recent interesting communications.

The complexes C P ~ T ~ ( F E F ~ ) ~ (E = As, Sb) have been prepared in SO2 from AgEF6 and C ~ ~ T i C 1 2 3 ~ ~ and from Cp2TiF2 and AsF5338 and the complexes [Cp2Ti- (NCCH3)3]2+339 and CpTi(S02),(EFJ3 have been stud- ied.340 C P , T ~ ( F A ~ F ~ ) ~ has been characterized by X-ray diffraction.338 The extremely reactive organometallic Lewis acid [Cp(OC)(R20)Fe(q2-CH2=CHCH3)]+BF4- was obtained by protonation of Cp(OC)Fe(q3-allyl) with HBF4-0R2.341 In this paper341 previous work on the chemistry of CpL2Fe+ cations is thoroughly described. Coordination of tetrafluoroborate could be shown by I9F NMR in C P ( O C ) ~ F ~ ( F B F , ) , ~ ~ ~ Cp(OC)2Mo(q2- CH2=CHCH3)(FBF3)341 and in Ph3P(OC)4Mn(FBF3).32 Ligation of CH2C12 to the chiral Lewis acid Cp(0N)- (Ph3P)Re+ has been definitely proven by low temper- ature 13C NMR spectra.343 A hydrido-methyl complex [Cp(ON)(Ph,P)Re(H)(Me)]+ has been detected as in- termediate in the formation of Cp(ON)(Ph3P)Re+ from Cp(ON)(Ph3P)ReCH3 and HBF4.0Et2.343 The chem- istry of the stereochemically rigid Lewis acid Cp- (ON)(Ph3P)Re+ has been Impressive is the selective binding of one enantioface of mono- substituted alkenes to this cation.% In a comprehen- sive study, preparation, reactions, and structures of a series of complexes (R3P)(ON)(OC)3W (FSbF,, FPF5,

VII. Acknowledgment

W.B. is deeply indebted to his former and present co-workers Dr. Klaus Schloter, Dr. Bernhard Olgemoller, Dr. Luitgard Olgemoller, Herbert Ernst, Dr. Karlheinz Sunkel, Dr. Gunter Urban, Dr. Herbert Bauer, Dr. Klaus Raab, Dr. Mathilde Appel, Dr. Wolfgang Sacher, Dr. Jurgen Heidrich, Dr. Peter Steil, Dr. Peter M. Fritz, Dr. Martin Schweiger, Elke Fritsch, and Torsten Weidmann for their invaluable contribu- tions to this field and Dr. Ulrich Nagel and Manfred Steimann for crystal structure determinations. We thank Hannelore Hross, Christ1 Fengler, and Dr. Erich Leidl for their help in preparing the manuscript and Dr. A. Kendrik for reading the manuscript. Generous support by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie is gratefully ac- knowledged.

VIII. bPY COD CP CP* dmpe dPPe en Fc nbd OEP OTs PY THF tmen TPP

Abbreviations

2,2'-bipyridine cyclooctadiene q5-cyclopentadienyl q5-pentamethylcyclopentadienyl bis(dimethy1phosphino)ethane 1,2-bis(diphenylphosphino)ethane ethylene diamine ferrocenyl norbornadiene octaethylporphyrinate p-toluenesulfonate pyridine tetrahydrofuran tetramethylethylenediamine tetraphenylporphyrinate

References (1) Davies, J. A.; Hartley, F. R. Chem. Rev. 1981, 81, 79. (2) Laing, K. R.; Robinson, S. D.; Uttley, M. F. J. Chem. SOC.,

Dalton Trans. 1973, 2713.

Page 13: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Metal Complexes of Weakly Coordinatlng Anions Chemical Reviews, 1988, Vol. 88, No. 7 1417

(3) Mews, R. An ew. Chem., Int. Ed. Engl. 1975, 14, 640. (4) Richter, K.; Sischer, E. 0.; Kreiter, C. G. J . Organomet.

Chem. 1976,122, 187. (5) Beck, W.; Schloter, K. Z . Naturforsch., B 1978, 33b, 1214.

Evidence for a complex with the Me&i=CH, ligand has been mesented recently: Lewis, C.; Wrighton, M. S. J . Am. Chem. SOC. 1983, 105, 7768.

(6) (a) Hoffmann, R. Angew. Chem., Znt. Ed. Engl. 1982,21,711. (b) Stone, F. G. A. Angew. Chem., Znt. Ed. Engl. 1984,23,89.

(7) Werner, H. Angew. Chem., Znt. Ed. Engl. 1983,22,927. See also: Mtiller, H.; Vahrenkamp, H. Chem. Ber. 1980, 113, 3539.

(8) Rosenthal, M. R. J . Chem. Educ. 1973,50,331 and references therein.

(9) (a) Yared, Y. W.; Miles, S. L.; Bau,, R.; Reed, C. A. J..Am. Chem. SOC. 1977,99, 7076. (b) Dedieu, A.; Hyla-Kryspin, I. J . Organomet. Chem. 1981,220,115. Siedle, A. R.; Newmark, R. A.; Pignolet, L. H.; Howells, R. D. J. Am. Chem. SOC. 1984, 106, 1510. (c) However, formation of coordinated BF4- in Rh(PPh&BF4 has been postulated from conductivity mea- surements: Legzdins, P.; Mitchell, R. W.; Rempel, G. L.; Ruddick, J. D.; Wilkinson, G. J . Chem. SOC. A 1970, 3322. See also: Pimblett, G.; Garner, C. D.; Clegg, W. J. Chem. SOC., Dalton Trans. 1985, 1977.

(10) Muetterties, E. L.; Watson, P. L. J . Am. Chem. SOC. 1978, 100,6978.

(11) (a) Desjardins, C. D.; Edwards, D. B.; Passmore, J. Can. J . Chem. 1979, 57, 2714. (b) Doyle, G.; Eriksen, K. A.; van Engen, D. Znorg. Chem. 1983,22, 2892.

(12) (a) Elian, M.; Hoffmann, R. Znorg. Chem. 1975,14,1059. (b) Hofmann, P.; Stauffert, P.; Schore, N. E. Chem. Ber. 1982, 115, 2153.

(13) (a) Driessen, R. A. J.; Hulsbergen, F. B.; Vermin, W. J.; Reedijk, J. Znorg. Chem. 1982,21, 3594. (b) Tomlinson, A. A. G.; Bonamico, M.; Dessy, G.; Fares, V.; Scaramuzza, L. J. Chem. SOC., Dalton Trans. 1972, 1671. (c) Gaughan, A. P., Jr.; Dori, Z.; Ibers, J. A. Znorg. Chem. 1974, 13, 1657. (d) Mikulski, C. M.; Gelfand, L. S.; Schwartz, E. S. C.; Pytlewski, L. L.; Karayannis, N. M. Znorg. Chim. Acta 1980, 39, 143.

(14) (a) Foley, J.; Kennefick, D.; Phelan, D.; Tyagi, S.; Hathaway, B. J . Chem. SOC., Dalton Trans. 1983, 2333. (b) Nakai, H. Bull. Chem. SOC. Jpn. 1983,56,1637. (c) Mayfield, H. G., Jr.; Bull, W. E. J. Chem. SOC. A 1971,2279. (d) Thomas, R. R.; Chebolu, V.; Sen, A. J . Am. Chem. SOC. 1986,108,4096.

(15) (a) Gowda, N. M. N.; Naikar, S. B.; Reddy, G. K. N. Adv. Znorg. Chem. Radiochem. 1984,28,255. (b) For more recent examples, see: Fourati, M.; Chaabouni, M.; Belin, C. H.; Charbonnel, M.; Pascal, J. L.; Potier, J. Znorg. Chem. 1986, 25, 1386. (c ) House, D. A,; Steel, P. J.; Watson, A. A. J . Chem. SOC., Chem. Commun. 1987, 1575.

(16) Garner, C. J.; Hughes, D. Adv. Znorg. Chem. Radiochem. 1975, 17, 1.

(17) Lawrance, G. A. Chem. Rev. 1986,86, 17. (18) Kukushkin, V. Yu.; Kukushkin, Yu. N. Sou. J. Coord. Chem.

(Engl. Transl.) 1986, 11, 583. (19) (a) Jackson, W. G.; Begbie, C. M. Znorg. Chem. 1981,20,1654.

(b) Dixon, N. E.; Jackson, W. G.; Lawrance, G. A,; Sargeson, A. M. Znorg. Synth. 1983,22, 103. (c) Anderes, B.; Collins, S. T.; Lavallee, D. K. Znorg. Chem. 1984,23,2201. (d) Har- man, W. D.; Taube, H. Znorg. Chem. 1987, 26, 2917. (e) Taube, H. Pure Appl. Chem. 1979,51,901. (0 Harman, W. D.; Fairlie, D. P.; Taube, H. J . Am. Chem. SOC. 1986, 108, 8223.

(20) Hartmann, G.; Frobose, R.; Mews, R.; Sheldrick, G. M. Z. Naturjorsch., B 1982, 37b, 1234.

(21) Deno, N. C.; Friedman, N.; Hodge, J. D.; McKay, F. P.; Saines, G. J . Am. Chem. SOC. 1962,84, 4713.

(22) (a) Sanders, J. R. J . Chem. SOC., Dalton Trans. 1972, 1333. (b) Sanders, J. R. J . Chem. SOC., Dalton Trans. 1973, 743.

(23) Legzdins, P.; Martin, D. T. Znorg. Chem. 1979, 18, 1250. (24) Harris, P. J.; Knox, S. A. R.; McKinney, R. J.; Stone, F. G.

A. J . Chem. SOC., Dalton Trans. 1978, 1009. (25) Sunkel, K.; Nagel, U.; Beck, W. J . Organomet. Chem. 1983,

251, 227. (26) (a) Leoni, P.; Aquilini, E.; Pasquali, M.; Marchetti, F.; Sabat,

M. J. Chem. SOC., Dalton Trans. 1988,329. Asdar, A.; Tu- doret, M.-J.; Lapinte, C. J . Organomet. Chem. 1988,349,343. (b) Turaki, N. N.; Huggins, J. M. Organometallics 1986, 5, 1703.

(27) Bursten, B. E.; Gatter, M. G. J . Am. Chem. SOC. 1984, 106, 2554. iaCroce, S. J.; Menard, K. P.; Cutler, A. R. J. Organomet. Chem. 1980,190, C79. (a) Sweet, J. R.; Graham, W. A. G. Organometallics 1983,2, 135. (b) Sweet, J. R.; Graham, W. A. G. J . Am. Chem. SOC. 1983, 105, 305. Hoyano, J. K.; May, C. J.; Graham, W. A. G. Znorg. Chem. 1982, 21, 3095. Sweet, J. R.; Graham, W. A. G. Organometallics 1982,1,982. Berke, H.; Weiler, G. Z. Naturforsch., B 1984, 39b, 431.

(33) Otto, E. E. H.; Brintzinger, H. H. J . Organomet. Chem. 1978, 148, 29.

(34) Siinkel, K. Ph.D. Thesis, Universitiit Munchen, 1982. Siinkel, K.; Beck, W., unpublished.

(35) Matsui, Y.; Orchin, M. J. Organomet. Chem. 1982,236,381. (36) Sanders, J. R. J . Chem. SOC., Dalton Trans. 1973,748; 1975,

2340. (37) Hoch. M.: Rehder. D. J . Orpanomet. Chem. 1985,288. C25. (38) Bruno, J.'W.; Huffman, J. 6.; Caulton, K. G. J . Am. Chem.

SOC. 1984,106, 1663. (39) Sutherland, B. R.; Cowie, M. Znorg. Chem. 1984, 23, 1290. (40) Sweany, R. L.; Owens, J. W. J . Organomet. Chem. 1983,255,

327. (41) Green, M. L. H.; Nagy, P. L. I. J . Organomet. Chem. 1963,

1, 58. (42) Raab, K.; Olgemoller, B.; Schloter, K.; Beck, W. J. Organo-

met. Chem. 1981,214,81. Raab, K.; Nagel, U.; Beck, W. Z. Naturforsch., B 1983, 386, 1466.

(43) (a) Kiel, W. A.; Lin, G.-Y.; Bodner, G. S.; Gladysz, J. A. J . Am. Chem. SOC. 1983,105,4958. (b) Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. J . Am. Chem. SOC. 1983, 105, 5804. (c) Asaro, M. F.; Bodner, G. S.; Gladysz, J. A,; Cooper, S. R.; Cooper, N. J. Organometallics 1985,4, 1020. (d) Georgiou, S.; Gladysz, J. A. Tetrahedron 1986,42,1109 and references therein. (e) Bodner, G. S.; Gladysz, J. A.; Nielsen, M. F.; Parker, V. D. J . Am. Chem. SOC. 1987,109, ,ncn 1134.

(44) Hayes, J. C.; Jernakoff, P.; Miller, G. A,; Cooper, N. J. Pure Appl. Chem. 1984,56,25.

(45) Ex.: Schrock, R. R.; Sharp, P. R. J . Am. Chem. SOC. 1978, 108, 2389.

(46) Bly, R. S.; Bly, R. K.; Hossain, M. M.; Silverman, G. S.; Wallace, E. Tetrahedron 1986,42, 1093.

(47) Cutler, A. R., personal communication. (48) Kiel, W. A.; Buhro, W. E.; Gladysz, J. A. Organometallics

1984, 3, 879. (49) Appel, M.; Sacher, W.; Beck, W. J . Organomet. Chem. 1987,

322, 351. (50) Foxman, B. M.; Klemarczyk, P. T.; Liptrot, R. E.; Rosen-

blum. M. J . Orpanomet. Chem. 1980.187. 253. (51) (a) R;? er, D. L.rColeman, C. J. Organomet: Chem. 1977,131,

153. fb) Reger, D. L.; Coleman, C. J.; McElligott, P. J. J . Organomet. Chem. 1979, 171, 73. (c ) Reaer, D. L.; McElli- goit, P. J. J . Am. Chem. SOC. 1980,102,5923. (d) Reger, D. L.; Coleman, C. J. Znorg. Chem. 1979,18,3155. (e) Reger, D. L. Acc. Chem. Res. 1988,21, 229.

(52) Green, M. L. H.; Whiteley, R. N. J . Chem. SOC. A 1971,1943. (53) Mattson, B. M.; Graham, W. A. G. Znorg. Chem. 1981, 20,

3186. (54) (a) Abney, K. D.; Long, K. M.; Anderson, 0. P.; Strauss, S.

H. Znorg. Chem. 1987,26,2638. (b) Strauss, S. H.; Abney, K. D.; Long, K. M.; Anderson, 0. P. Znorg. Chem. 1984,23,1994.

(55) Ustin, R.; Riera, V.; Gimeno, J.; Laguna, M.; Gamasa, M. P. J . Chem. SOC., Dalton Trans. 1979, 996.

(56) (a) Wimmer, F. L.; Snow, M. R. Aust. J . Chem. 1978,31,267. (b) Horn, E.; Snow, M. R. Aust. J . Chem. 1980,33,2369. (c) Horn, E.; Snow, M. R. Aust. J . Chem. 1984,37, 1375.

(57) Heidrich, J.; Loderer, D.; Beck, W. J . Organomet. Chem. 1986.312. 329.

(58) Nitschke,'J.; Schmidt, S. P.; Trogler, W. C. Znorg. Chem. 1985,24, 1972.

(59) (a) Mallela, S. P.; Aubke, F. Inorg. Chem. 1985,24, 2969. (b) Gerus. I. I.: YaeuDol'skii. Yu. L.: Volkov. N. D. Zh. O w . Khim.' 1982, 18,'ii86. '

(60) Regina, F. J.; Wojcicki, A. Znorg. Chem. 1980, 19, 3803. (61) (a) Davies, J. A.; Hartley, F. R.; Murray, S. G. J. Chem. SOC.,

Dalton Trans. 1980, 2246. (b) Roulet, R.; Vouillamoz, R. Helu. Chim. Acta 1974, 57, 2139.

(62) Reed, C. A.; Roper, W. R. J . Chem. SOC., Dalton Trans. 1973, 1365. 1370.

I

7 -- - - - _...

(63) Colsman, M. R.; Manning, M. C.; Anderson, 0. P.; Strauss, S. H. Znorg. Chem. 1987,26,3958.

(64) Smith. G.: Cole-Hamilton. D. J.: Greeorv. A. C.: Gooden. N. . , I - .., G. Polyhedron 1982,1,97.

(65) (a) Ashworth, T. V.; Singleton, E. J. Organomet. Chem. 1974, 77, C31. (b) Reimann, R. H.; Singleton, E. J. J . Organomet. Chem. 1973,59, C24.

(66) (a) Schrock, R. R.; Osborn, J. A. J. Am. Chem. SOC. 1971,93, 3089. (b) Ustin, R.; Oro, L. A.; Ciriano, M. A,; Lahoz, F. J.; Bello, M. C. J. Organomet. Chem. 1982, 234, 205.

(67) (a) Jordan, R. F.; Dasher, W. E.; Echols, S. F. J . Am. Chem. SOC. 1986, 108, 1718. (b) Thewalt, U.; Lasser, W. Z. Natur- jorsch., B 1983, 38b, 1501.

(68) White, C.; Thompson, S. J.; Maitlis, P. M. J. Chem. SOC., Dalton Trans. 1977, 1654; 1978, 1305.

(69) Ballivet-Tkatchenko, D.: Bremard, C. J. Chem. Soc.. Dalton Trans. 1983, 1143.

(70) Ustin, R.; Fornigs, J.; Tomis, M.; Casas, J. M.; Cotton, F. A,; Falvello, L. R. J . Am. Chem. SOC. 1985, 107, 2556.

Page 14: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

1418 Chemical Reviews, 1988, Vol. 88, No. 7 Beck and Sunkel

(105) (a) Sperlin K. Ph.D. Thesis, Universitiit Bochum, 1983. (b) Jolly, P. 8. Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 8, p 615. (c) Bo danovic, B. Adu. Orga- nomet. Chem. 1979, 17, 105. (d) d* ilke, G. Angew. Chem., Znt. Ed. Engl. 1988,27, 189.

(106) Poffenberger, C. A.; Wojcicki, A. Znorg. Chem. 1980,19,3795. (107) (a) Edidin, R. T.; Norton, J. R. J. Am. Chem. SOC. 1986,108,

948. (b) Warner, K. E.; Norton, J. R. Organometallics 1985, 4, 2150.

(108) Fischer, E. 0.; Fichtel, K. Chem. Ber. 1961,94,1200. Fischer, E. 0.; Fichtel, K.; Ofele, K. Chem. Ber. 1962,95,249. Fischer, E. 0.; Moser, E. Znorg. Synth. 1970,12,35.

(109) Hieber, W.; Kruck, Th. 2. Naturforsch., B 1961, 166, 709. Hieber, W.; Frey, V.; John, P. Chem. Ber. 1967, 100, 1961. Kruck, Th.; Noack, M. Chem. Ber. 1963, 96, 3028. Kruck, Th.; Hofler, M. Chem. Ber. 1963,96, 3035.

(110) Haines, R. J.; Nyholm, R. S.; Stiddard, M. H. B. J. Chem. SOC. A 1967, 94. Treichel, P. M.; Barnett, K. W.; Shubkin, R. L. J. Organomet. Chem. 1967, 7,449.

(111) Abel, E. W.; Tyfield, S. P. Adu. Organomet. Chem. 1970,8, 117.

(112) Pankowski, M.; Demerseman, B.; Bouquet, G.; Bigorgne, M. J. Organomet. Chem. 1972, 35, 155. Pankowski, M.; Big- orgne, M.; Chauvini, Y. J. Organomet. Chem. 1976,110,331.

(113) (a) Cotton, F. A.; Schwotzer, W. J. Am. Chem. SOC. 1986,108, 4657. (b) Cotton, F. A.; Schwotzer, W. Organometallics 1987, 6, 1275. (c) Cotton, F. A.; Schwotzer, W.; Simpson, C. Q., 11. Angew. Chem.. Znt. Ed. End. 1986.25.637.

Liston, D. J.; Reed, C. A.; Eigenbrot, C. W.; Scheidt, W. R. Inorg. Chem. 1987,26, 2739. Sharo. P. R.: Frank. K. G. Znore. Chem. 1985.24. 1808. , - - > ~- - John'son, B. F. G.; Kaner, D. A:; Lewis, J.; Raithby, P. R.; Taylor, M. J. Polyhedron 1982, 1, 105. (a) Silverthorn, W. E. J. Chem. SOC., Chem. Commun. 1971, 1310. (b) Balavoine, G.; Green, M. L. H.; Sauvage, J. P. J. Organomet. Chem. 1977,128, 247. Davison, A.; McFarlane, W.; Pratt, L.; Wilkinson, G. J. Chem. SOC. 1962, 3653.

(76) (a) Bianchini, C.; Mealli, C.; Peruzzini, M.; Zanobini, F. J. Am. Chem. SOC. 1987,109,5548. (b) Burdett, J. K.; Phillips, J. R.; Pourian, M. R.; Poliakoff, M.; Turner, J. J.; Upmacis, R. Znorg. Chem. 1987,26, 3054. (c) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. SOC. 1987,109,5865. (d) Siedle, A. R.; Newmark, R. A.; Pignolet, L. H. Znorg. Chem. 1986,25,3412. (e) For a recent review on n2-H., comolexes. see: Kubas. G. J. Acc. Chem. Res. 1988, 21, 128. Schweiger, M. Ph.D. Thesis, University of Munich, 1988. (a) Crabtree, R. H.; Hlatky, G. G.; Holt, E. M. J. Am. Chem. SOC. 1983, 105, 7302. (b) Rhodes, L. F.; Zubkowski, J. D.; Folting, K.; Huffman, J. C.; Caulton, K. G. Znorg. Chem. 1982,21, 4185. Ellis, R.; Henderson, R. A.; Hills, A.; Hughes, D. L. J. Orga- nomet. Chem. 1987,333, C6. Siedle, A. R.; Newmark, R. A.; Pignolet, L. H.; Howells, R. D. J. Am. Chem. SOC. 1984,106, 1510. (a) Allison, J. D.; Walton, R. A. J. Chem. SOC., Chem. Com- mun. 1983,401. (b) Moehring, G. A.; Walton, R. A. J. Chem. SOC., Dalton Trans. 1987, 715. Werner, H.; Kletzin, H. J. Organomet. Chem. 1983,243, C59. (a) Rhodes, L. F.; Caulton, K. G. J. Am. Chem. SOC. 1985, 107, 259. (b) Crabtree, R. H.; Klatky, G. G.; Parnell, C. P.; Segmtiller, B. E.; Uriarte, R. J. Inorg. Chem. 1984, 23, 354. (c) Crabtree, R. H.; Hlatky, G. G. Znorg. Chem. 1984, 23, 2388. (d) Harding, P. A.; Robinson, S. D. J . Chem. SOC., Dalton Trans. 1987,947. (a) Grundy, K. R.; Robertson, K. N. Znorg. Chem. 1985,24, 3898. (b) Cameron, T. S.; Grundy, K. R.; Robertson, K. N. Znorg. Chem. 1982,21, 4149. (a) Harding, P. A,; Preece, M.; Robinson, S. D.; Henrick, K. Znorg. Chim. Acta 1986, 118, L31. (b) Siedle, A. R.; New- mark, R. A.; Pignolet, L. H.; Wang, D. X.; Albright, T. A. Organometallics 1986,5,38. (c) Cole-Hamilton, D. J.; Young, R. J.; Wilkinson, G. J. Chem. SOC., Dalton Trans. 1976,1995. (d) Harding, P. A.; Robinson, S. D.; Henrick, K. J. Chem. Soc., Dalton Trans. 1988, 415. (a) Roustan, J. L. A.; Merour, J. Y.; For ues, A. J. Organo- met. Chem. 1980,186, C23. (b) Ahmed, #. R.; Roustan, J. L. A,; Al-Janabi, M. Y. Znorg. Chem. 1985,24, 2526. Trogler, W. C. J. Am. Chem. SOC. 1979, 101, 6459. Raab, K.; Beck, W. Chem. Ber. 1984,117, 3169. Griesmann, K. H.; Stasunik, A.; Angerer, W.; Malisch, W. J. Oreanomet. Chem. 1986.303. C29.

-

(90) A$&, M.; Schloter, K.; Heidrich, J.; Beck, W. J. Organomet. Chem. 1987,322,77.

(91) (a) Merrifield, J. H.; Femhdez, J. M.; Buhro, W. E.; Gladysz, J. A. Znore. Chem. 1984. 23. 4022. (b) Fernindez. J. M.: Gladysz, JI A. Znorg. Chem. 1986, 25,'2672.

(92) Forschner, T. C.; Cutler, A. R. Organometallics 1985,4,1247. (93) Kletzin, H.; Werner, H. J. Organomet. Chem. 1985,291, 213. (94) (a) Watson, P. L.; Bergman, R. G. J. Am. Chem. SOC. 1980,

102,2698. (b) Watson, P. L.; Bergman, R. G. J. Am. Chem. SOC. 1979, 101, 2055.

(95) Fischer, R. A.; Herrmann, W. A. J. Organomet. Chem. 1987, 330, 377.

(96) Flood, T. C.; Miles, D. L. J. Organomet. Chem. 1977,127,33. (97) Green, M. L. H.; Massey, A. G.; Moelwyn-Hughes, J. T.;

Nagy, P. L. I. J. Organomet. Chem. 1967,8, 511. (98) O'Connor, E. J.; Kobayashi, M.; Floss, H. G.; Gladysz, J. A.

J. Am. Chem. SOC. 1987,109,4837. (99) (a) Anderson, S. N.; Cooksey, C. J.; Holton, S. G.; Johnson,

M. D. J. Am. Chem. Soc. 1980,102, 2312. (b) Bryndza, H. E.; Fong, L. K.; Paciello, R. A.; Tam, W.; Bercaw, J. E. J. Am. Chem. SOC. 1987,109, 1444.

(100) Braterman, P. S. In Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum: New York, 1986 Vol. 1, p 37.

(101) (a) Salzer, A,; Werner, H. Angew. Chem., Znt. Ed. Engl. 1972, 11, 930. (b) Wemer, H.; Ulrich, B.; Schubert, U.; Hofmann, P.; Zimmer-Gasser, B. J. Organomet. Chem. 1985, 297, 27.

(102) (a) Saizer, A.; Werner, H. J. Organomet. Chem. 1975,87,101. (b) Salzer, A.; Werner, H. 2. Anorg. Allg. Chem. 1975, 418, 88.

(103) Kuhn, N.; Schumann, H.; Winter, M.; Zauder, E. Chem. Ber. 1988,121, 111.

(104) (a) Markham, J.; Menard, K.; Cutler, A. Znorg. Chem. 1985, 24, 1581. (b) Stuhl, L. S.; Muetterties, E. L. Znorg. Chem. 1978,17, 2148. (c) Schrock, R. R.; Johnson, B. F.; Lewis, J . J. Chem. Soc., Dalton Trans. 1974, 951.

(114) Allegra, G.; Tettamanti Cas-$rande, G:; Immirzi, A.; Porri, L.; Vitulli, G. J. Am. Chem. oc. 1970, 92, 289.

(115) (a) Thewalt, U.; Stollrgaier, F. J. Organomet. Chem. 1982, 228,149. Thewalt, U.; Osterle, F. J. Organomet. Chem. 1979, 172, 317. (b) Eisch, J. J.; Piotrowski, A. M.; Brownstein, S. K.; Gabe, E. J.; Lee, F. L. J. Am. Chem. SOC. 1985,107,7219.

(116) (a) Gmelin Handbuch der Anorganischen Chemie, 8. Auflage Titan, Titanorganische Verbindungen, Teil2, p 245; Sprin- ger-Verlag: Berlin, 1980. Appel, M. Ph.D. Thesis, UniversiMt Miinchen, 1986. (b) Bauer, H.; Nagel, U.; Beck, W. J. Organomet. Chem. 1985,290, 219.

(117) Scherer, 0. J.; Jungmann, H. J. Organomet. Chem. 1982,228, C61.

(118) Aylett, B. J.; Colquhoun, H. M. J. Chem. Res. (S) 1977, 148. (119) Dodd, D.; Johnson, M. D. J. Chem. SOC. B 1971,662. (120) (a) Fischer, E. 0.; Walz, S.; Ruhs, A.; Kreissl, F. R. Chem.

Ber. 1978,111,2765. (b) Fischer, E. 0.; Wittmann, D.; Him- melreich, D.; Schubert, U.; Ackermann, K. Chem. Ber. 1982, 115,3141.

(121) Otto, E. E. H.; Brintzinger, H. H. J. Organomet. Chem. 1979, 170, 209.

(122) Richmond, T. G.; Basolo, F.; Shriver, D. F. Organometallics 1982, 1, 1624.

(123) Noth, H.; Hartwimmer, R. Chem. Ber. 1960,93, 2246. (124) (a) Eaborn, C.; Farrell, N.; Murphy, J. L.; Pidcock, A. J.

Organomet. Chem. 1973,55, C68. (b) Eaborn, C.; Farrell, N.; Murphy, J. L.; Pidcock, A. J. Chem. SOC., Dalton Trans. 1976, 58. (c) Eaborn, C.; Farrell, N.; Pidcock, A. J. Chem. SOC., Dalton Trans. 1976,289. (d) Connor, J. A.; Hudson, G. A. J. Organomet. Chem. 1974,73,351. (e) Sontag, C.; Orama, 0.; Berke, H. Chem. Ber. 1987,120,559.

(125) (a) Werner, K. v.; Beck, W. Chem. Ber. 1972,105,3209. (b) Beck, W.; Werner, K. v. Chem. Ber. 1971,104,2901. (c) Beck, W.; Kreutzer, P.; Werner, K. v. Chem. Ber. 1971, 104, 528. (d) Fehlhammer, W. P.; Beck, W.; Pollmann, P. Chem. Ber.

(129)

1969,102, 3903. (a) Druce, P. M.; Lappert, M. F.; Rile , P. N. K. J. Chem. SOC., Chem. Commun. 1967,486. (b) Cfark, H. C.; Dixon, K. R.; Jacobs, W. J. J. Am. Chem. SOC. 1969, 91, 596, 1346. Komiya, S.; Kochi, J. K. J. Organomet. Chem. 1977,135,65. (a) Ishchenko, V. M.; Soloveichik, G. L.; Bul chev, B. M.; Sokolova, T. A. Russ. J. Inorg. Chem. (Engl. !?ransl.) 1984, 29,66. (b) Ishchenko, V. M.; Bul chev, B. M.; Bel'skii, V. K.; Soloveichik, G. L.; Ellert, 0. d; Seifulina, Z. M. Sou. J. Coord. Chem. (Engl. Transl.) 1985,1I, 483. (a) Connelly, N. G.; Dahl, L. F. J. Chem. SOC., Chem. Com- mun. 1970, 880. (b) Reimann, R. H.; Singleton, E. J. Orga- nomet. Chem. 1971,32, C44; J. Chem. SOC., Dalton Trans. 1973, 2658. (c) Connell , N. G.; Davies, J. D. J. Organomet. Chem. 1972,38, 385. (d; Drew, D.; Darensbourg, D. J.; Dar- ensbourg, M. Y. Znorg. Chem. 1975,14,1579. (e) Krusic, P. J.; Stoklosa, H.; Manzer, L. E.; Meakin, P. J. Am. Chem. SOC. 1975, 97, 667. (f) Schmidt, S. P.; Basolo, F.; Trogler, W. C. Znorg. Chim. Acta 1987, 131, 181. Johnson, E. C.; Meyer, T. J.; Winterton, N. Znorg. Chem. 1971,10, 1673. Dombek, B. D.; Angelici, R. J. Znorg. Chim. Acta 1973, 7,345. (a) Williams, W. E.; Lalor, F. J. J. Chem. SOC., Dalton Trans. 1973, 1329. (b) Callan, B.; Manning, A. R.; Stephens, F. S. J. Organomet. Chem. 1987, 331, 357.

Page 15: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Metal Complexes of Weakly Coordinating Anions

(133) Boyle, P. F.; Nicholas, K. M. J. Organomet. Chem. 1976,114, 307.

(134) Schmidt, E. K. G.; Thiel, C. H. J. Organomet. Chem. 1981, 209, 373.

(135) (a) Catheline, D.; Astruc, D. J. Organomet. Chem. 1984,266, C11. (b) Catheline, D.; Astruc, D. Organometallics 1984,3, 1094. (c) Schumann, H. J. Organomet. Chem. 1986,304,341. (d) Schumann, H. J. Organomet. Chem. 1985,290, C34. (e) Schumann, H. J. Organomet. Chem. 1987,323,193. Schu- mann, H. J. Organomet. Chem. 1987,320, 145.

(136) (a) Barnes, S. G.; Green, M. J. Chem. SOC., Chem. Commun. 1980, 267. (b) Green, M. Polyhedron 1986, 5, 427.

(137) Herberhold, M.; Ott, J.; Haumaier, L. Chem. Ber. 1985,118, 3143.

(138) (a) Crocker, M.; Green, M.; Orpen, A. G.; Thomas, D. M. J. Chem. SOC., Chem. Commun. 1984, 1141. (b) Crocker, M.; Froom, S. F. T.; Green, M.; Nagle, K. R.; Orpen, A. G.; Thomas, D. M. J. Chem. SOC., Dalton Trans. 1987, 2803.

(139) Legzdins, P.; Martin, D. T.; Nurse, C. R.; Wassink, B. Or- ganometallics 1983, 2, 1238.

(140) Anderson, D. M.; Bristow, G. S.; Hitchcock, P. B.; Jasim, H. A.; Lappert, M. F.; Skelton, B. W. J. Chem. SOC., Dalton Trans. 1987, 2843.

(141) Herrmann, W. A.; Kalcher, W. Chem. Ber. 1985, 118, 3861. (142) Bruno, G.; Lo Schiavo, S.; Piraino, P.; Faraone, F. Organo-

metallics 1985,4, 1098. (143) Hartmann, G.; Mews, R. Chem. Ber. 1986,119, 374. (144) (a) Bruce, D. M.; Holloway, J. H.; Russell, D. R. J. Chem.

SOC., Dalton Trans. 1978,64. (b) Holloway, J. H.; Senior, J. B.; Szary, A. C. J. Chem. Soc., Dalton Trans. 1987,741.

(145) Bodnar, T.; LaCroce, S. J.; Cutler, A. R. J. Am. Chem. SOC. 1980. 102. 3292.

Chemical Reviews, 1988, Vol. 88, No. 7 1419

1985,835. (0 Grotsch, G.; Boese, R.; Malisch. W. Chem. Ber.

, - - ~ - ~ . . . ~ -

Ishchenko, V. M.; Bul chev, B. M.; Soloveichik, G. L.; Bel'- sky, V. K.; Ellert, 0. 6. Polyhedron 1984, 3, 771. Yamazaki, S. Znorg. Chem. 1982,21, 1638. McKinney, R. J. Znorg. Chem. 1982,21, 2051. Kuhn, N.; Briiggemann, H.; Winter, M.; De Bellis, V. M. J. Organomet. Chem. 1987,320, 391. Sen, A.; Thomas, R. R. Organometallics 1982,1, 1251. Connor, J. A.; James, E. J.; Overton, C.; Murr, N. E. J. Chem. SOC., Dalton Trans. 1984, 255. Keller, A. Znorg. Chim. Acta 1987, 133, 207. Hunter, A. D.; Legzdins, P. Znorg. Chem. 1984, 23, 4198. Connor, J. A.; Riley, P. I. J. Chem. SOC., Dalton Trans. 1979, 1231.

(155) %&hel, P. M.; Molzahn, D. C.; Wagner, K. P. J. Organomet. Chem. 1979,174, 191.

(156) Kadish. K. M.: Lacombe. D. A.: Anderson. J. E. Znora Chem. . . 1986,25, 2246.

(157) Lacombe, D. A.; Anderson, J. E.; Kadish, K. M. Znorg. Chem. 1986,25, 2074.

(158) Ferguson, J. A.; Meyer, T. J. Znorg. Chem. 1971, 10, 1025. (159) Zecchin, S.: Zotti, G.: Pilloni, G. J. Oreanomet. Chem. 1985.

...

. . 294, 379.

(160) Connelly, N. G.; Lucy, A. R.; Payne, J. D.; Galas, A. M. R.; Geiger, W. E. J. Chem. SOC., Dalton Trans. 1983, 1879.

(161) Legzdins, P.; Wassink, B. Organometallics 1984,3, 1811. (162) Hersh, W. H. J. Am. Chem. SOC. 1985,107,4599. (163) Singer, H.; Wilkinson, G. J. Chem. SOC. A 1968,2516. Strope,

D.; Shriver, D. F. Znorg. Chem. 1974, 13, 2652. Burgess, J.; Hacker, M. J.; Kemmitt, R. D. W. J. Organomet. Chem. 1974, 72, 121. Strope, D.; Shriver, D. F: J. Am. Chem. SOC. 1973, 95,8197. Garzon, G. Ecletica Quzm. 1979,29. Kubota, M.; McClesky, T. M.; Hayashi, R. K.; Webb, C. G. J. Am. Chem. SOC. 1987, 109, 7569.

(164) (a) Olgemoller, B.; Bauer, H.; Beck, W. J. Organomet. Chem. 1981,213, C57. (b) Olgemoller, B.; Bauer, H.; Lobermann, H.; Nagel, U.; Beck, W. Chem. Ber. 1982, 115, 2271. (c) Bauer, H.; Beck, W. J. Organomet. Chem. 1986,308,73 and

-

references cited therein. ~

(165) Blake, D. M. J. Chem. SOC., Chem. Commun. 1974, 815. Smith, L. R.; Blake, D. M. J. Am. Chem. SOC. 1977,99,3302.

(166) Olgemoller, L.; Beck, W., unpublished results. (167) (a) Siedle, A. R.; Newmark, R. A.; Gleason, W. B. J. Am.

Chem. SOC. 1986,108,767. (b) Siedle, A. R.; Gleason, W. B.; Newmark, R. A.; Pignolet, L. H. Organometallics 1986, 5, 1969.

(168) Stiegman, A. E.; Tyler, D. R. J. Am. Chem. SOC. 1985,107, 967. Philbin, C. E.; Goldmann, A. S.; Tyler, D. R. Znorg. Chem. 1986,25,4434.

(169) !$:En, D.; Kleinschmidt, E. J. Organomet. Chem. 1977, 14u, ,511.

(170) Hubbard, J. L.; McVicar, W. K. J. Am. Chem. SOC. 1986,108, 6422.

(171) (a) Jolly, P. W.; Pettit, J. J. Am. Chem. SOC. 1966,88, 5044. (b) Green, M. L. H.; Ishaq, M.; Whiteley, R. N. J. Chem. SOC. A 1967,1508. (c) Brookhart, M.; Nelson, G. 0. J. Am. Chem. SOC. 1977,99,6099. (d) Humphrey, M. B.; Lamanna, W. M.; Brookhart, M.; Husk, G. R. Znorg. Chem. 1983,22,3355. (e) Guerchais, V.; Astruc, D. J. Chem. SOC., Chem. Commun.

1986,119, 2367. (a) Kegley, S. E.; Brookhart, M.;Husk, G. R. Organometallics 1982, 1 , 760. (b) Bodnar, T. W.; Cutler, A. R. Organo- metallics 1985, 4, 1558. (a) Merrifield, J. H.; Lin, G. Y.; Kiel, W. A.; Gladysz, J. A. J. Am. Chem. SOC. 1983,105,5811. (b) Tilset, M.; Bodner, G. S.: Senn. D. R.: Gladvsz. J. A.: Parker. V. D. J. Am. Chem. Sdc. 1987, 109,'7551." '

(174) Schneider, M.; Weiss, E. J. Organomet. Chem. 1976,121,365. (175) Osbome, J. H.; Rheingold, A. L.; Trogler, W. C. J. Am. Chem.

SOC. 1985,107,6292. (176) Hitchcock, P. B.; Lappert, M. F.; Taylor, R. G. J. Chem. SOC.,

Chem. Commun. 1984, 1082. (177) Rheingold, A. L.; Wu, G.; Heck, R. F. Znorg. Chim. Acta 1987,

131, 147. (178) Yamamoto, Y.; Aoki, K.; Yamazaki, H. Znorg. Chim. Acta

1982, 68, 75. (179) Shelly, K.; Bartczak, T.; Scheidt, W. R.; Reed, C. A. Znorg.

Chem. 1985. 24. 4325. , - , -

(180) (a) Gupta, G. P.; Lang, G.; Lee, Y. J.; Scheidt, W. R.; Shelly, K.; Reed, C. A. Znorg. Chem. 1987,26,3022. (b) Shelly, K.; Reed, C. A.; Lee, Y. J.; Scheidt, W. R. J. Am. Chem. SOC. 1986,'108, 3117. (c) Shelly, K.; Finster, D. C.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem. SOC. 1985, 107, 5955.

(181) Bell, S. A.; Lancaster, J. C.; McWhinnie, W. R. Znorg. Nucl.

(182) Siinkel, - K.; Emst, H.; Beck, W. 2. Naturforsch., B 1981,36b, Chem. Lett. 1971, 7, 405.

474.

1466. (183) Raab, K.; Nagel, U.; Beck, W. 2. Naturforsch., B 1983, 38b,

(184) Schloter, K.; Nagel, U.; Beck, W. Chem. Ber. 1980,113,3775. (185) Legzdins, P.; Oxley, J. C. Znorg. Chem. 1984,23, 1053. (186) (a) Siinkel, K.; Urban, G.; Beck, W. J. Organomet. Chem.

1983,252,187. (b) Appel, M.; Beck, W. J. Organomet. Chem. 1987. 319. C1. Isobe, K.; Nanjo, K.; Nakamura, Y.; Kawaguchi, S. Chem. Lett. 1979, 1193. (a) Morrison, R. M.; Thompson, R. C. Can. J. Chem. 1982, 60,1048. (b) Rowley, D. A.; Drago, R. S. Znorg. Chem. 1968, 7, 795. (c) Byington, A. R.; Bull, W. E. Znorg. Chim. Acta 1977,21, 239. (d) Hathaway, B. J.; Billing, D. E.; Nicholls, P.; Procter, I. M. J. Chem. SOC. A 1969, 319. (a) Bratsch, S. G. J. Chem. Educ. 1985,62,101. (b) Mullay, J. J. Am. Chem. SOC. 1985,107, 7271. Olgemoller, B.; Beck, W. Znorg. Chem. 1983, 22, 997. Honeychuck, R. V.; Hersh, W. H. Znorg. Chem. 1987, 26, 1826.

(192) Noirot, M. D.; Anderson, 0. P.; Strauss, S. H. Znorg. Chem. 1987,26, 2216.

(193) Beck, W.; Johansen, 0.; Fehlhammer, W. P. 2. Anorg. Allg. Chem. 1968,361, 147.

(194) Oltmanns, M.; Mews, R. 2. Naturforsch., B 1980,35b, 1324. (195) Sunkel, K.; Urban, G.; Beck, W. J. Organomet. Chem. 1985,

290,231. (196) Schloter, K.; Beck, W. 2. Naturforsch., B 1980, 35b, 985. (197) Schmidt, S. P.; Basolo, F.; Jensen, C. M.; Trogler, W. C. J.

Am. Chem. SOC. 1986,108, 1894. (198) Honold, B.; Thewalt, U. J. Organomet. Chem. 1986,316,291. (199) Fernindez, J. M.; Emerson, K.; Larsen, R. D.; Gladysz, J. A.

J. Am. Chem. SOC. 1986, 108, 8268; J. Chem. SOC., Chem. Commun. 1988, 37.

(200) Crabtree, R. H.; Davis, M. W.; Mellea, M. F.; Mihelcic, J. M. Znorg. Chim. Acta 1983, 72, 223.

(201) Raab, K.; Beck, W. Chem. Ber. 1985,118,3830. (202) Urban, G.; Siinkel, K.; Beck, W. J. Organomet. Chem. 1985,

290,329. (203) Treichel, P. M.; Rosenhein, L. D. Znorg. Chem. 1981,20,942. (204) Kuhn, N.; Schumann, H. J. Organomet. Chem. 1984,276,55.

Schumann, H. Chem.-Ztg. 1987, 111, 65. Kuhn, N.; Schu- mann, H.; Zauder, E. J. Organomet. Chem. 1987, 327, 17. Kuhn, N.; Schumann, H. J. Organomet. Chem. 1985, 287, 345.

(205) Usbn, R.; Oro, L. A.; Carmona, D.; Esteruelas, M. A. J. Or- ganomet. Chem. 1984,263, 109.

(206) Thewalt, U.; Berhalter, K. J. Organomet. Chem. 1986,302, 193.

(207) Angelici, R. J.; Dunker, J. W. Znorg. Chem. 1985, 24, 2209. (208) Grove, D. M.; Van Koten, G.; Ubbels, H. J. C.; Vrieze, K.;

Niemann, L. C.; Stam, C. H. J. Chem. SOC., Dalton Trans. 1986. 717. _._.

(209) Usbn, R.;-Oro, L. A.; Carmona, D.; Esteruelas, M. A. Znorg.

(210) Lee, M. K.; Kim, I. B.; Chin, C. S. J. Organomet. Chem. 1985,

(211) Park, S. H.; Park, H.-K.; Chin, C. S. Znorg. Chem. 1985,24,

Chim. Acta 1983, 73, 275.

290, 115. r r n r \ IlaJ.

(212) Berhalter, K.; Thewalt, U. J. Organomet. Chem. 1987, 332, 123.

Page 16: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Beck and Sunkel

(249) Thewalt, U.; Lasser, W. J. Organomet. Chem. 1984,276,341. (250) Green, M. L. H.; Parkin, G.; Chen, M.; Prout, K. J. Chem.

SOC., Dalton Trans. 1986, 2227. (251) Boniface, S. M.; Clark, G. R.; Collins, T. J.; Roper, W. R. J.

Organomet. Chem. 1981,206,109. (252) Bauer, H.; Nagel, U.; Beck, W. J. Organomet. Chem. 1985,

290, 219. (253) Green, M.; Kirsch, H. P.; Stone, F. G. A.; Welch, A. J. J.

Chem. SOC., Dalton Trans. 1977, 1755. (254) Lasser, W.; Thewalt, U. J. Organomet. Chem. 1986,302,201. (255) Lasser, W.; Thewalt, U. J. Organomet. Chem. 1986,311,69. (256) Legzdins, P.; Nurse, C. R. Znorg. Chem. 1982,21, 3110. (257) Curtis, M. D.; Butler, W. M. J. Chem. SOC., Chem. Commun.

(258) Grandberg, K. I. Sou. J. Coord. Chem. (Engl. Transl.) 1984,

(259) Baldwin, J. E.; Haraldsson, G. G.; Jones, J. G. Znorg. Chim.

(260) Kolle, U.; Fuss, B. Chem. Ber. 1984, 117, 753. (261) Thewalt, U.; Doppert, K.; Lasser, W. J. Organomet. Chem.

1980, 998.

10, 358.

Acta 1981,51, 29.

1986.308. 303.

1420 Chemical Reviews, 1988, Vol. 88, No. 7

(213) Frobose, R.; Mews, R.; Glemser, 0. 2. Naturforsch., B 1979, 34b. 1461.

I - - - - (214) Laguna, A.; Laguna, M.; Fananas, J.; Jones, P. G.; Fittschen,

(215) Dey, K.; Koner, D.; Ray, S. J. Chem. SOC., Dalton Trans.

(216) Hammud, H. H.; Moran, G. M. J. Organomet. Chem. 1986,

C. Znorg. Chim. Acta 1986,121, 39.

1982, 2385.

307. 255. (217) Carrido, G. A,; Riera, V.; Rodriguez, M. L.; Sainz-Velicia, J.

J. Polyhedron 1987, 6, 1879. (218) (a) Schumann, H. Chem.-Ztg. 1986,110,121,161. (b) Schu-

mann, H. J. Organomet. Chem. 1986, 299, 169. (c) Schu- mann, H. J. Organomet. Chem. 1985,293, 75.

1 (a) Kuhn, N.; Schumann, H. J. Organomet. Chem. 1986,304, 181. (b) J. Organomet. Chem. 1986,315, 93. (c) Kuhn, N.; Schumann, H. J. Chem. SOC., Dalton Trans. 1987, 541.

1 Garcia Alonso. F. J.: Riera. V.: Villafane. F.: Vivanco. M. J. I ,

Organomet. Chem. 1984,276,'39. Schmidt, E. K. G.; Thiel, C. H. J. Organomet. Chem. 1981, 220, 87 and references therein. Legzdins, P.; Martin, D. T. Organometallics 1983,2, 1785. Olgemoller, B.; Beck, W. Angew. Chem., Znt. Ed. Engl. 1980, 19, 834. Beck, W.; Raab, K.; Nagel, U.; Sacher, W. Angew. Chem., Int. Ed. Engl. 1985,24, 505. (a) Bottrill, M.; Green, M. J. Chem. SOC., Dalton Trans. 1977, 2365. (b) Allen, S. R.; Baker, P. K.; Barnes, S. G.; Green, M.; Trollope, L.; Manojlovic-Muir, L.; Muir, K. W. J. Chem. SOC., Dalton Trans. 1981, 873. Green, M. J. Organomet. Chem. 1986, 300, 93 and literature cited therein. Hughes, R. P.; Reisch, J. W.; Rheingold, A. L. Organo- metallics 1985, 4, 241. Siinkel, K.; Nagel, U.; Beck, W. J. Organomet. Chem. 1981, 222, 251. (a) Bruce, M. I.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1471. (b) Bruce, M. I.; Wong, F. S. J. Organomet. Chem. 1981,210, C5. (c) Treichel, P. M.; Komar, D. A. Znorg. Chim. Acta 1980, A n nmv t L , L I I .

Ashley-Smith, J.; Johnson, B. F. G.; Segal, J. A. J. Organo- met. Chem. 1973,49, C38. Sauer, N. N.; Angelici, R. J. Znorg. Chem. 1987, 26, 2160. (a) Rosenblum, M. Acc. Chem. Res. 1974, 7,122; J. Organo- met. Chem. 1985, 300, 191. (b) For a recent review, see: Albers, M. 0.; Robinson, D. J.; Singleton, E. Coord. Chem. Reu. 1987, 79, 1. Consiglio, G.; Morandini, F. Chem. Reu. 1987, 87, 761. (a) Alt, H. G.; Hayen, H. I. J. Organomet. Chem. 1986,316, 301. (b) Werner, H.; Roll, J.; Zolk, R. ; Thometzek, P.; Linse, K.; Ziegler, M. L. Chem. Ber. 1987, 120, 1553. (a) Burk, M. J.; Segmuller, B.; Crabtree, R. H. Organo- metallics 1987, 6, 2241. (b) Crabtree, R. H.; Faller, J. W.; Mellea, M. F.; Quirk, J. M. Organometallics 1982,1,1361. (c) Burk, M. J.; Crabtree, R. H.; Holt, E. M. Organometallics 1984, 3, 638. (d) Kulawiec, R. J.; Holt, E. M.; Lavin, M.; Crabtree, R. H. Znorg. Chem. 1987, 26, 2559. (e) Kulawiec, R. J.; Crabtree, R. H. Organometallics 1988, 7, 1891. (a) Hartmann, G.; Mews, R. Angew. Chem., Znt. Ed. Engl. 1985,24,202. (b) Mews, R.; Glemser, 0. Angew. Chem., Znt. Ed. Engl. 1975,14, 186. (c) Hartmann, G.; Hoppenheit, R.; Mews, R. Znorg. Chim. Acta 1983, 76, L201. (d) Mews, R.; Braeuer, H. C. 2. Anorg. Allg. Chem. 1978, 447, 126, UsBn, R.; Fornigs, J.; Navarro, R.; Espinet, P.; Mendivil, C. J. Organomet. Chem. 1985,290, 125. Winter, C. H.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. SOC. 1987, 109, 7569. UsBn, R.; Fornies, J.; Navarro, R.; Usbn, M. A.; Garcia, M. P.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1984, 345. Steil, P.; Beck, W., unpublished results. (a) Sacher, W.; Nagel, U.; Beck, W. Chem. Ber. 1987, 120, 895. (b) Appel, M.; Sacher, W.; Beck, W. J. Organomet. Chem. 1987,333,237. (c) Bauer, H.; Sheldrick, G. M.; Nagel, U.; Beck, W. 2. Naturforsch., B 1985,40b, 1237. (d) Heid- rich, J.; Beck, W. J. Organomet. Chem. 1988, 354, 91. Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications o Organotransition Metals;

The Chemistry of the Metal-Carbon Bond; Hartley, F. R., Patai, S., Eds.; Wiley-Interscience: New York, 1985; Vol. 2. Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum: New York, 1986; Vol. 1. Bush, R. C.; Angelici, R. J. J. Am. Chem. SOC. 1986,108,2735. Beck, W. Polyhedron, in press. Steil, P.; Nagel, U.; Beck, W. J. Organomet. Chem. 1988,339,

University Science Books: Mil f Valley, CA, 1987.

111 and literature cited therein. Snow, M. R.; Wimmer, F. L. Znorg. Chim. Acta 1980, 44, 7,189. Olgemoller, B.; Olgemoller, L.; Beck, W. Chem. Ber. 1981, 114, 2971. Thewalt, U.; Klein, H.-P. J. Organomet. Chem. 1980, 194, 297.

(262) (a) Hieber, W.; Leutert, F. 2. Anorg. Allg. Chem. 1932,204, 145. (b) Kruck, Th.; Hofler, M.; Noack, M. Chem. Ber. 1966, 99 11.52 , ---I.

(263) Beck, W.; Raab, K.; Nagel, U.; Steimann, M. Angew. Chem., Znt. Ed. Engl. 1982,21, 526.

(264) Bennett, M. A.; Matheson, T. W.; Robertson, G. B.; Steffen, W. L.; Turney, T. W. J. Chem. SOC., Chem. Commun. 1979, 32.

(265) Dewan, J. C.; Thompson, L. K. Can. J. Chem. 1982,60,121. (266) Beck, W.; Sacher, W.; Nagel, U. Angew. Chem., Znt. Ed. Engl.

(267) Horn, E.; Snow, M. R. Aust. J. Chem. 1984, 37, 35. (268) Klein, H.-P.; Thewalt, U. J. Organomet. Chem. 1981,206,69. (269) Hillhouse, G. L.; Haymore, B. L. Znorg. Chem. 1987,26,1876. (270) Miguel, D.; Riera, V. J. Organomet. Chem. 1985,293, 379. (271) Reger, D. L.; Swift, C. A. Organometallics 1984,3, 876. (272) Werner, H.; Weinand, R.; Otto, H. J. Organomet. Chem.

1986, 25, 270.

1986. 307. 49. (273) Bird; C.;'Booth, B. L.; Haszeldine, R. N. J. Chem. SOC.,

(274) King, _ _ R. B.; Kapoor, R. N. J. Organomet. Chem. 1968, 15, Dalton Trans. 1982, 517.

451. (275) Grove, D. M.; Van Koten, G.; Ubbels, H. J. C.; Zmt, R.; Spek,

A. L. J. Organomet. Chem. 1984,263, C10. (276) Aoyama, Y.; Yoshida, T.; Sakurai, K.; Oaoshi, H. J. Chem.

Soc., Chem. Commun. 1983,478. (277) Fischer, R. A.; Kneuper, H.-J.; Herrmann, W. A. J. Organo-

met. Chem. 1987,330,365. (278) Lee, K. Y.; Kuchynka, D. J.; Kochi, J. K. Organometallics

1987, 6, 1886. (279) (a) Shriver, D. F. Struct. Bonding (Berlin) 1966, 1, 32. (b)

Kristoff, J. S.; Shriver, D. F. Znorg. Chem. 1973,12, 1788. (c) Manzer, L. E.; Parshall, G. W. Zbid. 1976, 15, 3114.

(280) Strope, D.; Shriver, D. F. Znorg. Chem. 1974, 13, 2652. (281) Abys, J. A.; Ogar, G.; Risen, W. M., Jr. Znorg. Chem. 1981,20,

4446. (282) Fritz, P. M.; Beck, W., unpublished results. (283) Fritz, P. M.; Steimann, M.; Beck, W. Chem. Ber. 1987,120,

253. (284) Tso, C. T.; Cutler, A. R. J. Am. Chem. SOC. 1986,108,6069. (285) (a) Adams, H.; Bailey, N. A.; Gauntlett, J. T.; Winter, M. J.

J. Chem. SOC., Chem. Commun. 1984,1360. (b) Gauntlett, J. T.; Winter, M. J. Polyhedron 1986,5, 451.

(286) (a) Bonnesen, P. V.; Baker, A. T.; Hersh, W. H. J. Am. Chem. SOC. 1986, 108, 8304. (b) Bonnesen, P. V.; Yau, P. K. L.; Hersh, W. H. Organometallics 1987,6, 1587.

(287) Weinstock, I.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. SOC. 1986,108, 8298.

(288) O'Connor, J. M.; Uhrhammer, R.; Rheingold, A. L. Organo- metallics 1987.6. 1987. O'Connor. J . M.: Uhrhammer. R. J. Am. Chem. Soc.'1988, 110, 4448. ' Gotzfried, F.; Grenz, R.; Urban, G.; Beck, W. Chem. Ber. 1985, 118, 4179. (a) Nesmeyanov, A. N.; Makarova, L. G.; Vinogradova, V. N.; Ustynyuk, N. A. Koord. Khim. 1977, 3, 62. (b) Burckett- St.Laurent, J. C. T. R.; Field, J. S.; Haines, R. J.; McMahon, M. J. Organomet. Chem. 1979, 181, 117. Jones, P. G.; Sheldrick, G. M.; Usbn, R.; Laguna, A. Acta Crystallogr., Sect. B 1980, B36, 1486. Mews, R. Angew. Chem., Int. Ed. Engl. 1977, 16, 56. Snow, M. R.; Wimmer, F. L. Aust. J. Chem. 1976,29, 2349. Fischer, E. 0.; Moser, E. 2. Anorg. Allg. Chem. 1966, 342, 156.

(295) Tso, C. C.; Cutler, A. R. Organometallics 1985, 4, 1242. (296) Davies, J. A,; Hartley, F. R.; Murray, S. G.; Pierce-Butler, M.

A. J. Chem. SOC., Dalton Trans. 1983, 1305. (297) Usbn, R.; ForniBs, J.; Espinet, P.; Navarro, R. Znorg. Chim.

Acta 1984, 82, 215.

Page 17: Metal complexes of weakly coordinating anions. Precursors ... · hydride CPW(CO)~H reacts with Ph3C radical in the presence of Ph3CC1 and PR3 to form CpW(CO)3C1 and CpW(CO)z(PR3)C1.2eb

Metal Complexes of Weakly Coordinatlng Anions Chemical Reviews, 1988, Vol. 88, No. 7 1421

(298)

(299) (300)

(304)

(305)

(a) Grove, D. M.; Van Koten, G.; Ubbels, H. J. C.; Spek, A. L. J. Am. Chem. SOC. 1982,104,4285. (b) Terheijden, J.; Van Koten, G.; Grove, D. M.; Vrieze, K.; Spek, A. L. J. Chem. soc., Dalton Trans. 1987, 1359. Olgemijller, B.; Beck, W. Chem. Ber. 1981, 114, 2360. Stolzenber H.; Fehlhammer, W. P. J. Organomet. Chem. 1982,235, k. Busetto, L.; Monari, M.; Palazzi, A.; Albano, V.; Demartin, F. J. Chem. SOC., Dalton Trans. 1983, 1849. Hecht, C.; Herdtweck, E.; Rohrmann, J.; Herrmann, W. A.; Beck, W.; Fritz, P. M. J. Organomet. Chem. 1987,330,389. Fritz, P. M.; Beck, W.; Nagel, U.; Polbom, K.; Herrmann, W. A.; Hecht, C.; Rohrmann, J. 2. Naturforsch., B Anorg. Chem., Org. Chem. 1988,43,665. Weiss, A.; Nagorsen, G.; Weiss, A. 2. Anorg. Allg. Chem. 1953, 274, 151. Puff, H.; Kiister, J. Naturwissenschaften 1962,49,299. Kamenar, B.; Kaitner, B.; Pocev, St. J. Chem. soc., Dalton Trans. 1985, 2457. Kowala, C.; Swan, J. M. Aust. J. Chem. 1966,19,547. Abel, E. W.; Jenkins, C. R. J. Organomet. Chem. 1968, 14, 285. Schmidbaur, H.; hanke, R.; Eberlein, J. Chem.-Ztg. 1975,99, 91. (a) Jones, P. G.; Sheldrick, G. M.; Hadicke, E. Acta Crys- tallo r., Sect. B 1980,36,2777. (b) Lensch, C.; Jones, P. G.; Shedrick, G. M. 2. Naturforsch., B 1982, 37b, 944. Hartmann, G.; Mews, R.; Sheldrick, G. M. Angew. Chem., Znt. Ed. Engl. 1983,22, 723. Kuhn, N.; Schumann, H. J. Organomet. Chem. 1985, 287, 345. Ap 1, M.; Heidrich, J.; Beck, W. Chem. Ber. 1987,120,1087. Ko&ova, N. E.; Skri kin, V. V.; Rozantaeva, T. V.; Struch- kov, Yu. T.; Aleksanlrov, G. G.; Andrianov, V. G. J. Orga- nomet. Chem. 1981,218,351. Afzal, D.; Lenhert, P. G.; Lukehart, C. M. J. Am. Chem. SOC. 1984,106,3050. Afzal, D.; Lukehart, C. M. Organometallics 1987, 6, 546. Davis, J. H., Jr.; Lukehart, C. M. Organometallics 1984, 3, 1763. Venanzi, L. M. Coord. Chem. Rev. 1982,43, 251. Albinati, A.; Lehner, H.; Venanzi, L. M.; Wolfer, M. Znorg. Chem. 1987,26, 3933 and references therein. Howarth, 0. W.; McAteer, C. H.; Moore, P.; Morris, G. E.; Alcock, N. W. J. Chem. SOC., Dalton Trans. 1982, 541. Albinati, A,; Naegeli, R.; Togni, A.; Venanzi, L. M. J. Orga- nomet. Chem. 1987,330,85. Markham, J.; Cutler, A. Organometallics 1984, 3, 736. Hames, B. W.; Legzdins, P. Organometallics 1982, 1, 116. Werner, H.; Wolf, J.; Hohn, A. J. Organomet. Chem. 1985, 287, 395. Aspinall, H. C.; Deeming, A. J. J. Chem. SOC., Dalton Trans. 1985,743. (a) LaCroce, S. J.; Cutler, A. R. J. Am. Chem. SOC. 1982,104, 2312. (b) Markham, J.; Tolman, W.; Menard, K.; Cutler, A. J. Organomet. Chem. 1985,294,45. Siinkel, K.; Schloter, K.; Beck, W.; Ackermann, K.; Schubert, U. J. Organomet. Chem. 1983,241, 333.

(322) Butts, S. B.; Strauss, S. H.; Holt, E. M.; Stimson, R. E.; Al- cock. N. W.: Shriver. D. F. J. Am. Chem. SOC. 1980.102.5093.

(323) Akik, M.; Kawahara, T.; Moro-oka, Y. J. Chem. goc., Chem.

(324) Sacher, W.; Beck, W., unpublished results. (325) Haines, R. J.; DuPreez, A. L. J. Organomet. Chem. 1975,84,

Commun. 1987,1356.

357. (326) Raab, K.; Appel, M.; Beck, W. J. Organomet. Chem. 1985,

291. C2X. ---. (327) Werner, H.; Otto, H. Chem. Ber. 1986,119,3866. (328) Werner, H.; Weinand, R. Z. Naturforsch., B 1983,38b, 1518. (329) Ballivet-Tkatchenko, D.: Nickel, B.: Rassat, A.: Vincent-

Vaucquelin, J. Inorg; Chem. 1986,25, 3497. (330) Oehme, G. J. Prakt. Chem. 1984,326,779. (331) (a) Seyferth, K.; Taube, R. J. Organomet. Chem. 1984,268,

155. (b) Seyferth, K.; Taube, R. J. Organomet. Chem. 1984, 262, 179.

(332) (a) Tanabe, Y.; Mukaiyama, T. Chem. Lett. 1984,1867. (b) Tanabe, Y.; Mukaiyama, T. Chem. Lett. 1985, 673.

(333) Honeychuck, R. V.; Bonnesen, P. V.; Favahi, J.; Hersh, W. H. J. Org. Chem. 1987, 52, 5293.

(334) Siedle, A. R.; Markell, C. G.; Lyon, P. A.; Hodgson, K. 0.; Roe, A. L. Inorg. Chem. 1987,26, 219.

(335) Yang, K. J.; Chin, C. S. Znorg. Chem. 1987, 26, 2732. (336) (a) Howarth, 0. W.; McAteer, C. H.; Moore, P.; Morris, G. E.

J. Chem. SOC., Dalton Trans. 1984,1171. (b) Crabtree, R. H.; Dion, R. P.; Gibboni, D. J.; McGrath, D. V.; Holt, E. M. J. Am. Chem. Soc. 1986,108, 7222. (c) Halpern, J. In Asym- metric Synthesis; Morrison, J. D., Ed.; Academic: Orlando, 1985; Vol. 5. (d) Crabtree, R. H. Acc. Chem. Res. 1979, 12, 331.

(337) Klapotke, Th. Polyhedron 1988, 7, 1221. (338) Klapotke, Th.; Thewalt, U. J. Organomet. Chem., in press. (339) Klapotke, Th. Polyhedron, in press. (340) Klapotke, Th. Inorg. Chim. Acta, in press. (341) Cutler, A. R.; Todaro, A. B. Organometallics 1988, 7, 1782. (342) Schweiger, M.; Beck, W., unpublished results. (343) Fernhdez, J. M.; Gladysz, J. A. Organometallics, in press. (344) Winter, C. H.; Arif, A. M.; Gladysz, J. A. Organometallics, in

(345) Buhro, W. E.; Zwick, B. D.; Georgiou, S.; Hutchinson, J. P.;

(346) Bodner, G. S.; Fernhdez, J. M.; Arif, A. M.; Gladysz, J. A.

(347) Honeychuck, R. V.; Hersh, W. H., submitted to J. Am. Chem.

press.

Gladysz, J. A. J. Am. Chem. SOC. 1988,110, 2427.

J. Am. Chem. SOC. 1988,110,4082.

S O C . Bond, A. M.; Ellis, S. R.; Hollenkamp, A. F. J. Am. Chem. SOC. 1988,110, 5293. Amarasekera, J.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. SOC. 1988,110, 2332. Antberg, M.; Dahlenburg, L.; Frosin, K.-M.; Hock, N. Chem. Ber. 1988,121, 859. Pearaon, A. J.; Richards, I. C. J. Organomet. Chem. 1983,258, n r r b*l.

(352) Weidmann, T.; Beck, W., unpublished results.