methods for: modeling uncertainty / model uncertainty · quantification of modeling uncertainty of...

28
Methods for: Modeling uncertainty / Model uncertainty Peter Hessling, Peter Hedberg SP Mätteknik, SP Sveriges Tekniska Forskningsinstitut, Borås Contact info E-mail: [email protected] Tel. +46 10 516 54 79, +46 702 92 54 79, Adress: SP Measurement Technology, Brinellgatan 4, Box 857, SE-501 15 Borås, Sweden 1

Upload: others

Post on 17-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Methods for:

Modeling uncertainty /

Model uncertainty Peter Hessling,

Peter Hedberg

SP Mätteknik,

SP Sveriges Tekniska Forskningsinstitut, Borås

Contact info

E-mail: [email protected]

Tel. +46 10 516 54 79, +46 702 92 54 79,

Adress: SP Measurement Technology,

Brinellgatan 4, Box 857, SE-501 15 Borås, Sweden 1

Page 2: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Peter Hessling, tekn dr

Peter Hedberg, tekn dr

Page 3: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

• SP offers quality-checked traceable calibration services

for measurements against national references, for a number of units of the SI-system.

• SP services also include consulting (”science partner”) and are available to the industry.

• The research at the department of measurement science (MT~100 pers.) includes but is not limited to fundamental metrology.

• Our group (2 pers) at MT develops novel methods for evaluating and propagating the uncertainty of complex calculation models.

• Fundamental to metrology (analysis of measurements) is the standardized concept measurement uncertainty.

Page 4: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

4

Measurement

uncertainty

Modeling uncertainty

Object Measurements Models

Standardization Yes No (complete concept missing)

Model Simple/rudimentary (often) Complex! FEM, CFD, Dyn, …

Uncertainty contributions

Systematic errors A few.

Unsatisfactory treatment.

Main problem: mesh-size, validity step

length/discretization, extrapolation

Stocastic errors

Scatter Lack of repeatability None! (Fixed model)

Lack of knowledge

discrete/cont. par.

Standard contribution Omitted? Competing methods

Methods

Linearisation According to standard ’GUM’ Standard / sensitivity analysis

Sampling / Ensemble Large acceptable [Mkt] Small absolute requirement!

Slump sampling

(Monte Carlo)

(Stratified, LHS)

Almost always possible

Notorious overmodeling

Often unacceptable calculation time

Overmodeling,

not robust (when few samples)

Deterministic

sampling

(Unknown method)

Simple, robust Well adapted

Statistical analysis separated from

model evaluation (’non-invasive’)

Page 5: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

EXAMPLES OF UNCERTAINTIES

• Model Constants in turbulence models, determined from experiments

• Boundary conditions • Material properties • Geometry • Mesh size

Page 6: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Standard Deviation of Cp

Page 7: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Standard Deviation of Cp

Page 8: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Model(-ing) uncertainty

– The field of Uncertainty Quantification (UQ)

• Dedicated research groups at:

– Res. Lab. Sandia, Los Alamos, NASA

– US univ. high rank: Stanford, MIT, Cornell,…

• Two new journals

– International Journal for Uncertainty quantification (IJ4UQ) (Begell house, 2011)

– the Journal on Uncertainty Quantification (JUQ) [8] SIAM (Society for Industrial and Applied Mathematics) and ASA (American

Statistical Association) (2013)

• SIAM Conference on UQ (2-5 April, 2012)

• Target applications:

– Computational Fluid Dynamics…

– Advanced signal processing (included by myself, not formal UQ)

– Meteorology (SMHI ensemble prognoses),…

– Nuclear physics???

Page 9: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic
Page 10: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

UQ

• Two directions of uncertainty propagation

– (Direct) Uncertainty Quantification (of result of modeling)

– Inverse Uncertainty Quantification (calibration, (system) identification)

• Common denominators:

– Heavy numerical models, large-scale simulations

– Complex publications

– Multidisciplinary – many fields of math involved!

– Non-invasive methods dominates

– Random sampling (RS)

• Painfully/unacceptable ineffective – Conventional ways to speed up:

– Improve sample distribution (more uniform) to reduce sampling

• Stratified Sampling, Latin Hypercube Sampling

– Coarse (’surrogate’) model approximation for full sampling

Response Surface Methodology

Page 11: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Deterministic sampling of model parameters

Our proposal: Sample with a rule, not random generator!

• Origin: Signal Processing, Kalman filter,

Simon Julier, Jeffrey Uhlmann Unscented propagation of covariance (~1994)

• Compromise statistical fidelity but not model evaluation accuracy

– Alt. 1: Sampling on confidence boundaries – Hessling JP., Svensson T., Propagation of uncertainty by sampling on confidence

boundaries, Int’l Journal of Uncertainty Quantification, 3 (5): 421-444 (2013))

– Alt. 2: Propagation of covariance

• Quantification of modeling uncertainty (result of models) – Hessling J P, in Digital Filters, chapter “Integration of digital filters and measurements”

(www.intechopen.com) ISBN 978-953-307-190-9 (INTECH, 2011)

– Hessling J P, in Digital Filters and Signal Processing, chapter “Deterministic sampling for

Quantification of Modeling Uncertainty of Signals” (www.intechopen.com) ISBN 978-953-

51-0871-9 (INTECH, 2013)

– Hessling JP, Deterministic sampling for propagating model covariance, Journal of

Uncertainty Quantification, minor rev.

• Inverse quantification of model uncertainty (calibration) – Hessling JP, Identification of complex models, in preparation.

Page 12: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Conventional statistical modeling

• De facto standard of modeling: Probability density function

– Random generators

– Not observable

– Mathematical construct (probability density)

– Never known (non-trivial common cases)

– One possible representation of statistical information

• Preference in mathematical statistics: Probability distribution function

– F(x)=P(y<=x), cumulative probability of not exceeding a value (x)

– Observable

– ’Physical’ meaning (probability)

– Never known (non-trivial common cases)

– Awkward representation…

– Terrible habit of using percentiles (deficiency of Wilk’s rule?)

Page 13: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Novel(?) statistical modeling

• Practice: Expectation values

– Mean, covariance, skewness, kurtosis, higher order

dependencies…

– Best(?) representation of stat. info in statistical moments

• Hierarchy, contained in Taylor series

• Complete representation

• Can be estimated

• Variable estimation accuracy (bias, variance of estimators)

• Robust

– Can be evaluated for every set of samples,

discrete or continuous

– Statistics of finite (RS,DS) ensembles can be compared to

continuous probability distributions (pdf)

• Generalized concept of sampling of pdf, loss of information

comparable to sampling of signals

Page 14: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

(Lack of) Consistency of statistical modeling

• Fidelity of modeling, expressed in statistical moments

– Location: Mean

– Variation: Variance

– Dependency: Covariance

– Asymmetry: Skewness

– Shape: Kurtosis

• Consistency of distinguishing different marginal distributions (shape)

requires representation of dependencies beyond covariance!

• Models are deviced to match reality (calibration data/benchmarks)

=>Strong dependencies (also beyond covariance)!

• Higher order dependencies can not be modeled in MC (not normal)

• Hence, virtually every MC model simulation is inconsistent!

• Any mixed moment can be controlled and consistently represented

with a finite calculated set of samples

Page 15: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Multi- / univariate analyses fundamentally different

• The majority of us thinks/understands ’univariate’

• ’The pdfs’ of MC are nothing but marginal pdfs

• How control marginal pdfs in presence of covariance (non-normal

pdf)

• Marginal information is a minute fraction of all information

Ex. 20 parameters, marginal 4th moments < 0.3% of all 4th moments

• Why represent a negligible fraction of all information much more

accurately than the rest?

(by distinguishing different marginal pdfs)

• Full multivariate pdfs are required to account for their ’shape’

– Exceptionally difficult to determine!

Page 16: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Illustration of deterministic sampling…

• Model

• Random sampling (Monte Carlo)

• Deterministic sampling (one alt.)

16

4.2,6.1

,4,3,2,,~

4.0,2,

2,1

)(

4

qq

qq

k

MC

qq

nkNq

qqh

100

101

102

103

0

0.5

1

1.5

2

2.5

Antal sampel

Parameter

DS

DS

Mean MC

Std MC

Mean

Std

100

101

102

103

6

8

10

12

14

16

18

20

22

24

26

Antal sampel

Model

DS

DS

Mean MC

Std MC

Mean LIN

Std LIN

Page 17: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Alternative sampling…

Sampling with brute force MC (*), stratified (solid), fixed grid (dashed),

q~N(0,1)

M(2): M(4):

Deterministic sampling

Page 18: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Deterministic sampling, general

• Deterministic ensemble

– Scaling

– Correlation

– Excitation matrix of canonical ensembles

• Generic (normalized, de-correlated), i.e. re-used indefinitely

• Discrete equivalent to continuous probability distributions

• ’Tiny’ deterministic variant of large Monte Carlo ensemble

• Types so far:

– Standard ensemble (STD)

– Simplex ensemble (SPX)

– Binary ensemble (BIN)

– Combined (CMB)

USU

VIVVVmVVSUU

T

m

T

mn

T

mmn

2

11

cov

01,,ˆ,ˆ1

V

U

S

ˆ

Page 19: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Key features of excitation matrix

– For constructing novel ensembles

• Orthogonality

• Lack of constraints

=>Transformation,

with change of ens size

• Combination of ensembles

• Correlated samples

(reduce ens size)

• Normalization, scaling and correlation of parameters eliminated

• Ensemble size aspect of deterministic sampling rule

4/5ceil2:BIN

2:STD

1:SPX

nm

nm

nm

IVV

VVV

nmIWWVVWV

VV

IVV

T

nxn

T

nxmnxm

T

T

)(Blockdiag

,,~

21

Page 20: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Several parameters…

• The standard (STD) ensemble (largest maximum excitation)

• The simplex (SPX) ensemble (minimum ensemble)

Page 21: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Several parameters…

• The binary (BIN) ensemble (minimum maximal excitation)

Page 22: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Several parameters…

• The binary (BIN) ensemble (minimum maximal excitation)

Page 23: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Invalid/inaccurate model?

0 0.5 1 1.5-0.2

0

0.2

0.4

0.6

0.8

1

1.2

'Field' x

'Me

asu

red

'/Pri

or

pre

dic

tio

n h

(x, )

Cal data

+2

-2

Prior Model Ens

?cov?,

sin,, 2121

xxh

Page 24: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Calibration – Identification!

0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

1.4

'Field' x

'Me

asu

red

'/Pri

or

pre

dic

tio

n h

(x, )

Cal data

+2

-2

Post Model Ens

05.0,96.013.0

022.0014.0

014.0012.0cov,970.0139.0

22

22

NTRUE

Page 25: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Calibration of deterministic ensemble,

with adjustments of samples

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.250.7

0.75

0.8

0.85

0.9

0.95

1

1.05

(1)

1=

PRIOR(:,1)

(1)

2=

PRIOR(:,2)

(1)

3=

PRIOR(:,3)

(1)

4=

PRIOR(:,4)

POST

=(N)

1

2

True

Page 26: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

Surrogate model quality and spread of regr. points

1 2 3 4 5 6 7 8 9 100.98

0.99

1

1.01

1 2 3 4 5 6 7 8 9 10-2

-1.5

-1

-0.5

log

10

(||

||)

Iteration

Page 27: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

A complete concept for modeling uncertainty…

Page 28: Methods for: Modeling uncertainty / Model uncertainty · Quantification of Modeling Uncertainty of Signals” () ISBN 978-953-51-0871-9 (INTECH, 2013) – Hessling JP, Deterministic

”What’s in it for us (UU/SP)?”

• Discussion partner: methods for evaluation of uncertainty

• ’Export’ of SP’s prototype methods

No one will be happier than SP if you are interested to try our

methods…

• Apply for joint projects (VR, ÅF, companies…)

Reactor physics, UU

Novel UQ methods, SP

• Scientific collaboration

Articles

Conferences

Workshops etc.

Thanks for your attention!