mexican institute of electrical research - gsep · 35 años de investigación, innovando con...

128
35 años de investigación, innovando con energía Mexican Institute of Electrical Research (Instituto de Investigaciones Eléctricas) April 2015

Upload: tranngoc

Post on 11-Dec-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

35 años de investigación, innovando con energía

Mexican Institute of Electrical Research

(Instituto de Investigaciones Eléctricas)

April 2015

35 años de investigación, innovando con energía

Instituto de Investigaciones Eléctricas (IIE)

• On december 1975 the IIE is created as a public descentralized governmental organism

• On october 2001 it is transformed into a public research center, with a more proper administration mechanism

• Its principal objectives are research, applied innovation, technological development, engineering design and specialized technical services.

35 años de investigación, innovando con energía

Develop an energy market based on competitive knowledge.

Mision

Become the reference applied research center in Latin America.

Vision

Mision and Vision

35 años de investigación, innovando con energía

Cuer

nava

ca

• Located in Palmira, Cuernavaca, Morelos

• Over 29,000 m2 built with more than 50 laboratories.

• Over 70,000 m2 of land.

M

onte

rrey

• Park for research and technological innovation (PIIT), Monterrey, Nuevo Leon.

• 8,716 m2 built. • 16,000 m2 of

land.

C E

R T

E

• Located in Juchitán de Zaragoza, La Ventosa, Estado de Oaxaca.

• 320,000 m2 of land.

Leibnitz núm. 11, piso 5, Col. Anzures Delegación Miguel Hidalgo, México, D.F. C. P. 11590

Offices in Mexico City Offices in Veracruz

Av. Ruiz Cortines 1513, Edif. Cañedo, Fraccionamiento Costa de Oro, Boca del Río, Veracruz C. P. 94299

Campus

Cent

ro R

egio

nal d

e Te

cnol

ogía

Eól

ica

35 años de investigación, innovando con energía 5

Main research areas

Smart grids. Modernize, automate and make efficient grids to reduce power

outages and energy costs, and make utilities more competitive.

Equipment lifespan management. Increase equipment reliability, reduce

maintenance costs and time, optimize investment.

Efficiency, energy savings and sustainability. Reduce losses and

effect on environment, introduce cleaning technology such as carbon capture and

storage.

Clean energy. Foster new and better electrical systems based on solar, wind,

water, maritime and geothermal energy.

35 años de investigación, innovando con energía 6

Other strengths

Training. Special simulators, software and hardware for special applications,

specific courses at various levels tought in various locations.

Materials. Specific material development, industrial processes, patent

protection, alliances with various institutions and enterprises.

Planning and law making. Strategic planning consultancy, laws and by

laws development and management, standards management.

Small business acceleration. Contribute with other organizations to

integrate knowledge in competence-building of small firms.

35 años de investigación, innovando con energía 7

Other pertinent figures

Sales to Mexican Government enterprises US$ 53,000

National and international funds (grants) 6,000

Specialized technical services 8,000

Other (patents, royalties, fund management) 3,000

_______

70,000

Employees: 1,600 (760 research staff, 200 students)

35 años de investigación, innovando con energía

Partnerships

WITH INDUSTRY WITH RESEARCH CENTERS ACADEMIA INTERNATIONAL

35 años de investigación, innovando con energía

Telephone: +52 (777) 318 2424, +52 (55) 5254 8437 [email protected]

iie.org.mx

Energy Storage – Definitions, Properties and Economics

Andreas Hauer

Latin America Public-Private Partnerships Workshop on Energy Storage for Sustainable Development April 16-17, 2015 Rio de Janeiro, Brazil

Content

• Basic Definitions • Properties • Economics • Market • Conclusions

Energy Storage – Basic Definitions

Definitions „Energy Storage“ What is energy storage? An energy storage system can take up energy and deliver it at a later point in time. The storage process itself consists of three stages: The charging, the storage and the discharging. After the discharging step the storage can be charged again.

Charging Storage Discharging

Definitions „Energy Storage“

What is actually stored? The form of energy (electricity, heat, cold, mechanical energy, chemical energy), which is taken up by an energy storage system, is usually the one, which is delivered. However, in many cases the charged type of energy has to be transformed for the storage (e.g. pumped hydro storage or batteries). It is re-transformed for the discharging. In some energy storage systems the transformed energy type is delivered (e.g. Power-to-Gas or Power-to-Heat).

h

Relation between energy storage systems and their applications The technical and economical requirements for an energy storage system are determined by its actual application within the energy system. Therefore any evaluation and comparison of energy storage technologies is only possible with respect to this application. The application determines the technical requirements (e.g. type of energy, storage capacity, charging/discharging power,…) as well as the economical environment (e.g. expected pay-back time, price for delivered energy,…).

Definitions „Energy Storage“

Electrolysis Hydrogen

Constant Supply Fluctuating Supply

Matching Supply and Demand

„Storage of Power“ „Storage of Energy“

e.g. Power Reserve e.g. Peak Shaving / Dispatchable Load

Difference between Power & Energy

Pow

er

Pow

er

Seconds - Minutes Hours – Days

Energy Storage – Properties

– Storage Capacity (kWh/kg, kWh/m³) – Charging / Discharging Power (W/kg, W/m³) – Storage Efficiency – Storage Period (Time) – Cost (€/kWh, €/kW)

– Competing Technologies

Phys. / Chem. Effect, Storage Material, Operation Conditions

Storage Design & Engineering, Transport Phenomena,…

Losses (Storage Period, Transformations)

Hours, Days, Months, Years

Investment, Number of Storage Cycles

Properties of an Energy Storage System

Transmission System, Smart Grids, Demand Side Management, Electricity Production

Storage technology

Storage Mechanism

Power Capacity Storage Period

Density Efficiency Lifetime Cost

MW MWh time kWh/ton kWh/m3 % # cycles $/kW $/kWh ¢/kWh-

delivered

Lithium Ion (Li Ion)

Electro-chemical

< 1,7 < 22 day - month 84 - 160 190 - 375 0,89 - 0,98 2960 -5440

1230 - 3770

620 - 2760 17 - 102

Sodium Sulfur (NAS) battery

Electro-chemical

1 - 60 7 - 450 day 99 - 150 156 - 255 0,75 - 0,86 1620 - 4500

260 - 2560 210 - 920 9 - 55

Lead Acid battery

Electro-chemical

0.1 - 30 < 30 day - month 22 - 34 25 - 65 0,65 - 0,85 160 - 1060 350 - 850 130 - 1100 21 - 102

Redox/Flow battery

Electro-chemical

< 7 < 10 day - month 18 - 28 21 - 34 0,72 - 0,85 1510 - 2780

650 - 2730 120 - 1600 5 - 88

Compressed air energy storage (CAES)

Mechanical 2 - 300 14 - 2050 day - 2 - 7 at

20 - 80 bar 0,4 - 0,75

8620 - 17100

15 - 2050 30 - 100 2 - 35

Pumped hydro energy storage (PHES)

Mechanical 450 - 2500

8000 - 190000

day - month 0,27 at 100m

0,27 at 100m 0,63 - 0,85 12800 - 33000

540 - 2790 40 - 160 0,1 - 18

Hydrogen Chemical varies varies indefinite 34000 2,7 - 160 at 1

- 700 bar 0,22 - 0,50 1 384 - 1408 - 25 - 64

Methane Chemical varies varies indefinite 16000 10 at 1 bar 0,24 - 0,42 1 - - 16 - 44 Sensible storage - Water

Thermal < 10 < 100 hour - year 10 - 50 < 60 0,5 -0,9 ~5000 - 0,1- 13 0,01

Phase change materials (PCM)

Thermal < 10 < 10 hour - week 50 - 150 < 120 0,75 - 0,9 ~5000 - 13 - 65 1,3 - 6

Thermochemical storage (TCS)

Thermal < 1 < 10 hour - week 120 -250 120 - 250 0,8 - 1 ~3500 - 10 - 130 1 - 5

Energy Storage Technology Properties

Energy Storage – Economics

Economics of an energy storage system depend on • investment cost of the energy storage system • number of storage cycles (per time), which limits the delivered

amount of energy

Economics

Spending = Investment Cost

Earning = delivered Energy = Storage Cycles

Charging St. 100.000 € Storage 100.000 € Discharg. St. 50.000 € Total Cost 250.000 €

4 MWh per cycle, charge/discharge power 1 MW, 2 cycles per day, 1 MWh = 50 € 700 x 200 € = 140.000 €/Jahr

© ZAE Bayern

≈ 10.000 €/kWh ≈ 250 €/kWh

≈ 100 €/kWh ≈ 2,0 €/kWh © ZAE Bayern

© ZAE Bayern

Economics Economics of an energy storage system depend on • investment cost of the energy storage system • number of storage cycles (per time), which limits the delivered

amount of energy • price of the replaced energy (electricity, heat/cold, fuel,…) • „Benefit-Stacking“

Top-Down Approach or „Maximum Acceptable Storage Cost“

The maximum acceptable storage cost (price per storage capacity installed, €/kWh) can be easily calculated on the basis of • Expected pay-back time • Interest rate • Energy cost

Example: In the building sector a payback period of 15 to 20 years and an interest rate of 3% to 6% can be accepted. The price for energy is 0.06 – 0.10 €/kWh.

Enthusiast: payback 20-25 a, interest rate 1%, energy cost 0.12-0.16 €/kWh Building: payback 15-20 a, interest rate 5%, energy cost 0.06-0.10 €/kWh Industry: payback < 5 a, interest rate 10%, energy cost 0.02-0.04 €/kWh

Top-Down Approach or „Maximum Acceptable Storage Cost“

Storage technology

Storage Mechanis

m

Power Capacity Storage Period

Density Efficiency Lifetime Cost

MW MWh time kWh/ton kWh/m3 % # cycles $/kW $/kWh ¢/kWh-delivere

d Lithium Ion (Li Ion)

Electro-chemical

< 1,7 < 22 day - month 84 - 160 190 - 375 0,89 - 0,98 2960 -5440

1230 - 3770

620 - 2760

17 - 102

Sodium Sulfur (NAS) battery

Electro-chemical

1 - 60 7 - 450 day 99 - 150 156 - 255 0,75 - 0,86 1620 - 4500

260 - 2560

210 - 920

9 - 55

Lead Acid battery

Electro-chemical

0.1 - 30

< 30 day - month 22 - 34 25 - 65 0,65 - 0,85 160 - 1060

350 - 850

130 - 1100

21 - 102

Redox/Flow battery

Electro-chemical

< 7 < 10 day - month 18 - 28 21 - 34 0,72 - 0,85 1510 - 2780

650 - 2730

120 - 1600

5 - 88

Compressed air energy storage (CAES)

Mechanical 2 - 300 14 - 2050 day - 2 - 7 at

20 - 80 bar 0,4 - 0,75

8620 - 17100

15 - 2050

30 - 100 2 - 35

Pumped hydro energy storage (PHES)

Mechanical 450 - 2500

8000 - 190000

day - month 0,27 at 100m

0,27 at 100m

0,63 - 0,85 12800 - 33000

540 - 2790

40 - 160 0,1 - 18

Hydrogen Chemical varies varies indefinite 34000 2,7 - 160 at 1 - 700 bar

0,22 - 0,50 1 384 - 1408

- 25 - 64

Methane Chemical varies varies indefinite 16000 10 at 1 bar 0,24 - 0,42 1 - - 16 - 44 Sensible storage - Water

Thermal < 10 < 100 hour - year 10 - 50 < 60 0,5 -0,9 ~5000 - 0,1- 13 0,01

Phase change materials (PCM)

Thermal < 10 < 10 hour - week 50 - 150 < 120 0,75 - 0,9 ~5000 - 13 - 65 1,3 - 6

Thermochemical storage (TCS)

Thermal < 1 < 10 hour - week 120 -250 120 - 250 0,8 - 1 ~3500 - 10 - 130 1 - 5

Energy Storage Technologies

Diurnal storage: 16 - 38 €/kWhcap

Storage technology

Storage Mechanis

m

Power Capacity Storage Period

Density Efficiency Lifetime Cost

MW MWh time kWh/ton kWh/m3 % # cycles $/kW $/kWh ¢/kWh-delivere

d Lithium Ion (Li Ion)

Electro-chemical

< 1,7 < 22 day - month 84 - 160 190 - 375 0,89 - 0,98 2960 -5440

1230 - 3770

620 - 2760

17 - 102

Sodium Sulfur (NAS) battery

Electro-chemical

1 - 60 7 - 450 day 99 - 150 156 - 255 0,75 - 0,86 1620 - 4500

260 - 2560

210 - 920

9 - 55

Lead Acid battery

Electro-chemical

0.1 - 30

< 30 day - month 22 - 34 25 - 65 0,65 - 0,85 160 - 1060

350 - 850

130 - 1100

21 - 102

Redox/Flow battery

Electro-chemical

< 7 < 10 day - month 18 - 28 21 - 34 0,72 - 0,85 1510 - 2780

650 - 2730

120 - 1600

5 - 88

Compressed air energy storage (CAES)

Mechanical 2 - 300 14 - 2050 day - 2 - 7 at

20 - 80 bar 0,4 - 0,75

8620 - 17100

15 - 2050

30 - 100 2 - 35

Pumped hydro energy storage (PHES)

Mechanical 450 - 2500

8000 - 190000

day - month 0,27 at 100m

0,27 at 100m

0,63 - 0,85 12800 - 33000

540 - 2790

40 - 160 0,1 - 18

Hydrogen Chemical varies varies indefinite 34000 2,7 - 160 at 1 - 700 bar

0,22 - 0,50 1 384 - 1408

- 25 - 64

Methane Chemical varies varies indefinite 16000 10 at 1 bar 0,24 - 0,42 1 - - 16 - 44 Sensible storage - Water

Thermal < 10 < 100 hour - year 10 - 50 < 60 0,5 -0,9 ~5000 - 0,1- 13 0,01

Phase change materials (PCM)

Thermal < 10 < 10 hour - week 50 - 150 < 120 0,75 - 0,9 ~5000 - 13 - 65 1,3 - 6

Thermochemical storage (TCS)

Thermal < 1 < 10 hour - week 120 -250 120 - 250 0,8 - 1 ~3500 - 10 - 130 1 - 5

Energy Storage Technologies

Energy Storage – Market

Energy Storage Systems are clean!

Energy storage systems used for the integration of renewables or the increase of energy efficiency deliver CO2-neutral energy to their customers. Rising prices for CO2 certificates would support the economics of energy storage!

e.g. power reserve

Fair Market Entry!

• No subsidies & no „market-entry-programme“ needed!

• As soon as „flexibility“ will be adequately remunerated, energy storage systems are competitive!

• Energy storage systems are no „final consumer“ and do not have to pay the related fees!

Japan: Ice storage for

air conditioning due to high electricity

prices in peak hours

Conclusions

Energy Storage Process = Charging + Storage + Discharging

Energy storage can match supply & demand

Energy storage systems can either focus on the storage of energy or power

Energy storage systems will have an increasing market share, if their benefits will be adequately remunerated

The economics depend on the investment cost, the cycle number in an actual application (per time) and the price of the replaced energy

Conclusions

Thank you very much for your attention!

26

storage coststop−down =energy costs × cycles per year

storage annuity

User Energy costs / €·kWh-1 Storage annuity / %

min. max. min. max.

Industry 0.02 0.04 25 30

Building 0.06 0.10 7 10

Enthusiast 0.12 0.16 4 6

Method: Top-down approach

27

storage coststop−down =energy costs × cycles per year

storage annuity

User Energy costs / €·kWh-1 Storage annuity / %

min. max. min. max.

Industry 0.02 0.04 25 30

Building 0.06 0.10 7 10

Enthusiast 0.12 0.16 4 6

Method: Top-down approach

storage costs (high case)

28

storage coststop−down =energy costs × cycles per year

storage annuity

User Energy costs / €·kWh-1 Storage annuity / %

min. max. min. max.

Industry 0.02 0.04 25 30

Building 0.06 0.10 7 10

Enthusiast 0.12 0.16 4 6

Method: Top-down approach

storage costs (low case)

Method: Bottom-up approach

29

storage costsbottom−up =investment costs storage capacity

investment costs = TES material + storage container + charging / discharging device

Mauricio Acevedo

Colombia

OPORTUNIDADES PARA EL DESARROLLO DEL

ALMACENAMIENTO DE ENERGÍA EN COLOMBIA

No se ha integrado como parte del plan de expansión Costo y disponibilidad de combustibles Al ser complemento de otras FNCE el costo adicional dificulta

viabilidad financiera Costo y dimensionamiento en gran escala Integración de soluciones en pequeña escala (redes

inteligentes) Modelos tarifarios y regulación

BARRERAS ALMACENAMIENTO COLOMBIA

Crecimiento GDP 600 billones USD(28)

Ingreso per capita 11,000 USD aprox

Disminución desempleo 9,9%

Crecimiento ciudades Barranquilla y Cali

Desarrollo regional Desarrollo argoindustrial e integración de cadenas de valor

Dificultad Mega Proyectos (Ambientales y Sociales) Sobrecostos y retrasos de licenciamientos

CONTEXTO LOCAL

Fuente: PROCOLOMBIA2014

Balance energético

Usos de energéticos

Demanda de energía eléctrica

Composición de la generación

Plan de expansión

Novedades del sector eléctrico

CONTEXTO ENERGÉTICO LOCAL

Datos año 2012 en Terajulios

USO DE ENERGIA EN COLOMBIA

Fuente: Balance Energét ico UPME 2014

Datos año 2012 en Terajulios

USO DE ENERGIA EN COLOMBIA

Fuente: UPME 2014

-

1,0

2,0

3,0

4,0

5,0

6,0

Extraida Exportada Uso Final

Mill

ones

de

Tera

julio

s

UtílPérdidasOtros

Energía EléctricaHC ImportadosHC DerivadosBiomasaHidroenergíaGas NaturalCarbónPetroleo

TENDENCIA DE USO FINAL

0

200

400

600

800

1000

1200

2000 2004 2008 2012

Mile

s de

Tera

julio

s

TransporteIndustrialComercial y públicoResidencialOtros

Fuente : UPME 2014

TENDENCIA DE FUENTE

Fuente: UPME 2014

-

500,00

1 000,00

1 500,00

2 000,00

2 500,00

3 000,00

3 500,00

2000 2004 2008 2012

Mile

s de

Tera

julio

s

RenovableFósil

BiomasasElectricidadOtrosCarbónGas NaturalPetroleo y derivados

Datos año 2012 en Terajulios

BALANCE ENERGIA ELECTRICA

Fuente: UPME Balance Energét ico 2014

PLAN EXPANSION ENERGIA ELECTRICA

CXC: Cargo por confiabilidad incluido en la tarifa para garantizar la expansión del sistema eléctrico.

PLAN EXPANSION POR TECNOLOGIA

Seguridad Energética - Acceso - Desarrollo Sostenible – Competitividad 2001 Ley Uso Racional y Eficiente de Energía PRO URE

2002 Incentivos tr ibutarios a maquinaria 2002

2003 Fondos de Investigación y Desarrollo EE y URE

2010 Factor Emisiones CO2 en proyectos de Generación

2011 Plan indicativo 2010 -2015 por sector

2014 Ley 1715 de 2014 Integración de las energías renovables no

convencionales al sistema energético nacional

PLAN DE EFICIENCIA ENERGÉTICA

Excedentes de autogeneración y

cogeneración Respuesta de la demanda

Generación distribuida

Zonas No Interconectada

Incentivos a FNCER

Eficiencia energética

FENOGE (Fondo financiación)

FUENTES NO CONVENCIONALES DE ER

FNCER

Biomasa

Eólica

Geotérmica

Solar

Energía de los mares

Pequeños Centrales

Hidroeléctricos (PCHs)

Energía de Residuos

Otras que determine la UPME

Potencial (MW)

Total GD

Solar 37437 5970

Eólica 24800 1250

PCH 25000 5000

Biomasa 2630 2630

Eficiencia Energética y respuesta de la demanda Soluciones desarrolladas sobre ER actuales y GD Marco regulatorio y tarifario favorable Implementación redes inteligentes Extensión de beneficios existentes a ER Incentivos financieros y no financieros

INTEGRACION DE ALMACENAMIENTO

40,0%

60,0%

80,0%

100,0%

120,00

140,00

160,00

180,00

200,00

2014

-01-

01

2014

-01-

31

2014

-03-

02

2014

-04-

01

2014

-05-

01

2014

-05-

31

2014

-06-

30

2014

-07-

30

2014

-08-

29

2014

-09-

28

2014

-10-

28

2014

-11-

27

2014

-12-

27

Generación GWh % Aporte Hídrico % Aporte Hídrico + Térmico

Renewable Power Generation Costs IRENA 2012

COSTO INVERSIÓN TECNOLOGÍA

Configuración actual Configuración futura

LA RED EN COLOMBIA

F u e n t e : I B M , S m a r t G r i d I m p l e m e n t a t i o n S t a t us , U S T D A C o l o m b i a , O c t o b e r 3 , 2 0 1 2

Mejorar calidad del suministro Diferir o apoyar inversiones en ínfraestructura Cubrimiento de zonas no interconectadas (mejorar calidad de

vida) Apoyo al desarrollo regional (agroindustrial) y centros urbanos

e industriales emergentes Desarrollo y apropiación de tecnología de almacenamiento Podemos utilizar represas e infraestructura hídrica como

almacenamiento. Hidroeléctricas reversibles, baterías y capacitores son tecnologías

con gran potencial en Colombia

OPORTUNIDADES

GRACIAS

Mauricio Acevedo Arango [email protected]

@macevedoarango +57-310-7673391

P r in c ip a l p ro b l e m á t i c a y b a r r e r a s No se ha integrado como parte del plan de expansión Costo y disponibilidad de combustibles Al ser complemento de otras FNCE el costo adicional no lo hace viable Costo y dimensionamiento en gran escala Integración de soluciones en pequeña escala (redes inteligentes) Modelos tarifarios y regulación

L e c c io n es a p r e n d id a s y p r in c ip a les d e s a r ro l l o s Promoción y desarrollo de tecnologías

Las aplicables al caso Colombiano: Baterías,Centrales Hidroeléctricas reversibles,Capacitores

Desarrollo e integración Incorporar como alternativa de FNCER Implementación de Redes Inteligentes Masificación de Eficiencia Energética Respuesta y gestión de demanda

Financiación Incluir como parte de los modelos financieros de expansión Dedicar recursos al desarrollo de tecnología y soluciones locales

Ro l d e l a lm a c e n a m ie nto Mejora de la calidad del sistema central Oportunidad de acceso en zonas no interconectadas (pequeña escala)

ALMACENAMIENTO EN COLOMBIA

ENERGY STORAGE IN ENERGY POLICY URUGUAY 2030

Ramón Méndez

Former Secretary of Energy of Uruguay (2008-2015) Chair IRENA´s Council (since 2013) Rio de Janeiro, April 2015

FRAMEWORK AND HISTORICAL BACKGROUND

(before 2005) • Uruguay has no proven reserves of oil, natural gas or coal

• No access to natural gas in the region • No space for new large hydropower plants Hydro: varies from 45% to 85% of electric mix (“El Niño”)

FRAMEWORK AND HISTORICAL BACKGROUND

(before 2005) • Uruguay has no proven reserves of oil, natural gas or coal

• No access to natural gas in the region • No space for new large hydropower plants Hydro: varies from 45% to 85% of electric mix (“El Niño”): - Huge potential over costs

FRAMEWORK AND HISTORICAL BACKGROUND

(before 2005) • Uruguay has no proven reserves of oil, natural gas or coal

• No access to natural gas in the region • No space for new large hydropower plants Hydro: varies from 45% to 85% of electric mix (“El Niño”): - Huge potential over costs - Increasing share of imported oil in the primary energy mix

FRAMEWORK AND HISTORICAL BACKGROUND

(before 2005) • Uruguay has no proven reserves of oil, natural gas or coal

• No access to natural gas in the region • No space for new large hydropower plants Hydro: varies from 45% to 85% of electric mix (“El Niño”): - Huge potential over costs - Increasing share of imported oil in the primary energy mix • An economy growing at 6%/yr (average) during 10 years

DRAMATIC CHANGES IN RECENT YEARS

OIL 39%

LNG 6%

HIDROELECTRICITY 14%

BIOELECTRICITY 5%

BIOHEAT 15%

OTHER BIOMASS 10%

WIND 6%

BIOFUELS 3%

SOLAR 1%

GLOBAL PRIMARY MIX 2016

OIL 39%

LNG 6%

HYDROELECTRICITY 14%

BIOELECTRICITY 5%

BIOHEAT 15%

OTHER BIOMASS 10%

WIND 6%

BIOFUELS 3%

SOLAR 1%

GLOBAL PRIMARY MIX 2016

55% RENEWABLE

94% RENEWABLE

Hydro 51 %

Wind 26% Biomass

17%

LNG 5%

Oil 1 %

ELECTRIC MIX 2016

73 US$/MWh

46 US$/MWh

DECREASING ENERGY COST

Electricity cost according to rain probabilities

DRY YEAR

RAINY YEAR

AVERAGE YEAR

75 US$/MWh

25 US$/MWh

STRONGLY DECREASING CLIMATE VULNERABILITY

Electricity cost according to rain probabilities

DRY YEAR

RAINY YEAR

AVERAGE YEAR

VERY LOW GHG EMISSION INTENSITY

Source: IEA

WHAT HAPPENED?

• A long term (2030) global energy policy, including economic, environment, cultural and social issues was defined in 2008

• The policy was backed in 2010 by all political parties and it has a strong social support

• The adequate framework (legal, institutional, regulatory, capacity building) was build

• Public-Private Parternships (with the Public Utility and the National Oil Company): looking for win-win oportunities

THE MAIN INGREDIENTS

Multidimensional and integrated vision, including technological, economic, geopolitical, environmental,

ethical, cultural and social issues

ENERGY POLICY URUGUAY 2030

• Four “Strategic Guidelines”

• Short, medium and long term goals

• An evolving set of tools

INVESTMENTS (2010-2015) 7.1 billion dollars

• 2.4 billion public sector (Public Utility and National Oil Company)

• 4.7 billion public-private parternship

3% of GDP per year (5 times Latin American average)

VERY STRONG STATE LEADERSHIP HAS ALIGNED PRIVATE INTERESTS

TO PRODUCE A NATIONAL STRATEGIC TRANSFORMATION

THE MAIN ACTIONS

1) Fast introduction of non-traditional renewable sources 2) LNG regasification terminal 3) Structural transformation of the electric sector 4) Domestic oil and gas exploration 5) Strong enhancement of energy efficiency 6) Energy access (defined as a “human right” in Uruguay)

RENEWABLE COSTS • Wind energy: 62 US$/MWh (2011)

• PV: 92 US$/MWh (2014)

• Biomass: 92 to 128 US$/MWh (it includes up to 33 US$/MWh of externalities)

RENEWABLE COSTS • Wind energy: 62 US$/MWh (2011)

• PV: 92 US$/MWh (2014)

• Biomass: 92 to 128 US$/MWh (it includes up to 33 US$/MWh of externalities)

NO SUBSIDIES ONLY THE APPROPRIATE FRAMEWORK TO COMPETE

RENEWABLE COSTS • Wind energy: 62 US$/MWh (2011)

• PV: 92 US$/MWh (2014)

• Biomass: 92 to 128 US$/MWh (it includes up to 33 US$/MWh of externalities) • Renewable energies reduce and stabilize electricity costs: - average generation cost: 45 US$/MWh - long term PPA

Structural transformation of the electric sector to make this possible

• Base: wind, hourly followed by hydro

Structural transformation of the electric sector to make this possible

• Base: wind, hourly followed by hydro (stability!)

Structural transformation of the electric sector to make this possible

• Base: wind, hourly followed by hydro (stability!) • Biomass and natural gas combined cycle

complementing

Structural transformation of the electric sector to make this possible

• Base: wind, hourly followed by hydro (stability!) • Biomass and natural gas combined cycle

complementing • Dramatic redefinition of dispatch rules and grid

expansion criteria, including smart grids to manage demand

Structural transformation of the electric sector to make this possible

• Base: wind, hourly followed by hydro (stability!) • Biomass and natural gas combined cycle

complementing • Dramatic redefinition of dispatch rules and grid

expansion criteria, including smart grids to manage demand

• Increase of regional interconnection (2000 MW with Argentina; 570 MW with Brazil)

WIND ENERGY

• 0 MW in 2007

• 594 MW today (45% of average power demand) •1200 MW by mid 2016 (95% average power demand)

WIND ENERGY

• 0 MW in 2007

• 594 MW today (45% of average power demand) •1200 MW by mid 2016 (95% average power demand) Total hydro installed capacity: 1550 MW

ENERGY STORAGE

To continue the introduction of wind energy, extra strategies are needed after 2022-2023

ENERGY STORAGE

To continue the introduction of wind energy, extra strategies are needed after 2022-2023:

Demand management (real time electric rate: irrigation, household electric appliances, smart grids)

ENERGY STORAGE

To continue the introduction of wind energy, extra strategies are needed after 2022-2023:

Demand management (real time electric rate: irrigation, household electric appliances, smart grids) Storage in electric vehicles Storage in reversible hydropower plants

REVERSIBLE HYDROPOWER PLANTS The performance of a reversible hydropower plant in the national electric system was assessed (http://iie.fing.edu.uy/simsee/curso2012/trabajosfinales/simsee2012_centrales_bombeo.pdf)

Power: 600 MW Energy stored: 5.84 GWh Height difference: 125 m Upper stored water volume: 17 hm3 A simulation (short, medium and long term scales) of the system dispatch and energy cost was assessed

REVERSIBLE HYDROPOWER PLANTS

Feasibility study of a specific location based on geological, geotechnical, hydraulic, electromechanical and environmental studies

Thank you!

94% renewable electricity

ENERGY STORAGE TO CONTINUE RENEWABLE ENERGY INTRODUCTION

Supply Energy mix diversification (sources and suppliers) Reduce share of imported oil Increase share of domestic sources Strong support to renewables, with no subsidies Building local capacities (technology transfer) Keeping low carbon footprint

Institutional

Government defines and coordinates energy policy Public utility (UTE) and NOC (ANCAP) as the main tools Enhanced participation of private companies Transparent and stable regulatory framework

STRATEGIC GUIDELINES

Demand

Strong support to energy efficiency in all energy sectors and all activities (transport, building, industry) The State as a paradigmatic example Promoting a cultural change

Social Adequate energy access to all citizens as a human right Energy policy embedded in national social policies to face vulnerability

STRATEGIC GUIDELINES (continue)

Energy Storage for Sustainable Development

Global Perspectives on Energy Storage

Marcelo Llévenes

2

Estamos em um ponto de inflexão para o setor elétrico

Futuro do setor elétrico

Rede Inteligente Rede Convencional •Descentralização da geração de energia •Maior confiabilidade do sistema •Clientes participam do mercado elétrico •Transformação do comportamento da indústria elétrica e dos consumidores

Os padrões de geração e consumo de energia elétrica estão mudando: • Transformações tecnológicas recentes e potenciais, como geração distribuída, o

desenvolvimento de baterias e a internet das coisas • Não será um processo simples (mudanças legais/regulatórias e de costumes)

3

Principais objetivos: •Aumentar a capacidade de recepção de energias renováveis •Desenvolver serviços que incrementem a segurança da rede de distribuição

Futuro do setor elétrico

O Grupo Enel desenvolve, aplica e avalia soluções em condições reais de operação determinando a viabilidade de

novas tecnologias

Estacionamento solar na Sede da Enel Brasil

Instalação de medidores inteligentes em nossas distribuidoras

4

80% da capacidade de geração com fontes renováveis: • Alta variação no custo marginal de energia:

10 USD/MWh em períodos úmidos 540 USD/MWh em períodos cecos • Diferenças na tarifa horária de até 10 vezes:

Hora ponta: 500 USD/MWh

Fora ponta: 50 USD/MWh

No caso do Brasil...

O armazenamento e a mudança de comportamento dos usuários ajudará a reduzir a sobrecarga do sistema elétrico em hora de ponta

Crescimento carros convencionais

no mundo +4,2%

Características do setor

+96% 112

+200% 42

+171% 38

+6% 17

+67% 15

Mundo

Europa

Estados Unidos

Japão

China

Venda de automóveis 100% elétricos em 2013

(vs. 2012 / mil)

Mobilidade Elétrica

Energia armazenada em veículos (BYD):

• Carro: 61,4 Kwh • Ônibus: 324 Kwh

2007 – USD 1,3 mil/kWh 2012 - USD 500/kWh

Custo das baterias?

Custo médio por Km percorrido por um carro:

1. Álcool: USD 0,17 2. Gasolina: USD 0,16 3. Elétrico: USD 0,04

6

Aplicativo localiza ponto de recarga mais próximo e agenda recarga

Colunas de abastecimento

Eletroposto de Recarga Rápida

Iniciativas do Grupo Enel

Mobilidade Elétrica

Parceria com a Hubject para compatibilidade dos serviços de recarga na Europa

Colômbia: Parcerias com Nissan, Mitsubishi, Zero moto e Sofasa-Renault • Recarregar 50 táxis • Adquirir 15 veículos e 34 motocicletas

Iniciativas do Grupo Enel

Mobilidade Elétrica

Eslováquia: Objetivo de 30 veículos até 2015 • Deslocamentos entre as usinas feitos por carros elétricos

• Parque de veículos elétricos chegou a 1 megawatt/hora fornecido pelas colunas

Ampliação na infraestrutura para veículo elétrico

Mudanças institucionais e regulatórios para fomentar o uso de carros elétricos

Peru: Compromisso com a promoção da mobilidade sustentável

Iniciativas do Grupo Enel

Mobilidade Elétrica

• Parcerias com Mitsubishi e automóvel i-MiEV Veículo elétrico 7 vezes mais econômico que os modelos a gasolina e 2 vezes mais que os modelos a gás natural

Argentina: Implantação posto de recarga pública e parceria com Renault para promover os veículos elétricos

Brasil: Utilização de veículos elétricos na Cidade Inteligente Búzios

• 4 carros • 48 bicicletas • 2 postos de recarga

9

• Mais limpos

• Mais silenciosos

• Mais econômicos

• Mais eficientes (90% vs. 30%)

• Sem geração de ondas e marolas Barco Elétrico da Enel Brasil desenvolvido

no projeto Búzios Smart City

Alguns rios na Europa e EUA, além de canais da Holanda, Bélgica, Alemanha e Dinamarca possuem transporte regular com

embarcações movidas a sistemas 100% elétricos

Em Búzios, frota de 25 Aquatáxis Economia de 75% com combustível Em 1 ano... R$ 600 mil e -20 mil toneladas de CO2

Iniciativas do Grupo Enel

Mobilidade Elétrica

Sistemas Off Grid

Painel Solar Fotovoltaico

Banco de Baterias

Controlador de Carga

Inversor

Consumidor

ANEEL permite implementar esse modelo quando: Obra da rede convencional não é rentável Unidade consumidora está localizada a mais de 5 Km da rede convencional É necessária a utilização de cabos subaquáticos ou isolado Existam limitações técnicas ou ambientais Seja necessária a complementação de fases na rede existente

Sistemas elétricos de geração, distribuição e consumo independentes da rede convencional

Levar energia a clientes que não podem ser atendidos pela rede de distribuição convencional.

Objetivo

Sistemas Individuais de Geração de Energia Elétrica com Fontes Intermitentes

Projetos em desenvolvimento no Brasil

• Investimento • Geração mensal • Cobrança da tarifa residencial • Investimentos reconhecidos como ativos

15 mil dólares 80 kWh

Microrredes para clientes eletrodependentes

Garantir o suprimento de energia elétrica a clientes com dependência clínica de equipamentos elétricos em caso de falha na rede convencional

Objetivo

Dados

Quantidade de eletrodependentes Consumo médio mensal Ticket médio

Projetos em desenvolvimento no Brasil

Enel Brasil

3.303 330kwh USD 72

Microrredes Inteligentes Geração Distribuída e Armazenamento

50kWp de geração solar fotovoltaica 6kW de geração eólica de pequeno porte 150kWh de acumulação em bateria

Projetos em desenvolvimento no Brasil

Gestão Energética com Interface do Cliente +

14

Revolução na vida das

pessoas

Energia solar

Armazenamento

Distribuição sem fio

Obrigado!

Marcelo Llévenes