michael kachelrieß ntnu, trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf ·...

83
[ ] Ultrahigh energy neutrinos: Theoretical aspects Michael Kachelrieß NTNU, Trondheim

Upload: others

Post on 11-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

[]

Ultrahigh energy neutrinos: Theoretical aspects

Michael Kachelrieß

NTNU, Trondheim

Page 2: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Introduction

Outline of the talk

1 Introduction

2 Cosmogenic neutrino flux

best estimate

lower and upper limits

3 Astrophysical sources

point sources

Cen A motivated by Auger

diffuse flux

4 Top-down models

5 Summary

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 2 / 34

Page 3: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Introduction

Outline of the talk

1 Introduction

2 Cosmogenic neutrino flux

best estimate

lower and upper limits

3 Astrophysical sources

point sources

Cen A motivated by Auger

diffuse flux

4 Top-down models

5 Summary

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 2 / 34

Page 4: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Introduction

Outline of the talk

1 Introduction

2 Cosmogenic neutrino flux

best estimate

lower and upper limits

3 Astrophysical sources

point sources

Cen A motivated by Auger

diffuse flux

4 Top-down models

5 Summary

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 2 / 34

Page 5: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Introduction

Outline of the talk

1 Introduction

2 Cosmogenic neutrino flux

best estimate

lower and upper limits

3 Astrophysical sources

point sources

Cen A motivated by Auger

diffuse flux

4 Top-down models

5 Summary

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 2 / 34

Page 6: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Introduction

Outline of the talk

1 Introduction

2 Cosmogenic neutrino flux

best estimate

lower and upper limits

3 Astrophysical sources

point sources

Cen A motivated by Auger

diffuse flux

4 Top-down models

5 Summary

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 2 / 34

Page 7: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Introduction

The CR–γ–ν connection:

UHE neutrinos and HE photons are unavoidable byproducts of UHECRs

top-down models: large fluxes with Iν ≫ Ip

ratio Iν/Ip fixed by fragmentation

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 3 / 34

Page 8: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Introduction

The CR–γ–ν connection:

UHE neutrinos and HE photons are unavoidable byproducts of UHECRs

top-down models: large fluxes with Iν ≫ Ip

ratio Iν/Ip fixed by fragmentation

astrophysical models, cosmogenic flux: ratio Iν/Ip determined by chemical composition and source evolution

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 3 / 34

Page 9: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Introduction

The CR–γ–ν connection:

UHE neutrinos and HE photons are unavoidable byproducts of UHECRs

top-down models: large fluxes with Iν ≫ Ip

ratio Iν/Ip fixed by fragmentation

astrophysical models, cosmogenic flux: ratio Iν/Ip determined by chemical composition and source evolution

astrophysical models, direct flux: strongly model dependent fluxes

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 3 / 34

Page 10: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Introduction

The CR–γ–ν connection:

UHE neutrinos and HE photons are unavoidable byproducts of UHECRs

top-down models: large fluxes with Iν ≫ Ip

ratio Iν/Ip fixed by fragmentation

astrophysical models, cosmogenic flux: ratio Iν/Ip determined by chemical composition and source evolution

astrophysical models, direct flux: strongly model dependent fluxes

prizes to win: astronomy above 100 TeV identification of CR sources determine galactic–extragalactic transition of CRs test/discover new particle physics

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 3 / 34

Page 11: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Best estimate

Estimates for the cosmogenic neutrino flux

choose dip model as most economic description of data

1017 1018 1019 1020 10211023

1024

1025

3

1,2

1 - γg=2.6, m=2.4, z

c=1.2

2 - γg=2.65, m=1.8, z

c=1.2

3 - γg=2.7, m=0

J(E

)E3 , m

-2s-1

sr-1eV

2

E, eV [Berezinsky, Gazizov, Grigorieva ’02 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 4 / 34

Page 12: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Best estimate

Estimates for the cosmogenic neutrino flux

choose dip model as most economic description of data

1017 1018 1019 1020 10211023

1024

1025

3

1,2

1 - γg=2.6, m=2.4, z

c=1.2

2 - γg=2.65, m=1.8, z

c=1.2

3 - γg=2.7, m=0

J(E

)E3 , m

-2s-1

sr-1eV

2

E, eV

observed diffuse spectrum does not fix source spectra:e.g. degeneracy of source evolution and spectral index

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 4 / 34

Page 13: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Best estimate

Estimates for the cosmogenic neutrino flux

choose dip model as most economic description of data

observed diffuse spectrum does not fix source spectra:e.g. degeneracy of source evolution and spectral index

fix source evolution by observations (AGN evolution/GRB rate)

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 4 / 34

Page 14: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Best estimate

Estimates for the cosmogenic neutrino flux

choose dip model as most economic description of data

observed diffuse spectrum does not fix source spectra:e.g. degeneracy of source evolution and spectral index

fix source evolution by observations (AGN evolution/GRB rate)

fix maximal energy

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 4 / 34

Page 15: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Best estimate

Estimates for the cosmogenic neutrino flux

choose dip model as most economic description of data

observed diffuse spectrum does not fix source spectra:e.g. degeneracy of source evolution and spectral index

fix source evolution by observations (AGN evolution/GRB rate)

fix maximal energy

E, eV1810 1910 2010 2110

-1st

er-1

sec

-2m2

J(E

) eV

3E

2310

2410

2510=2.7; m=0

gγeV;21=10max=2; Emaxz

HiRes II HiRes I

p

iνΣ

[Berezinsky, Gazizov ’09 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 4 / 34

Page 16: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Best estimate

Estimates for the cosmogenic neutrino flux

choose dip model as most economic description of data

observed diffuse spectrum does not fix source spectra:e.g. degeneracy of source evolution and spectral index

fix source evolution by observations (AGN evolution/GRB rate)

fix maximal energy E, eV

E, eV1810 1910 2010 2110 2210 2310

-1st

er-1

sec

-2m2

J(E

) eV

3E

2310

2410

2510=2.47; m=3.2

gγeV;23=10max=5; Emaxz

HiRes II HiRes I

p

iνΣ

[Berezinsky, Gazizov ’09 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 4 / 34

Page 17: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Lower and upper limits

Lower limit in the dip model

E, eV1810 1910 2010 2110

-1st

er-1

sec

-2m2

J(E

) eV

3E

2310

2410

2510eV; m=021=10

max=2; Emaxz

HiRes II HiRes I

p

iνΣ

2.7

2.0

2.7

2.0

2.0

2.7

[Berezinsky, Gazizov ’09 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 5 / 34

Page 18: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Lower and upper limits

General upper limit

exists a number of “neutrino bounds” a la WB, MPR:derived using special assumptions ⇒ status of best guesses

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 6 / 34

Page 19: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Lower and upper limits

General upper limit

exists a number of “neutrino bounds” a la WB, MPR:derived using special assumptions ⇒ status of best guesses

cascade limit: [Berezinsky, Smirnov ’75 ]

all energy in γ and e± cascades down to GeV–TeV range, bounded byobservations:

ωcas >4π

c

E0

dE EIν(E) ≥4π

cE0Iν(> E0)

<∼ 2 · 10−6 eV/cm3

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 6 / 34

Page 20: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Lower and upper limits

Elmag. cascades and EGRET limit:

10-2

1

102

104

106

108 1010 1012 1014 1016 1018 1020 1022 1024

j(E)

E2 [e

V c

m-2

s-1

sr-1

]

E [eV]

MACRO

Baikal

AGASA

Fly’s Eye FORTE

EGRET

GLUE

AMANDA II

RICE

atm ν

γ νi

p

[Semikoz, Sigl ’03 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 7 / 34

Page 21: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Protons vs. nuclei

Chemical composition via Xmax:

/decade] 18 19

]2>

[g/c

mm

ax<X

650

700

750

800

850

proton

iron

QGSJET01QGSJETIISibyll2.1EPOSv1.99

Auger 2009

HiRes ApJ 2005

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 8 / 34

Page 22: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Protons vs. nuclei

Chemical composition via σ(Xmax) from Auger:

E [eV]

1810 1910

E [eV]

1810 1910

]2)

[g/c

mm

axR

MS

(X

10

20

30

40

50

60

70 proton

iron

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 9 / 34

Page 23: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Protons vs. nuclei

Mixed composition:

Mean 744.8RMS 62.02

]2 [g/cmmaxX600 650 700 750 800 850 900 9500

0.02

0.04

0.06

0.08

0.1

0.12

Mean 744.8RMS 62.02

70% proton

30% iron

sum

σ2 =∑

i

fiσ2i +

i<j

fifj(Xmax,i − Xmax,j)2

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 10 / 34

Page 24: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Cosmogenic neutrinos Protons vs. nuclei

Cosmogenic neutrino flux: p versus Fe

[Anchordoqui et al. ’07 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 11 / 34

Page 25: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources

What is the bonus of UHE neutrino astronomy?

astronomy with VHE photons restricted to few Mpc:

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

photon horizon γγ → e+e− CMB

IR

radio

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 12 / 34

Page 26: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources

What is the bonus of UHE neutrino astronomy?

astronomy with VHE photons restricted to few Mpc:

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

photon horizon γγ → e+e− CMB

IR

radio

ambiguity: leptonic/hadronic origin

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 12 / 34

Page 27: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources

UHE neutrino astronomy vs UHECRs?

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

proton horizon

photon horizon γγ → e+e− CMB

IR

Virgo ⇓

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 13 / 34

Page 28: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources

UHE neutrino astronomy vs UHECRs?

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

proton horizon

photon horizon γγ → e+e− CMB

IR

Virgo ⇓

large statistics of UHECRs, well-suited horizon scale

but no conclusive evidence that qB is small enough

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 13 / 34

Page 29: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources

What is the bonus of UHE neutrino astronomy?

Neutrino astronomy:

large λν but also large uncertainty 〈δϑ〉 >∼ 0.1 − 1

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 14 / 34

Page 30: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources

What is the bonus of UHE neutrino astronomy?

Neutrino astronomy:

large λν but also large uncertainty 〈δϑ〉 >∼ 0.1 − 1

small event numbers: <∼ 1/yr for PAO or ICECUBE

103

102

10

1

10-1

1022102110201019101810171016

j(E)

E2 [e

V c

m-2

s-1

sr-1

]

E [eV]

WB

max

0.2

CR flux

⇒ identification of steady sources challenging

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 14 / 34

Page 31: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources

What is the bonus of UHE neutrino astronomy?

Neutrino astronomy:

large λν but also large uncertainty 〈δϑ〉 >∼ 0.1 − 1

small event numbers: <∼ 1/yr for PAO or ICECUBE

103

102

10

1

10-1

1022102110201019101810171016

j(E)

E2 [e

V c

m-2

s-1

sr-1

]

E [eV]

WB

max

0.2

CR flux

⇒ identification of steady sources challenging

correlation with AGN flares, GRBs

which AGNs? GeV/TeV photon sources?

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 14 / 34

Page 32: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Point sources

HESS observations of M87:

Date12/1998 12/2000 12/2002 12/2004 12/2006

)-1

s-2

(E>7

30G

eV)

(cm

Φ

0.0

0.5

1.0

1.5

-1210×

)-1

s-2

f(0.

2-6

keV

) (e

rg c

m

0

20

40

-1210×

2003

2004

2005

2006

H.E.S.S.

average

HEGRA

Chandra (HST-1)

Chandra (nucleus)

B

09/Feb 16/Feb

)-1

s-2

(E>7

30G

eV)

(cm

Φ

0

2

4

6

-1210×Feb. 2005

A

09/Mar 16/Mar

March 2005

30/Mar 06/Apr

April 2005

Date04/May 11/May

May 2005

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 15 / 34

Page 33: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Point sources

HESS observations of M87:

Date12/1998 12/2000 12/2002 12/2004 12/2006

)-1

s-2

(E>7

30G

eV)

(cm

Φ

0.0

0.5

1.0

1.5

-1210×

)-1

s-2

f(0.

2-6

keV

) (e

rg c

m

0

20

40

-1210×

2003

2004

2005

2006

H.E.S.S.

average

HEGRA

Chandra (HST-1)

Chandra (nucleus)

B

09/Feb 16/Feb

)-1

s-2

(E>7

30G

eV)

(cm

Φ

0

2

4

6

-1210×Feb. 2005

A

09/Mar 16/Mar

March 2005

30/Mar 06/Apr

April 2005

Date04/May 11/May

May 2005

fast variability excludes acceleration along kpc jet

acceleration in hot spots marginally okay

favors acceleration close to SMBH

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 15 / 34

Page 34: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Point sources

HESS observations of Cen A

no variability

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 16 / 34

Page 35: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Point sources

HESS observations of Cen A

no variability

consistent withpoint source

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 16 / 34

Page 36: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Point sources

HESS observations of Cen A

no variability

consistent withpoint source

HE emission fromcentral region(1’≃ 1.1 kpc)

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 16 / 34

Page 37: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Multi-messenger astronomy with Cen A?

+ 2 events correlated with Cen A within 3.1

+ more events close-by [Gorbunov et al. ’07, Fargione ’08, Rachen ’08 ]

+ general correlation with AGN

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 17 / 34

Page 38: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Multi-messenger astronomy with Cen A?

+ 2 events correlated with Cen A within 3.1

+ more events close-by [Gorbunov et al. ’07, Fargione ’08, Rachen ’08 ]

+ general correlation with AGN

− confusion with LSS?− no confirmation by HiRes− tension to PAO chemical composition− Emax for most AGN (incl. Cen A) high enough?

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 17 / 34

Page 39: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Multi-messenger astronomy with Cen A?

+ 2 events correlated with Cen A within 3.1

+ more events close-by [Gorbunov et al. ’07, Fargione ’08, Rachen ’08 ]

+ general correlation with AGN

− confusion with LSS?− no confirmation by HiRes− tension to PAO chemical composition− Emax for most AGN (incl. Cen A) high enough?

correlations with AGN:independent/additional evidence?

Cen A closest AGN

⇒ good test case for multi-messenger astronomy: accompanying γ-rayand neutrino fluxes?

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 17 / 34

Page 40: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Study two base models [MK, Ostapchenko, Tomas ’08 ]

neglect details of acceleration

fix 2 basic scenarios: “core” and “jet”

acceleration close to the core

acceleration in accretion shock/regular fields

pγ interactions

τγγ ≫ 1, synchrotron losses for e±

acceleration in jet

shock acceleration

pp interactions

τγγ ≪ 1, synchrotron losses for e±

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 18 / 34

Page 41: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Results for acceleration close to the core: α = 1.2

initialprotons

final protons

totalneutrinos

γ

γ

HESSCGRO

FERMI

PAO

8 10 12 14 16 18 2013

14

15

16

17

18

log10 (E/eV)

log 10

(E

2 Φ/e

V k

m-2

yr-1

)

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 19 / 34

Page 42: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Results for acceleration close to the core: α = 2

initial protons

final protons

totalneutrinos

γ

γ

HESS

CGRO

FERMI

PAO

8 10 12 14 16 18 2014

15

16

17

18

19

log10(E/eV)

log 10

(E

2 Φ/e

V k

m-2

yr-1

)

promising test case for HESS / FERMI

γ-ray spectrum rather insensitive to α

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 19 / 34

Page 43: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Comparison to recent HESS and FERMI observations

initial protons

final protons

totalneutrinos

γ

γ

HESS

FERMI

PAO

8 10 12 14 16 18 2014

15

16

17

18

19

log10(E/eV)

log 10

(E

2 Φ/e

V k

m-2

yr-1

)

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 20 / 34

Page 44: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Comparison to recent HESS and FERMI observations

initial protons

final protons

totalneutrinos

γ

γ

HESS

FERMI

PAO

8 10 12 14 16 18 2014

15

16

17

18

19

log10(E/eV)

log 10

(E

2 Φ/e

V k

m-2

yr-1

)

shape and normalization okay

TeV γ-ray and neutrino source

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 20 / 34

Page 45: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Regenerating TeV photons: a) in the source

injection spectrum Fγ(E) ∝ 1/E2

10 12 14 16 18 20

E2 F

(E)

log10(E/eV)Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 21 / 34

Page 46: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Regenerating TeV photons: a) in the source

: thin above 1016eV, ultra-rel. regime

10 12 14 16 18 20

E2 F

(E)

log10(E/eV)

Eγεγ

m2e

ultra-rel. regime

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 21 / 34

Page 47: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Regenerating TeV photons: b) on CMB

photons above 1016eV cascade on CMB

10 12 14 16 18 20

E2 F

(E)

log10(E/eV)

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 22 / 34

Page 48: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Regenerating TeV photons: b) on CMB

photons above 1016eV cascade on CMB : fill up TeV range

10 12 14 16 18 20

E2 F

(E)

log10(E/eV)

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 22 / 34

Page 49: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Regenerating TeV photons: b) on CMB

photons above 1016eV cascade on CMB : fill up TeV range

10 12 14 16 18 20

E2 F

(E)

log10(E/eV)

main criteria: LUHE, not shape

evidence for acceleration to UHECRs?however: anisotropic UV field complicates picture already in source

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 22 / 34

Page 50: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Neutrino event rates per km3 per year

acceleration in the jet (α = 2 or broken power-law)

spectral break Eb/eV - 1018 1017

contained ν-events 0.02 0.4 2.0

muon events 0.01 0.2 0.7

acceleration near the core (α = 2 or broken power-law)

spectral break Eb/eV - 1018 1017

contained ν-events 0.01 0.3 0.9

muon events 7 × 10−3 0.1 0.5

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 23 / 34

Page 51: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Centaurus A

Neutrino event rates per km3 per year

acceleration in the jet (α = 2 or broken power-law)

spectral break Eb/eV - 1018 1017

contained ν-events 0.02 0.4 2.0

muon events 0.01 0.2 0.7

acceleration near the core (α = 2 or broken power-law)

spectral break Eb/eV - 1018 1017

contained ν-events 0.01 0.3 0.9

muon events 7 × 10−3 0.1 0.5

“good” neutrino cases excluded by HESS/Fermi

diffuse flux more promising

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 23 / 34

Page 52: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Diffuse flux

Diffuse flux from AGN - normalized to Cen A

assume Cen A is a “typical source” with injection spectrum j(E)

diffuse flux from all Cen A-like sources

ϕdiff(E) =cn0

0

dz

dt

dz

dE0(E, z)

dEε(z)j0(E0) ,

enhancement between O(10) (no evolution) and O(100) (strongevolution) [Koers, Tinyakov (’08) ]

Halzen, O’Murchadha (’08): all FR-I radio galaxies: 5 events/yr

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 24 / 34

Page 53: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Diffuse flux

Diffuse flux from AGN - normalized to Cen A

assume Cen A is a “typical source” with injection spectrum j(E)

diffuse flux from all Cen A-like sources

ϕdiff(E) =cn0

0

dz

dt

dz

dE0(E, z)

dEε(z)j0(E0) ,

enhancement between O(10) (no evolution) and O(100) (strongevolution) [Koers, Tinyakov (’08) ]

Halzen, O’Murchadha (’08): all FR-I radio galaxies: 5 events/yr

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 24 / 34

Page 54: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Astrophysical sources Diffuse flux

Diffuse flux from AGN - normalized to Cen A

assume Cen A is a “typical source” with injection spectrum j(E)

diffuse flux from all Cen A-like sources

ϕdiff(E) =cn0

0

dz

dt

dz

dE0(E, z)

dEε(z)j0(E0) ,

enhancement between O(10) (no evolution) and O(100) (strongevolution) [Koers, Tinyakov (’08) ]

Halzen, O’Murchadha (’08): all FR-I radio galaxies: 5 events/yr

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 24 / 34

Page 55: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Top-Down Models

UHECR primaries are produced by decays of supermassive particle X withMX >∼ 1012 GeV.

topological defects: monopoles, strings, super-strings. . . .[Hill ’83; Ostriker, Thompson, Witten ’86 ]

superheavy metastable particles[Berezinsky, MK, Vilenkin ’97; Kuzmin, Rubakov ’97 ]

Main properties:

theoretically well-motivated; testable predictions

no acceleration problem

no visible sources

if X ∈ CDM, no GZK-cutoff

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 25 / 34

Page 56: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Raison d’etre for top-down models

AGASA excess as original motivation for top-down models is gone

Photon and anisotropy limit allow only subdominant contribution toUHECRs

allows still search for inflationary/GUT/string scale physics

can still give largest neutrino fluxes, especially at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 26 / 34

Page 57: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Raison d’etre for top-down models

AGASA excess as original motivation for top-down models is gone

Photon and anisotropy limit allow only subdominant contribution toUHECRs

allows still search for inflationary/GUT/string scale physics

can still give largest neutrino fluxes, especially at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 26 / 34

Page 58: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Raison d’etre for top-down models

AGASA excess as original motivation for top-down models is gone

Photon and anisotropy limit allow only subdominant contribution toUHECRs

allows still search for inflationary/GUT/string scale physics

can still give largest neutrino fluxes, especially at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 26 / 34

Page 59: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Raison d’etre for top-down models

AGASA excess as original motivation for top-down models is gone

Photon and anisotropy limit allow only subdominant contribution toUHECRs

allows still search for inflationary/GUT/string scale physics

can still give largest neutrino fluxes, especially at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 26 / 34

Page 60: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Gravitational creation of superheavy matter

Small fluctuations of field Φ obey

ϕk +[

k2 + m2eff(τ)

]

ϕk = 0

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 27 / 34

Page 61: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Gravitational creation of superheavy matter

Small fluctuations of field Φ obey

ϕk +[

k2 + m2eff(τ)

]

ϕk = 0

If meff is time dependent, vacuum fluctuations will be transformedinto real particles.

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 27 / 34

Page 62: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Gravitational creation of superheavy matter

Small fluctuations of field Φ obey

ϕk +[

k2 + m2eff(τ)

]

ϕk = 0

If meff is time dependent, vacuum fluctuations will be transformedinto real particles.

⇒ expansion of Universe,

m2eff = M2a2 + (6ξ − 1)

a′′

a

leads to particle production

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 27 / 34

Page 63: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Gravitational creation of superheavy matter

Small fluctuations of field Φ obey

ϕk +[

k2 + m2eff(τ)

]

ϕk = 0

If meff is time dependent, vacuum fluctuations will be transformedinto real particles.

⇒ expansion of Universe,

m2eff = M2a2 + (6ξ − 1)

a′′

a

leads to particle production

In inflationary cosmology

ΩXh2 ∼

(

MX

1012GeV

)2 TRH

109GeV

dependent only on cosmology, for MX <∼ HI

[Kuzmin, Tkachev ’98; Chung, Kolb, Riotto ’98 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 27 / 34

Page 64: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Topological defect models

+ “generic” in SUSY-GUTs+ produced during reheating

- typical density: one per horizon/correlation length- main energy loss low-energy radiation?

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 28 / 34

Page 65: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Topological defect models [Allen, Shellard ’06 ]

box 2ct

matterepoch

scalingregime

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 29 / 34

Page 66: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Topological defect models

+ “generic” in SUSY-GUTs

+ produced during reheating

- typical density: one per horizon/correlation length

- main energy loss low-energy radiation?

favourable models for UHECRs:

monopole-antimonopole pairs

hybrid defects: cosmic necklaces

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 30 / 34

Page 67: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Topological defect models

+ “generic” in SUSY-GUTs

+ produced during reheating

- typical density: one per horizon/correlation length

- main energy loss low-energy radiation?

favourable models for UHECRs:

monopole-antimonopole pairs

hybrid defects: cosmic necklaces G → H ⊗ U(1) → H ⊗ Z2

monopoles M ∼ ηm/e connected by strings µs ∼ η2

s

parameter r = M/(µd): r ≪ 1 normal string dynamics r ≫ 1 non-rel. string network

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 30 / 34

Page 68: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Fragmentation of heavy particles

XqL qL

g

g

g

qL

qL

1 TeV(SUSY

+ SU(2) ⊗ U(1)

breaking)

qq

gq

q

χ02

qL

χ01q

1 GeV(hadronization)

qL

B

qR

qR

qW

τ

a−

1

ρ−

π−νµ

µ− νµ

νe

e−

π0 γ

γ

π0

γ

γντ

ντ

qq

g

gq

q

gq

q

n

p

e−

νe

π0

γ

γ

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 31 / 34

Page 69: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Neutrino fluxes from necklaces:

E3J(E

)/m

−2s−

1eV

2

E/eV [Aloisio, Berezinsky, MK, ’03 ]

ν

p γ

p+γ

1e+22

1e+23

1e+24

1e+25

1e+26

1e+27

1e+18 1e+19 1e+20 1e+21 1e+22

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 32 / 34

Page 70: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

EGRET versus ντ limit:

104

103

100

10

1

0.11022102010181016101410121010108

E2 j(

E)

[eV

cm

-2 s

-1 s

r-1]

E [eV]

EGRET

RICE

PAO ν

PAO ν

[Semikoz, Sigl ’03 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 33 / 34

Page 71: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Summary

1 astrophysical origin of main component of UHECRs is established

⇒ exists cosmogenic neutrino flux

2 size and energy range uncertain, mainly because of unknown chemicalcomposition

3 ICECUBE is coming close to predicted levels of (“direct”) diffuseneutrino flux

4 detection of point sources requires correlations

5 top-down models may still be dominant neutrino source at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 34 / 34

Page 72: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Summary

1 astrophysical origin of main component of UHECRs is established

⇒ exists cosmogenic neutrino flux

2 size and energy range uncertain, mainly because of unknown chemicalcomposition

3 ICECUBE is coming close to predicted levels of (“direct”) diffuseneutrino flux

4 detection of point sources requires correlations

5 top-down models may still be dominant neutrino source at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 34 / 34

Page 73: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Summary

1 astrophysical origin of main component of UHECRs is established

⇒ exists cosmogenic neutrino flux

2 size and energy range uncertain, mainly because of unknown chemicalcomposition

3 ICECUBE is coming close to predicted levels of (“direct”) diffuseneutrino flux

4 detection of point sources requires correlations

5 top-down models may still be dominant neutrino source at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 34 / 34

Page 74: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Summary

1 astrophysical origin of main component of UHECRs is established

⇒ exists cosmogenic neutrino flux

2 size and energy range uncertain, mainly because of unknown chemicalcomposition

3 ICECUBE is coming close to predicted levels of (“direct”) diffuseneutrino flux

4 detection of point sources requires correlations

5 top-down models may still be dominant neutrino source at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 34 / 34

Page 75: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Summary

1 astrophysical origin of main component of UHECRs is established

⇒ exists cosmogenic neutrino flux

2 size and energy range uncertain, mainly because of unknown chemicalcomposition

3 ICECUBE is coming close to predicted levels of (“direct”) diffuseneutrino flux

4 detection of point sources requires correlations

5 top-down models may still be dominant neutrino source at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 34 / 34

Page 76: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

UHE neutrinos from top-down models

Summary

1 astrophysical origin of main component of UHECRs is established

⇒ exists cosmogenic neutrino flux

2 size and energy range uncertain, mainly because of unknown chemicalcomposition

3 ICECUBE is coming close to predicted levels of (“direct”) diffuseneutrino flux

4 detection of point sources requires correlations

5 top-down models may still be dominant neutrino source at UHE

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 34 / 34

Page 77: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Which sources?

Use the auto-correlation function,

w(ϑ) =DD(ϑ)

RR(ϑ)− 1 ,

where DD: number of pairs in catalogue RR: number of pairs in random sets

for most popular sources of UHECRs:

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 35 / 34

Page 78: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Which sources?

Use the auto-correlation function,

w(ϑ) =DD(ϑ)

RR(ϑ)− 1 ,

for most popular sources of UHECRs: AGN

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 35 / 34

Page 79: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Which sources?

Use the auto-correlation function,

w(ϑ) =DD(ϑ)

RR(ϑ)− 1 ,

for most popular sources of UHECRs: AGN and GRB

[ ]Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 35 / 34

Page 80: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Clustering signal of PAO for N = 40 [A. Cuoco et al. ’07 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 36 / 34

Page 81: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Pion-nucleon ratio:

f(x

)

x

pions

nucleons

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

[Aloisio, Berezinsky, MK, ’03 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 37 / 34

Page 82: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Photon-nucleon ratio:

f(x

)

x

pions

nucleons

0.1

1

10

1e-05 0.0001 0.001 0.01 0.1 1

[Aloisio, Berezinsky, MK, ’03 ]

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 38 / 34

Page 83: Michael Kachelrieß NTNU, Trondheimtaup2009.lngs.infn.it/slides/jul4/kachelriess.pdf · Introduction Outline of the talk 1 Introduction 2 Cosmogenic neutrino flux best estimate lower

Summary

AGASA excess as main motivation for top-down models is gone

no positive evidence for superheavy dark matter from its two keysignatures:

photons galactic anisotropy

SHDM remains an interesting DM candidate

topological defects are generic prediction of (SUSY-) GUTs

should be searched for as subdominant sources of UHECR

Michael Kachelrieß (NTNU Trondheim) Ultrahigh energy neutrinos TAUP 2009 39 / 34