microbial diversity chapt. 28 – the origins of eukaryotic diversity

43
Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Upload: dayna-simpson

Post on 05-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Microbial Diversity

Chapt. 28 – The Origins of Eukaryotic Diversity

Page 2: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

What are microbes?

Single-celled organisms and some non-cellular parasites

Page 3: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Kinds of microbes

Non-cellular, parasitic moleculesViruses ViroidsPrions

ProkaryotesDomain BacteriaDomain Archaea

EukaryotesSeveral Kingdoms in Domain Eukarya

Page 4: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Carl Woese’s 3 Domains of Life

Based primarily on genetic sequence data;

e.g., small subunit ribosomal RNA – present in all

organisms

Page 5: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesKingdoms of Protists within the

Domain Eukarya

Page 6: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Complex cellular structure – cells with nucleus and other organelles

Page 7: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Eukaryotic cellMany membranous organelles…

including mitochondria,which arecommon to all eukaryotes…

and chloroplasts (found only in photosynthesizers)

Page 8: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Complex cellular structure – cells with nucleus and other organellesE.g., cilia & flagella aid motility; these cytoplasmic extensions are

not homologous with pili or flagella of prokaryotes

Page 9: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Complex cellular structure – cells with

nucleus and other organelles

Nutrition – Absorption, Photosynthesis, or Ingestion

Page 10: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Complex cellular structure – cells with

nucleus and other organelles

Nutrition – Absorption, Photosynthesis, or Ingestion

Reproduction – mostly asexual, but some exchange genetic material

Page 11: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Asexual cell

division(mitosis)

Conjugation:exchange of

some genetic material across a

cytoplasmic bridge

Page 12: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Sexual reproduction via

the formation and union of gametes or other haploid cells(requires meiosis)

Sexual, spore-forming cells of a

slime mold:

Page 13: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Complex cellular structure – cells with nucleus and other organelles

Nutrition – Absorption, Photosynthesis, or Ingestion

Reproduction – mostly asexual, but some reproduce sexually

Cysts – resting stages through harsh conditions

Page 14: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Arose from endosymbiosis

Compelling evidence for Lynn Margulis’ theory is found in the genetic material of mitochondria & plastids

Page 15: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Macroevolutionary timeline

Figure 26.13

Ancestralprokaryote

Page 16: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Macroevolutionary timeline

Figure 26.13

Ancestralprokaryote

Infolding of plasmamembrane to form

endoplasmic reticulum and nuclear envelope

Page 17: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Macroevolutionary timeline

Figure 26.13

Ancestralprokaryote

Infolding of plasmamembrane to form

endoplasmic reticulum and nuclear envelope

Engulfing of heterotrophic

prokaryote

Page 18: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Macroevolutionary timeline

Figure 26.13

Ancestralprokaryote

Infolding of plasmamembrane to form

endoplasmic reticulum and nuclear envelope

Engulfing of heterotrophic

prokaryote

Mitochondrion

Page 19: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Macroevolutionary timeline

Figure 26.13

Ancestralprokaryote

Infolding of plasmamembrane to form

endoplasmic reticulum and nuclear envelope

Engulfing of heterotrophic

prokaryote

Mitochondrion

Engulfing of photosynthetic

prokaryote

Plastid

Page 20: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Cyanobacterium

Heterotrophiceukaryote

Primaryendosymbiosis

Red algae

Green algae

Secondaryendosymbiosis

Secondaryendosymbiosis

Dinoflagellates

Apicomplexans

Ciliates

Stramenopiles

Euglenids

Plastid

Figure 28.3

Page 21: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Cyanobacterium

Heterotrophiceukaryote

Primaryendosymbiosis

Green algae

Secondaryendosymbiosis

Secondaryendosymbiosis

Dinoflagellates

Apicomplexans

Ciliates

Euglenids

Plastid

Figure 28.3

Stramenopiles

Red algae

Page 22: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Cyanobacterium

Heterotrophiceukaryote

Primaryendosymbiosis

Green algae

Secondaryendosymbiosis

Secondaryendosymbiosis

Dinoflagellates

Apicomplexans

Ciliates

Euglenids

Plastid

Figure 28.3

Stramenopiles

Red algae

Page 23: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Cyanobacterium

Heterotrophiceukaryote

Primaryendosymbiosis

Red algae

Green algae

Secondaryendosymbiosis

Secondaryendosymbiosis

Dinoflagellates

Apicomplexans

Ciliates

Euglenids

Plastid

Figure 28.3

Stramenopiles

Plastid

Page 24: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Cyanobacterium

Heterotrophiceukaryote

Primaryendosymbiosis

Red algae

Green algae

Secondaryendosymbiosis

Secondaryendosymbiosis

Plastid

Dinoflagellates

Apicomplexans

Ciliates

Euglenids

Plastid

Figure 28.3

Stramenopiles

Page 25: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Cyanobacterium

Heterotrophiceukaryote

Primaryendosymbiosis

Red algae

Green algae

Secondaryendosymbiosis

Secondaryendosymbiosis

Plastid

Dinoflagellates

Apicomplexans

Ciliates

Euglenids

Plastid

Figure 28.3

Stramenopiles

Page 26: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotes

Cyanobacterium

Heterotrophiceukaryote

Primaryendosymbiosis

Red algae

Green algae

Secondaryendosymbiosis

Secondaryendosymbiosis

Plastid

Dinoflagellates

Apicomplexans

Ciliates

Stramenopiles

Euglenids

Chlorarachniophytes

Plastid

Figure 28.3

Page 27: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Arose from endosymbiosis

Various lineages gave rise to all modern unicellular & colonial protists, as well as all

multicellular organisms (some protists, as well as all plants, fungi, and animals)

Page 28: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Paraphyletic distribution of protists within a tentative phylogeny of Eukarya

An ancestor and only some of its

descendents

Ch

loro

ph

yta

Pla

nta

e

Ancestral eukaryote

Rh

od

op

hyt

a

Fu

ng

i

Dip

lom

on

ad

ida

Par

aba

sal

a

Eu

gle

no

zoa

Alveolata Stramenopila Ce

rco

zoa

Ra

dio

lari

a

Amoebozoa An

ima

lia

Ch

oan

ofl

ag

ella

tes

Figure 28.4

Page 29: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

“Last Universal Common Ancestor”

Hypotheses for the earliest stages of biological diversification:

Page 30: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Hypotheses for the earliest stages of biological diversification:

Page 31: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

Page 32: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Fungus-like” protists

Heterotrophic

Absorption

Page 33: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Fungus-like” protists

Heterotrophic

Decomposers

E.g., slime molds

Page 34: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Fungus-like” protists

Heterotrophic

Parasitic

E.g., water molds

Page 35: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Plant-like” protists

Autotrophic

Photosynthesis

Page 36: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Plant-like” protists

Autotrophic

Unicelluar

E.g., EuglenaPhytoplankton (unicellular algae & cyanobacteria [prokaryotes] ~ 70% of all photosynthesis)

Page 37: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Plant-like” protists

Autotrophic

Multicelluar

E.g., Many

seaweeds

Page 38: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Animal-like” protists

Heterotrophic

Ingestion

Page 39: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Animal-like” protists

Heterotrophic

Free-living

E.g., Some amoebae

Page 40: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Animal-like” protists

Heterotrophic

Parasitic

symbionts

E.g., Giardia

Page 41: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Animal-like” protists

Heterotrophic

Mutualistic symbionts

E.g., protistsof termite guts

Page 42: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

EukaryotesEukaryotesProtists

Highly diverse genetically and

phenotypically

“Animal-like” protists

Heterotrophic

Exhibit slightly more complex behavior than prokaryotes…

Page 43: Microbial Diversity Chapt. 28 – The Origins of Eukaryotic Diversity

Predator-prey interaction between ciliates:Didinium preys upon Paramecium