mit 2.810 manufacturing processes and systems homework 4...

12
MIT 2.810 Fall 2016 Homework 4 Solutions MIT 2.810 Manufacturing Processes and Systems Homework 4 Solutions Injection Molding and Heat Transfer Revised October 11, 2016 Problem 1. Wax casting. (a) Consider the open (aluminum) mold casting of a wax candle as shown in Figure 1. Assume that L >> D, D = 2 cm, the mold is at a constant temperature of 30°C and the wax is poured at 100°C. Estimate the time to cool the wax to 37°C. Note that wax has similar thermal properties as polymers. Discuss what the consequences would be if L and D were of the same order. Figure 1. Open mold for candle casting Answer: Here we take the same approach as we would for a polymer injection molded part. From lecture slides, there are two ways to estimate cooling time in molding. The first is for thin-walled parts (i.e., the equation given in Problem 5 below); it calculates the cooling time for the centerline of the wall based on a simplified solution to the problem of transient heat transfer in an infinite slab. For thicker parts, we cannot use this simplification and need to resort to the full solution in order to account for temperature gradients inside the part. One way to do this without going through the full analytical solution is to use the graphical solution method mentioned in lecture. The graphical solutions are called temperature-response charts and can be found in Lienhard’s A Heat Transfer Textbook,4 th ed., Section 5.4, for slabs, cylinders, and spheres. (If you would like to see the derivation of the analytical solution, you can refer to the same textbook, Section 5.3, Transient conduction in a one-dimensional slab.) For this problem, we look at the temperature response chart for a cylinder and determine the dimensionless numbers. Dimensionless temperature (corresponding to our desired cooled temperature T=37°C, with the mold functioning as the ambient ! ): = ! ! ! = 37 30 100 30 = 0.1

Upload: others

Post on 23-Mar-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

MIT2.810Fall2016 Homework4Solutions

MIT2.810ManufacturingProcessesandSystemsHomework4Solutions

InjectionMoldingandHeatTransfer

RevisedOctober11,2016Problem1.Waxcasting.(a)Considertheopen(aluminum)moldcastingofawaxcandleasshowninFigure1.AssumethatL>>D,D=2cm,themoldisataconstanttemperatureof30°Candthewaxispouredat100°C.Estimatethetimetocoolthewaxto37°C.Notethatwaxhassimilarthermalpropertiesaspolymers.DiscusswhattheconsequenceswouldbeifLandDwereofthesameorder.

Figure1.Openmoldforcandlecasting

Answer:Herewetakethesameapproachaswewouldforapolymerinjectionmoldedpart.Fromlectureslides,there are two ways to estimate cooling time inmolding. The first is for thin-walled parts (i.e., theequationgiveninProblem5below);itcalculatesthecoolingtimeforthecenterlineofthewallbasedonasimplifiedsolutiontotheproblemoftransientheattransferinaninfiniteslab.Forthickerparts,we cannot use this simplification and need to resort to the full solution in order to account fortemperaturegradientsinsidethepart.Onewaytodo thiswithoutgoing throughthe fullanalytical solution is touse thegraphical solutionmethodmentionedinlecture.Thegraphicalsolutionsarecalledtemperature-responsechartsandcanbefoundinLienhard’sAHeatTransferTextbook,4thed.,Section5.4,forslabs,cylinders,andspheres.(Ifyouwouldliketoseethederivationoftheanalyticalsolution,youcanrefertothesametextbook,Section 5.3, Transient conduction in a one-dimensional slab.) For this problem, we look at thetemperatureresponsechartforacylinderanddeterminethedimensionlessnumbers.Dimensionlesstemperature(correspondingtoourdesiredcooledtemperatureT=37°C,withthemoldfunctioningastheambient𝑇!):

𝜃 =𝑇 − 𝑇!

𝑇! − 𝑇!=

37 − 30100 − 30

= 0.1

MIT2.810Fall2016 Homework4Solutions

Inverse Biot number (considering that the thermal conductivity of plastics is in the range 0.1-0.4W/mK):

𝐵𝑖!! =𝑘ℎ𝑟!

=0.2 𝑊/𝑚𝐾

ℎ𝑟!≈ 0

Assumingthatweare trying to findthetimeatwhichthewaxat thecenterof thecylindercools to𝜃 = 0.1(the restof thecylinderwillhavecooledslightlymore than that), lookat the top-left chart,whichrepresentsthetemperaturesatthecenterline(r/r0=0.0).Findthepointonthex-axisatwhichthelinefor𝐵𝑖!! = 0isatthedesired𝜃 = 0.1.ThisoccursatFo≈0.50(seefigurebelow).The Fourier number is a dimensionless time parameter, so its value from the plot can be used tocalculatethetimeatwhichthedesiredtemperatureisreached.

𝐹𝑜 =𝛼𝑡𝑟!!

→ 𝑡 =𝐹𝑜 𝑟!!

𝛼

Consideringthatthethermaldiffusivityofplasticsis~10-3cm2/s=10-7m2/sandr0=1cm:

𝑡 =𝐹𝑜 𝑟!!

𝛼=0.50 0.01 𝑚 ! 10!! 𝑚/𝑠

= 500 sec = 8.3 𝑚𝑖𝑛

Note,however,thatthischartonlyappliestocylinderswhoselength>>diameter,sothatonlytheheattransfer in the radial direction needs to be considered. If this candle had D = L, we could need toconsider 3-dimensional heat transfer, sinceheat loss out of thebottomand topof themoldwouldbecomesignificantrelativetothatthroughthesides.Thecoolingtimewouldthenbereduced.

0.1

0.50

MIT2.810Fall2016 Homework4Solutions

(b)AssumingL=D,drawthesolidifiedshapeofthecandle.Explainhowthisshapewouldevolve.Ifthis were glass, would there be any possibility of cracking? Where? What is important about thedifferencebetweenglassandwaxforthisproblem?Answer:

Thewaxnexttothewallssolidifiesfirst.Thewaxinthecentercoolsandshrinks,causingadepression.Ifthematerialontopsolidifiesbeforethecore,acaseof“hydrostatictension”mayoccurintheverycenter,which is last to solidify and is constrainedbyneighboring (already solidified)material. If thiswereglass,avoidorcrackwouldbelikelytooccuratthecenter.

MIT2.810Fall2016 Homework4Solutions

Problem2.Injectionmolding.Considertheinjectionmoldingofthetapeholder(weight=0.5oz,wallthickness=1.6mm)showninFigure2.Pleaseanswerthefollowingquestionsaboutthemanufactureofthispart:

(a) Estimatethecoolingtime.(b) Indicateanyspecialfeaturesthatwouldresultinmovingpartsforthemold.Wereejectorpins

used?(c) Indicatethemoldfillingsequenceandlocationsofthegateandweldlines(ifany).(d) Specifyroughlythesizeoftheinjectionmoldingmachineneededtomold4ofthesepartsata

timeusinga4-cavitymold.

Figure2.TapeDispenser

MIT2.810Fall2016 Homework4Solutions

Figure3.TapeDispenserDimensions

Answer:(a) Usingthevaluefor𝛼typicalforpolymersandthegivenwallthickness,

𝑡!""# ≈!!

!

!=

!.!" !" !

!"!!!!!/!= 6.4 𝑠

(b)Specialfeatures:

• 2undercutsrequirespecialtoolfeatures• Serratededge(neededtokeeptherolloftapefromfallingoff)requiressidepull• Stripperplateusedtoremovepart

Somefeaturesofthetoolingforthetapedispenser:

MIT2.810Fall2016 Homework4Solutions

(c)Moldfillingsequenceandlocationsofthegateandweldlines.(Note:Thisquestionpresumesthatyouhavethepartandcaninspectit.)

Gate

MIT2.810Fall2016 Homework4Solutions

(d)Machinerequirementstoinjectionmold4oftheseatatimeina4-cavitymoldareasfollows:Clampingforce:𝐹 = 𝑁!"#𝐴!"#$𝑃 = 4 2.5 𝑖𝑛 2.5 𝑖𝑛 14500 𝑝𝑠𝑖 = 362500 𝑙𝑏𝑠 = 1612 𝑘𝑁Shotsize:

𝑉!!!" = 𝑁!"#𝑉!"#$ = 𝑁!"#𝑚𝜌

= 40.5 𝑜𝑧 16 𝑜𝑧𝑙𝑏

0.05 𝑙𝑏𝑖𝑛!= 2.5 𝑖𝑛! = 41 𝑐𝑚!

Notes:Theprojectedareaisaroughestimate,sinceprecisedimensionsareunavailable.TheinjectionpressureisaroughaverageofallthepolymersgiveninBoothroyd,Table8.5(around1000bar=14500psi).Anaveragedensityforplasticsis~1500kg/m3=0.05lb/in3.Bothoftheseestimatesignoretherunners,whichwouldrequireadditionalclampingforce(astheprojectedareawillincrease)andaddvolumetotheshotsize.EstimatesfortheadditionalareaneededfortherunnersasafunctionofthepartvolumecanbefoundinBoothroyd,Table8.2.

MIT2.810Fall2016 Homework4Solutions

Problem3.Designforinjectionmolding.TwoconceptualdesignsforthetoolingforthepartshowninFigure3(aftereliminatingthe0.25in.ridgeatthebase)areshownindrawings(A)and(B).

(a) Whatwouldbethedifferencebetweenthesetwoapproaches?(b) DoanyfeaturesonthesedrawingsviolateDFMrules?(c) Drawinthelocationofthepartimmediatelyafteropeningthemold.(d) Pleaseshowwhereyouwouldputastripperplateand/orejectorpinsonthesemolds.(e) Considertwodifferentgatingsituations.Ononedrawthegateandspruelocationiftheyare

toremainconnectedtothepartondieopening.(f) In another, show the gate and sprue location if they are to separate from the part on die

opening.

Figure3.Injectionmoldedpart(alldimensionsininches).

MIT2.810Fall2016 Homework4Solutions

MIT2.810Fall2016 Homework4Solutions

AnswertoProblem3,partb.Somepossibledesignalternationsforimprovedmanufacturing:

1. Addadraftangleandroundcorners2. Makeallwallsthesamethickness3. Elminate“overhang”wherepossible

Estimateofpartcycletime:

𝑡 ≅ 𝐻!

𝛼=

0.635𝑐𝑚2

!

10!!!"!

!"#

= 101 𝑠𝑒𝑐

This cycle time is too long, so would want to redesign the parts with thinner walls, and ribs ifnecessaryforstiffness.Clampingforce(notnecessaryforthisproblem,justforyouredification)𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎 ≅ 4.50 + 0.50 ∗ 3.50 + 0.50 ≅ 20𝑖𝑛! + 𝑟𝑢𝑛𝑛𝑒𝑟𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≅ 7000𝑝𝑠𝑖𝐶𝑙𝑎𝑚𝑝 𝑓𝑜𝑟𝑐𝑒 ≅ 20𝑖𝑛! ∗ 7000 !"

!"! = 140,000𝑙𝑏𝑠 = 70 𝑡𝑜𝑛𝑠

MIT2.810Fall2016 Homework4Solutions

Problem4.Diecastingversusinjectionmolding.Onenoticeabledifferencebetweendiecastingtoolingandinjectionmoldingtoolingisthesizeoftherunnersystem.Figure4showsamulti-cavitydiefordiecasting.Notethattherunnersystemisquitelargeandchanginginsize.Incomparison,therunnersystemforinjectionmoldingisusuallyofsmallerandconstantdiameter.Canyouexplainwhythesearedifferent?Isthereafeatureofthediecastingdiethatismissinginthispicture?

Figure4.Multiple-cavitytoolfordiecasting.Notetherunnersizecomparedtopartsize.AnswerConsidertransportrate/coolingrate(units1/time)

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡: 1𝑡~𝑉𝐿!

𝑐𝑜𝑜𝑙𝑖𝑛𝑔: 1𝑡~

𝛼

(𝐿!2 )!

𝑡ℎ𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑜𝑙𝑖𝑛𝑔

= 14𝑉𝐿!𝛼

∙𝐿!𝐿!

Typicalvaluesforinjectionmolding:

1410!"! 0.1𝑐𝑚

1𝑥10!!!"!

!

∙0.1𝑐𝑚10𝑐𝑚

≅ 2.5

Thisshowsthatthetworates(transportandcooling)areaboutequal,withinanorderofmagnitudeTypicalvaluesfordiecasting:

1410!"! 0.1𝑐𝑚

0.3!"!

!

∙0.1𝑐𝑚10𝑐𝑚

≅ 10!!

Hence for die casting the heat transfer rate ismuch faster andwith a thin runner system there isdangerofsolidifyingbeforethemoldsarefilled.Note:theactualsituationisbetterthanthisbecausetheheattransferrateissmallerthancalculatedaboveduetofilmresistance.Alsonote:themulticavitytoolfordiecastingshowninFig4doesnothaveoverflowwells,whicharecommonlyused.SeeDesignforDieCastingbyBoothroyd.

MIT2.810Fall2016 Homework4Solutions

Problem5.Coolingtime.Showthatequation8.5inBoothroydetal.reducestoourresult

𝑡! = (!/!)!

!at𝜃 = !!!!!

!!!!!= 0.1

Answer:TheequationinBoothroydis:

𝑡! =ℎ!"#!

𝜋!𝛼ln4 𝑇! − 𝑇!𝜋 𝑇! − 𝑇!

where𝑇! =recommendedinjectiontemperature𝑇!=recommendedejectiontemperature𝑇!=recommendedmoldtemperatureSubstitutingintoBoothroyd’sequation𝜃 = 0.1gives

𝑡! =ℎ!"#!

𝛼∙1𝜋!ln

4𝜋∙ 10 = 0.258 ∙ (

ℎ!"#!

𝛼) ≅

(ℎ!"#2 )!

𝛼