model-based engineering of an automotive adaptive exterior

93
Model-based engineering of an automotive Adaptive Exterior Lighting System Föcker, Felix; Houdek, Frank; Daun, Marian; Weyer, Thorsten In: ICB Research Reports - Forschungsberichte des ICB / 2015 This text is provided by DuEPublico, the central repository of the University Duisburg-Essen. This version of the e-publication may differ from a potential published print or online version. DOI: https://doi.org/10.17185/duepublico/47024 URN: urn:nbn:de:hbz:464-20180914-091208-1 Link: https://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=47024 License: As long as not stated otherwise within the content, all rights are reserved by the authors / publishers of the work. Usage only with permission, except applicable rules of german copyright law. Source: ICB-Research Report No. 64, January 2015

Upload: others

Post on 18-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Model-based engineering of an automotive Adaptive Exterior Lighting System

Föcker, Felix; Houdek, Frank; Daun, Marian; Weyer, Thorsten

In: ICB Research Reports - Forschungsberichte des ICB / 2015

This text is provided by DuEPublico, the central repository of the University Duisburg-Essen.

This version of the e-publication may differ from a potential published print or online version.

DOI: https://doi.org/10.17185/duepublico/47024

URN: urn:nbn:de:hbz:464-20180914-091208-1

Link: https://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=47024

License:As long as not stated otherwise within the content, all rights are reserved by the authors / publishers of the work. Usage only with permission, except applicable rules of german copyright law.

Source: ICB-Research Report No. 64, January 2015

�������������������

���������������������������������������������������

Felix Föcker, Frank Houdek, Marian Daun, Thorsten Weyer

Realistic Example Specifications of

Behavioral Requirements and

Functional Design

ICB-Research Report No. 64

January 2015

Research Group Core Research Topics

Prof. Dr. H. H. AdelsbergerInformation Systems for Production and OperationsManagement

E-Learning, Knowledge Management, Skill-Management,Simulation, Artificial Intelligence

Prof. Dr. F. AhlemannInformation Systems and Strategic Management

Strategic planning of IS, Enterprise Architecture Management, IT Vendor Management, Project Portfolio Management, IT Governance, Strategic IT Benchmarking

Prof. Dr. P. ChamoniMIS and Management Science / Operations Research

Information Systems and Operations Research, Business Intelligence, Data Warehousing

Prof. Dr. K. EchtleDependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. EickerInformation Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. FrankInformation Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,IT Management, Knowledge Management

Prof. Dr. M. GoedickeSpecification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. GruhnSoftware Engineering

Design of Software Processes, Software Architecture, Usabi-lity, Mobile Applications, Component-based and Generative Software Development

PD Dr. C. KlüverComputer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and Economic Processes, Development of Algorithms

Prof. Dr. T. KollmannE-Business and E-Entrepreneurship

E-Business and Information Management, E-Entrepreneurship/E-Venture, Virtual Marketplaces and Mobile Commerce, Online-Marketing

Prof. Dr. K. PohlSoftware Systems Engineering

Requirements Engineering, Software Quality Assurance,Software-Architectures, Evaluation of COTS/Open Source-Components

Prof. Dr. Ing. E. RathgebComputer Network Technology

Computer Network Technology

Prof. Dr. R. UnlandData Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software Engineering, Internet Based Teaching

Prof. Dr. S. ZelewskiInstitute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,Information Management, Economic Analyses

ISSN 1860-2770 (Print)ISSN 1866-5101 (Online)

64Model-Based Engineering of an Automotive Adaptive Exterior Lighting System

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Die   Forschungsberi ch te   des   Inst ituts  für   In format ik   und  Wir tschafts in format ik   dienen   der  Darstel lung   vor läufiger   Ergebnisse ,  d ie   i .   d.   R .   noch   für   spätere  Veröffen tl ichungen   überarbe itet  werden .  D ie  Autoren   s ind   deshalb   für  kr it ische  Hinwe ise  dankbar .  

All   r ights   rese rved .   No   part   of   th is  report   may   be   reproduced   by   any  means ,  or   translated .  

Contact :  

Inst itu te   for  Computer  Sc ience  and  Business  In format ion  Systems   ( ICB)  Univers ity  of  Duisburg-­‐‑Essen    Univers itätss tr.  9  45141  Essen,  Germany  

Tel . :   0201-­‐‑183-­‐‑4041  Fax :   0201-­‐‑183-­‐‑4011  Email :   i cb@uni-­‐‑duisburg -­‐‑essen.de  

Authors ’  Address :  

Fel ix  Föcker  Univers ity  of  Duisburg-­‐‑Essen    Univers itätss tr.   2 ,  45127  Essen,  Germany  

fel ix. foecker@uni-­‐‑due.de  

Frank  Houdek    Daimler  AG  Post fach  2360,  89013  Ulm,  Germany  

frank.houdek@daimle r.com  

Marian  Daun ,  Thorsten  Weyer  paluno,  Univers ity  of  Duisburg -­‐‑Essen    Ger lingstr.  16 ,  45127  Essen,  Germany  

mar [email protected] -­‐‑due.de  

thorsten [email protected] i-­‐‑due.de  

The   ICB   Research   Reports   comprise  preliminary   resul ts  which  wi l l  usually  be   revised   for   subsequent  publicat ions .   Cr it ica l   comments  would  be  appreciated  by   the  authors .  

A lle  Rechte   vorbehalten.   Insbesondere  d ie   der   Überse tzung,   des  Nachdruckes,   des   Vortrags,   der  Entnahme   von   Abbildungen   und  Tabell en   –   auch   bei   nur  auszugswe iser  Verwertung .  

ISSN  1860-­‐‑2770   (Pr int)  ISSN  1866-­‐‑5101   (Online)  

ICB  Research  Reports  

Edited  by:  

Prof .  Dr .  Heimo  Adelsberger  Prof .  Dr .  F reder ik  Ahlemann  Prof .  Dr .  K laus  Echt le  Prof .  Dr .  Stefan  E icker  Prof .  Dr .  Ulr ich  Frank  Prof .  Dr .  Michael  Goedicke  Prof .  Dr .  Volker  Gruhn  PD  Dr.  Chri st ina  K lüver  Prof .  Dr .  Tobias  Kollmann  Prof .  Dr .  K laus  Pohl  Prof .  Dr .  Erwin  P.  Rathgeb  Prof .  Dr .  Rainer  Unland  Prof .  Dr .  Stephan  Zelewski  

 

 

 

 

    i  

Abstract  Model-­‐‑based   engineering   is   a   well-­‐‑established   approach   to   cope   with   the   complexity   of  today’s   embedded   systems.   Furthermore,   model-­‐‑based   engineering   can   address   industry  needs   for   highly   automated   development   solutions   to   foster   correctness   of   safety-­‐‑critical  systems.  In  contrast,  there  is  a  vital  lack  of  accessible  specification  documents  for  researchers  for   evaluation   purposes.   Evaluation   of   proposed   engineering   methods   often   relies   on  academic   examples,   automatically   created  unrealistic   artificial  models,   or   simple   industrial  specification  excerpts.  This  research  report  aims  at  supporting  researchers  with  model-­‐‑based  specifications   of   a   real-­‐‑world   system   on   a   competitive   level   of   complexity.   Therefore,   a  model-­‐‑based  specification  of  an  Adaptive  Exterior  Lighting  System  (ELS)  is  presented  that  is  part  of  an  Automotive  System  Cluster  (ASC).  An  ELS  provides  fundamental  and  additional  functionalities   for   the   well-­‐‑known   turn   signal   and   low   /   high   beam   headlights.   The  specification  documents   the  behavioral   requirements  and   the   functional  design  of   the  ELS,  which  are  important  artifacts  in  function-­‐‑centered  engineering.  As  modeling  languages  ITU  Message  Sequence  Charts,  Function  Network,  and  Function  Behavior  Diagrams  are  used.  

 

   

 

ii  

 

    i i i  

Table  of  Content  1   INTRODUCTION  ......................................................................................................................................  1  

1.1   MOTIVATION  .............................................................................................................................................  1  

1.2   THE  AUTOMOTIVE  SYSTEM  CLUSTER  .......................................................................................................  1  

1.3   FUNCTION-­‐‑CENTERED  ENGINEERING  ......................................................................................................  2  

1.3.1   Behavioral  Requirements  ..................................................................................................................  2  

1.3.2   Functional  Design  ............................................................................................................................  3  

2   SPECIFICATION  OF  THE  BEHAVIORAL  REQUIREMENTS  .........................................................  4  

2.1   STRUCTURE  OF  THE  BEHAVIORAL  REQUIREMENTS  ..................................................................................  5  

2.2   CHANGE  SETTINGS  ....................................................................................................................................  5  

2.2.1   Set  Rotary  Light  Switch  ...................................................................................................................  6  

2.2.2   Set  Pitman  Arm  ...............................................................................................................................  7  

2.2.3   Set  Hazard  Warning  Light  Switch  ................................................................................................  12  

2.2.4   Set  Instrument  Cluster  ..................................................................................................................  13  

2.2.5   Set  Darkness  Switch  .......................................................................................................................  14  

2.2.6   Set  Ignition  Key  ..............................................................................................................................  15  

2.3   CONTROL  HEADLIGHTS  ..........................................................................................................................  16  

2.3.1   Control  High  Beam  Headlights  ......................................................................................................  17  

2.3.2   Control  Low  Beam  Headlights  .......................................................................................................  23  

2.3.3   Handle  Overvoltage  .......................................................................................................................  33  

2.4   CONTROL  TURN  SIGNAL  .........................................................................................................................  34  

2.4.1   Direction  Blinking  Left  ..................................................................................................................  35  

2.4.2   Direction  Blinking  Right  ...............................................................................................................  38  

2.4.3   Hazard  Warning  Light  ...................................................................................................................  39  

2.5   DETECT  FAULTS  .......................................................................................................................................  41  

3   SPECIFICATION  OF  THE  FUNCTIONAL  DESIGN  ........................................................................  42  

3.1   STRUCTURE  OF  THE  FUNCTIONAL  DESIGN  .............................................................................................  45  

3.2   CONTROL  HEADLIGHTS  ..........................................................................................................................  47  

3.2.1   Control  High  Beam  Headlights  ......................................................................................................  48  

3.2.2   Control  Low  Beam  Headlights  .......................................................................................................  52  

3.2.3   Handle  Overvoltage  .......................................................................................................................  63  

3.3   CONTROL  TURN  SIGNAL  .........................................................................................................................  63  

3.3.1   Direction  Blinking  Left  ..................................................................................................................  65  

 

iv  

3.3.2   Direction  Blinking  Right  ...............................................................................................................  67  

3.3.3   Hazard  Warning  Light  ...................................................................................................................  68  

3.4   DEFECT  FAULTS  .......................................................................................................................................  69  

4   REFERENCES  ............................................................................................................................................  70  

 

 

    v  

Table  of  Figures  FIGURE  1:  HMSC  -­‐‑    ADAPTIVE  EXTERIOR  LIGHTING  SYSTEM  .................................................................................  5  

FIGURE  2:  HMSC  -­‐‑  CHANGE  SETTINGS  ....................................................................................................................  6  

FIGURE  3:  HMSC  -­‐‑  SET  ROTARY  LIGHT  SWITCH  .....................................................................................................  6  

FIGURE  4:  MSC  -­‐‑  SWITCH  TO  AUTO  ........................................................................................................................  7  

FIGURE  5:  MSC  -­‐‑  SWITCH  TO  EXTERIOR  LIGHT  ON  .................................................................................................  7  

FIGURE  6:  MSC  -­‐‑  SWITCH  TO  OFF  ............................................................................................................................  7  

FIGURE  7:  HMSC  -­‐‑  SET  PITMAN  ARM  .....................................................................................................................  8  

FIGURE  8:  MSC  -­‐‑  ACTIVATE  HIGH  BEAM  .................................................................................................................  9  

FIGURE  9:  MSC  -­‐‑  DEACTIVATE  HIGH  BEAM  ............................................................................................................  9  

FIGURE  10:  MSC  -­‐‑  ACTIVATE  DIRECTION  INDICATOR  ..........................................................................................  10  

FIGURE  11:  MSC  -­‐‑  ACTIVATE  PERMANANTLY  .......................................................................................................  10  

FIGURE  12:  MSC  -­‐‑  DEACTIVATE  DIRECTION  INDICATOR  ......................................................................................  11  

FIGURE  13:  MSC  -­‐‑  SET  HAZARD  WARNING  LIGHT  SWITCH  ..................................................................................  12  

FIGURE  14:  HMSC  -­‐‑  SET  INSTRUMENT  CLUSTER  ..................................................................................................  13  

FIGURE  15:  MSC  -­‐‑  SET  DAYTIME  TUNNING  LIGHT  ...............................................................................................  13  

FIGURE  16:  MSC  -­‐‑  SET  AMBIENT  LIGHT  ................................................................................................................  13  

FIGURE  17:  MSC  -­‐‑  SET  DARKNESS  SWITCH  ...........................................................................................................  14  

FIGURE  18:  HMSC  -­‐‑  SET  IGNITION  KEY  .................................................................................................................  15  

FIGURE  19:  MSC  -­‐‑  INSERT  IGNITION  KEY  ..............................................................................................................  15  

FIGURE  20:  MSC  -­‐‑  REMOVE  IGNITION  KEY  ...........................................................................................................  15  

FIGURE  21:  MSC  -­‐‑  START  ENGINE  .........................................................................................................................  16  

FIGURE  22:  MSC  -­‐‑  STOP  ENGINE  ...........................................................................................................................  16  

FIGURE  23:  HMSC  -­‐‑  CONTROL  HEADLIGHTS  ........................................................................................................  16  

FIGURE  24:  HMSC  -­‐‑  CONTROL  HIGH  BEAM  HEADLIGHTS  ....................................................................................  17  

FIGURE  25:  MSC  -­‐‑  ACTIVATE  MANUAL  HIGH  BEAM  HEADLIGHTS  .......................................................................  18  

FIGURE  26:  MSC  -­‐‑  ACTIVATE  ADAPTIVE  HIGH  BEAM  HEADLIGHTS  .....................................................................  19  

FIGURE  27:  MSC  -­‐‑  DEACTIVATE  HIGH  BEAM  HEADLIGHTS  ..................................................................................  20  

FIGURE  28:  MSC  -­‐‑  CHECK  VOLTAGE  ......................................................................................................................  21  

FIGURE  29:  MSC  -­‐‑  ADAPT  HIGH  BEAM  HEADLIGHTS  ...........................................................................................  22  

FIGURE  30:  HMSC  -­‐‑  CONTROL  LOW  BEAM  HEADLIGHTS  .....................................................................................  23  

FIGURE  31:  HMSC  -­‐‑  ACTIVATE  LOW  BEAM  HEADLIGHTS  .....................................................................................  23  

FIGURE  32:  MSC  -­‐‑  ACTIVATE  AMBIENT  LIGHT  ......................................................................................................  24  

 

vi  

FIGURE  33:  MSC  -­‐‑  ACTIVATE  DAYTIME  RUNNING  LIGHT  .....................................................................................  25  

FIGURE  34:  MSC  -­‐‑  ACTIVATE  LOW  BEAM  HEADLIGHTS  MANUAL  ........................................................................  25  

FIGURE  35:  MSC  -­‐‑  ACTIVATE  LOW  BEAM  HEADLIGHTS  AUTOMATIC  ...................................................................  26  

FIGURE  36:  HMSC  -­‐‑  DEACTIVATE  LOW  BEAM  HEADLIGHTS  .................................................................................  27  

FIGURE  37:  MSC  -­‐‑  DEACTIVATE  AMBIENT  LIGHT  .................................................................................................  28  

FIGURE  38:  MSC  -­‐‑  DEACTIVATE  DAYTIME  RUNNING  LIGHT  ................................................................................  29  

FIGURE  39:  MSC  -­‐‑  DEACTIVATE  LOW  BEAM  HEADLIGHTS  AUTOMATIC  ..............................................................  30  

FIGURE  40:  MSC  -­‐‑  DEACTIVATE  LOW  BEAM  HEADLIGHTS  MANUAL  ...................................................................  31  

FIGURE  41:  MSC  -­‐‑  CHECK  CONDITIONS  AND  SWITCH  OFF  ...................................................................................  31  

FIGURE  42:  MSC  -­‐‑  CONTROL  CORNERING  LIGHT  ................................................................................................  32  

FIGURE  43:  MSC  -­‐‑  HANDLE  OVERVOLTAGE  ..........................................................................................................  33  

FIGURE  44:  HMSC  -­‐‑  CONTROL  TURNING  LIGHTS  ..................................................................................................  34  

FIGURE  45:  MSC  -­‐‑  ACTIVATE  DIRECTION  BLINKING  LEFT  ....................................................................................  35  

FIGURE  46:  MSC  -­‐‑  ACTIVATE  TIP  BLINKING  LEFT  .................................................................................................  36  

FIGURE  47:  MSC  -­‐‑  DEACITVATE  DIRECTION  BLINKING  LEFT  ................................................................................  37  

FIGURE  48:  MSC  -­‐‑  ACTIVATE  DIRECTION  BLINKING  RIGHT  ..................................................................................  38  

FIGURE  49:  MSC  -­‐‑  DEACTIVATE  DIRECTION  BLINKING  RIGHT  .............................................................................  38  

FIGURE  50:  MSC  -­‐‑  ACTIVATE  TIP  BLINKING  RIGHT  ...............................................................................................  39  

FIGURE  51:  MSC  -­‐‑  CONTROL  HAZARD  WARNING  LIGHT  ......................................................................................  40  

FIGURE  52:  MSC  -­‐‑  DETECT  FAULTS  .......................................................................................................................  41  

FIGURE  53:  CONTEXT  DIAGRAM  ...........................................................................................................................  45  

FIGURE  54:  FUNCTION  NETWORK  DIAGRAM  –  CONTROL  ADAPTIVE  EXTERIOR  LIGHTING  SYSTEM  ..................  46  

FIGURE  55:  FUNCTION  NETWORK  DIAGRAM  -­‐‑  CONTROL  HEADLIGHTS  ..............................................................  47  

FIGURE  56:  FUNCTION  NETWORK  DIAGRAM  -­‐‑  CONTROL  HIGH  BEAM  HEADLIGHTS  ..........................................  48  

FIGURE  57:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  MANUAL  HIGH  BEAM  HEADLIGHTS  .....................................  49  

FIGURE  58:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  ADAPTIVE  HIGH  BEAM  HEADLIGHTS  ....................................  49  

FIGURE  59:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  HIGH  BEAM  HEADLIGHTS  .................................................  50  

FIGURE  60:  INTERFACE  AUTOMATON  -­‐‑  CHECK  VOLTAGE  ....................................................................................  50  

FIGURE  61:  INTERFACE  AUTOMATON  -­‐‑  ADAPT  HIGH  BEAM  HEADLIGHTS  ..........................................................  51  

FIGURE  62:  FUNCTION  NETWORK  DIAGRAM  -­‐‑  CONTROL  LOW  BEAM  HEADLIGHTS  ...........................................  52  

FIGURE  63:  FUNCTION  NETWORK  DIAGRAM  -­‐‑  ACTIVATE  LOW  BEAM  HEADLIGHTS  ...........................................  53  

FIGURE  64:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  LOW  BEAM  HEADLIGHTS  MANUAL  ......................................  54  

FIGURE  65:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  LOW  BEAM  HEADLIGHTS  AUTOMATIC  .................................  54  

 

    vi i  

FIGURE  66:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  DAYTIME  RUNNING  LIGHT  ...................................................  55  

FIGURE  67:  FUNCTION  NETWORK  DIAGRAM  -­‐‑  ACTIVATE  AMBIENT  LIGHT  .........................................................  56  

FIGURE  68:  INTERFACE  AUTOMATON  -­‐‑  CHECK  CONDITIONS  ...............................................................................  57  

FIGURE  69:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  BY  KEY  ...................................................................................  57  

FIGURE  70:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  BY  DOOR  ................................................................................  57  

FIGURE  71:  FUNCTION  NETWORK  DIAGRAM  -­‐‑  DEACTIVATE  LOW  BEAM  HEADLIGHTS  ......................................  58  

FIGURE  72:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  LOW  BEAM  HEADLIGHTS  MANUAL  ..................................  59  

FIGURE  73:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  LOW  BEAM  HEADLIGHTS  AUTOMATIC  .............................  59  

FIGURE  74:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  DAYTIME  RUNNING  LIGHT  ...............................................  59  

FIGURE  75:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  AMBIENT  LIGHT  ................................................................  60  

FIGURE  76:  INTERFACE  AUTOMATON  -­‐‑  CHECK  CONDITIONS  AND  SWITCH  OFF  .................................................  60  

FIGURE  77:  FUNCTION  NETWORK  DIAGRAM  -­‐‑  CONTROL  CORNERING  LIGHT  .....................................................  61  

FIGURE  78:  INTERFACE  AUTOMATON  -­‐‑  CHECK  CONDITIONS  ...............................................................................  62  

FIGURE  79:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  LEFT  CORNERING  LIGHT  .......................................................  62  

FIGURE  80:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  LEFT  CORNERING  LIGHT  ...................................................  62  

FIGURE  81:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  RIGHT  CORNERING  LIGHT  .....................................................  63  

FIGURE  82:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  RIGHT  CORNERING  LIGHT  ................................................  63  

FIGURE  83:  INTERFACE  AUTOMATON  -­‐‑  HANDLE  OVERVOLTAGE  .........................................................................  63  

FIGURE  84:  FUNCTION  NETWORK  DIAGRAM  -­‐‑  CONTROL  TURN  LIGHTS  (MESSAGES)  ........................................  64  

FIGURE  85:  FUNCTION  NETWORK  DIAGRAM  -­‐‑  CONTROL  TURN  LIGHTS  (DEPENDENCIES)  .................................  65  

FIGURE  86:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  DIRECTION  BLINKING  LEFT  ...................................................  66  

FIGURE  87:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  DIRECTION  BLINKING  LEFT  ..............................................  66  

FIGURE  88:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  TIP  BLINKING  LEFT  ................................................................  66  

FIGURE  89:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  DIRECTION  BLINKING  RIGHT  ................................................  67  

FIGURE  90:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  TIP  BLINKING  RIGHT  .............................................................  67  

FIGURE  91:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  DIRECTION  BLINKING  RIGHT  ............................................  67  

FIGURE  92:  INTERFACE  AUTOMATON  -­‐‑  ACTIVATE  HAZARD  WARNING  LIGHT  ....................................................  68  

FIGURE  93:  INTERFACE  AUTOMATON  -­‐‑  DEACTIVATE  HAZARD  WARNING  LIGHT  ...............................................  69  

FIGURE  94:  INTERFACE  AUTOMATON  -­‐‑  DETECT  FAULTS  .....................................................................................  69  

 

 

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    1  

1 Introduction  

This   research   report   presents  model-­‐‑based   specifications   of   an  Adaptive   Exterior   Lighting  System   (ELS),   which   is   part   of   an   Automotive   System   Cluster   (ASC).   The   specifications  document   the   behavioral   requirements   and   the   functional   design   of   the   ELS,   which   are  important  artifacts   in   function-­‐‑centered  engineering.  As  modeling   languages,   ITU  Message  Sequence   Charts   (cf.  (ITU   2011))   and   Function   Network   and   Function   Behavior   Diagrams  (cf.  (Daun  et  al  2014))  are  used.  

1.1 Motivation  

Model-­‐‑based   engineering   is   a   well-­‐‑established   approach   to   cope   with   the   complexity   of  today’s   embedded   systems   (cf.  (Beetz   and   Böhm   2012)).   Furthermore,   model-­‐‑based  engineering   can   address   industry   needs   for   highly   automated   development   solutions   to  foster  correctness  of  safety-­‐‑critical  systems  (cf.  (Sikora  et  al  2012)).  In  contrast,  there  is  a  vital  lack   of   accessible   specification   documents   for   researchers   for   evaluation   purposes.  Evaluation   of   proposed   engineering   methods   often   relies   on   academic   examples,  automatically  created  unrealistic  artificial  models,  or  simple  industrial  specification  excerpts.  This   research   report   aims   at   supporting   researchers   with   model-­‐‑based   specifications   of   a  real-­‐‑world  system  on  a  competitive  level  of  complexity.  

The   specifications  were  developed  as  part  of   the  SPES  evaluation   strategy  during   the   joint  research  project  SPES  2020  XTCore.  The  behavioral  requirements  specification  (Section  2)  is  a  result  of  the  application  of  SPES  specification  techniques  for  the  model-­‐‑based  documentation  of  requirements  (cf.  (Daun  et  al  2012)).  The  specification  of  the  functional  design  (Section  3)  results  from  the  application  of  techniques  described  in  (Daun  et  al  2014).  In  conclusion,  the  specifications   document   the   applicability   of   the   proposed   approaches.   Hence,   the   given  specifications   are   the   basis   for   further   research   and   evaluation   activities   regarding   the  application   of   validation,   verification,   and  model   transformation   approaches,   which  make  use  of  behavioral  requirements  and  functional  design.  

1.2 The  Automotive  System  Cluster  

The   ASC   can   be   considered   as   a   comfort   control   system   that   consists   of   two   subsystems,  namely   the  ELS  and  an  Adaptive  Cruise  Control  System  (ACC).  While   this   research  report  provides   insights   into   the   model-­‐‑based   specification   of   the   ELS,   a   natural   language  description  of  the  ASC’s  system  requirements  specification  can  be  found  in  (Houdek  2013).  

An  ELS  provides  fundamental  and  additional  functionalities  for  the  well-­‐‑known  turn  signal  and  low  /  high  beam  headlights.  For  example,  the  control  of  the  driving  direction  indicators  of   the  vehicle   in  dependence  of   the  pitman  arm,   the  control  of   the   low  beam  headlights   in  

Introduction  

2  

dependence  of  the  light  rotary  switch  and  the  daytime  running  light  settings,  and  the  control  of   the   high   beam   headlights   in   dependence   of   the   high   beam   switch   and   the   detection   of  advancing  vehicles.  

1.3 Function-­‐‑Centered  Engineering  

In   the   development   of   embedded   systems,   function-­‐‑centered   engineering   is   a   commonly  used   approach   to   cope   with   the   emerging   number   and   complexity   of   systems’   software  functions   and   their   interdependencies   (cf.  (Pretschner   et   al   2007)).   Function-­‐‑centered  engineering  focuses  on  the  functional  design  as  the  central  development  artifact  throughout  the  whole  engineering  process.    

As   described   in   (Brinkkemper   and   Pachidi   2010)   and   (Jantsch   and   Sander   2000),   the  functional  design  specifies  the  functions  to  be  implemented,  their  hierarchical  structure,  and  the  planned  behavior  of  each  function.  In  addition,  it  specifies  interactions  and  dependencies  between  the  functions  in  such  a  way  that  the  interplay  between  different  functions  fulfills  the  behavioral   properties   documented   in   the   behavioral   requirements   (e.g.,   to   optimize   the  function   deployment   and   thereby   to  minimize   the   number   of   expensive   electronic   control  units,  to  avoid  redundancies  affecting  the  maintainability  of  the  system,  or  to  foster  re-­‐‑use  of  implemented   functions).   The   initial   version   of   the   functional   design   is   based   on   the  behavioral   requirements   that   are   in   turn   reflecting   the   consolidated   stakeholder   intentions  with  respect  to  the  system  to  be  built.  

Next,   the   behavioral   requirements   and   the   functional   design   are   briefly   characterized   as  outlined  in  (Daun  et  al  2014).  

1.3.1 Behavioral  Requirements  

In   general,   behavioral   requirements   models   can   be   differentiated   into   state-­‐‑based   and  interaction-­‐‑based   models.   During   requirements   engineering,   especially   interaction-­‐‑based  models   are   widely   used,   for   example,   to   document   scenarios   and   to   specify   the   essential  interfaces.  

In   the   engineering  of   embedded   software,  message   sequence   charts   (MSCs)   are   commonly  used   for   the   specification   of   interaction-­‐‑based   behavioral   requirements  models   (cf.  (Weber  and  Weisbrod   2002)).   The  Z.120   standard   (ITU   2011)   distinguishes   between   basic  message  sequence   charts   (bMSCs)   and   high-­‐‑level  message   sequence   charts   (hMSCs).   bMSCs   define  specific   situations   detailing   the   behavior   in   terms   of   messages   exchanged   between   the  system   and   entities   in   the   environment.   hMSCs   structure   the   bMSCs   according   to   their  execution  order  and  create  a  complete  system  specification.  

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    3  

1.3.2 Functional  Design  

The   functional  design   consists   of   specifications  of   the   system   functions   to  be   implemented  and  their  hierarchical  structure.  Additionally,  the  intended  behavior  of  each  system  function  is  specified  as  well  as  the  interactions  and  dependencies  between  system  functions.  

Different   diagram   types   are   used   to   document   the   functional   design.   Function   network  diagrams   document   the   functional   dependencies   between   system   functions   that   are  embedded  in  given  context  functions.  Context  functions  are  functions  that  can  be  used  by  the  system   to   be   built   but   are   not   a   subject   of   the   development   process.   Afterwards,   each  function   is   detailed   by   a   function   behavior   diagram   that   specifies   the   behavior   of   the  function  in  terms  of  an  interface  automaton  (cf.  (de  Alfaro  and  Henzinger  2001)).  

 

   

Specification  of  the  Behavioral  Requirements  

4  

2 Specification  of  the  Behavioral  Requirements  

The  model-­‐‑based   specification  of  behavioral   requirements   -­‐‑   as  described   in   the   following   -­‐‑  comprises  the  combinations  of  MSCs  of  the  ELS  in  hMSCs  and  more  detailed  interactions  in  bMSCs.  The  Structure  (highest  abstraction-­‐‑level)  of  the  behavioral  requirements  is  described  in  Section  2.1.  Breaking  down   the  hMSCs   to  bMSCs  results   in  up   to   five  abstraction-­‐‑levels.  The   sections   2.2,   2.3,   2.4,   and   2.5   represent   the   second   abstraction-­‐‑level   and   the   main  functions  of  the  ELS  as  outlined  above.  

The   specified   instances   of   the   ELS   are   subdivided   into   system-­‐‑   and   context-­‐‑instances.   An  overview  is  given  in  Table  1.  For  an  improved  identification,  the  instances  are  represented  by  different  fillings  of  the  shapes.  

Table  1:  MSC  Instances  

Instance   Shape  

Body  Controller  

ContextInstance

 

Camera  Unit  

Darkness  Switch  

Door  Control  Unit  

Driver  

ESP  Control  Unit  

Hazard  Warning  Light  Switch  

High  Beam  Module  

Ignition  Key  

Pitman  Arm  

Roof  Console  Control  Unit  

Rotary  Light  Switch  

Adaptive  High  Beam  Headlight   SystemInstance

 

Defect  Detection  

Instrument  Cluster  

Low  Beam  Headlight  

Turning  Light  

 

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    5  

2.1 Structure  of  the  Behavioral  Requirements  

The  behavioral  requirements  are  structured  into  four  referenced  MSCs  that  are  applicable  in  a  loop  (see  Figure  1).  These  referenced  MSCs  represent  the  main  functionalities  of  the  ELS  to  change   the   global   settings   of   the   system   by   a   user,   to   control   the   headlights   and   the   turn  signal,  and  to  detect  faults.  

 

Change Settings

Control Turn Signal

Control Headlights

1 – hMSC – Adaptive Exterior Lighting System

Detect Faults

 

Figure  1:  hMSC  -­‐‑  Adaptive  Exterior  Lighting  System  

 

2.2 Change  Settings  

In   Figure  1,   all   required   settings   of   the   system  are   condensed   and   refer   to   the   appropriate  MSC.   It   is   either   possible   to   set   the   rotary   light   switch   (see  Section  2.2.1),   the   pitman   arm  (see  Section  2.2.2),  the  hazard  warning  light  switch  (see  Section  2.2.3),  the  instrument  cluster  (see  Section  2.2.4),   the   darkness   switch   (see  Section  2.2.5),   or   the   ignition   key  (see  Section  2.2.6).  

 

Specification  of  the  Behavioral  Requirements  

6  

Set Rotary Light Switch

Set Pitman Arm

Set Hazard Warning Light Switch

Set Darkness Switch

Set Instrument Cluster

Set Ignition Key

1.1 – hMSC – Change Settings

 

Figure  2:  hMSC  -­‐‑  Change  Settings  

2.2.1 Set  Rotary  Light  Switch  

The  Rotary  Light  Switch   is  a  part  of   the  user   interface  and  has   three  positions  (left   -­‐‑  “Off”,  middle   -­‐‑   “Auto”   and   right   -­‐‑   “Exterior   Light   On”),   which   represent   the  modes   of   the   low  beam  headlight.  In  Figure  3,  the  possible  combinations  to  switch  these  modes  are  presented.  The  position  “Off”  and  “Exterior  Light  On”  can  only  be  reached  from  position  “Auto”,  and  “Auto”  can  only  be  reached  from  “Off”  and  “Exterior  Light  On”.  

 

Switch to Off

whenOff

whenAuto

whenExterior Light On

Switch to Exterior Light On

Switch to Auto

1.1.1 – hMSC – Set Rotary Light Switch

 

Figure  3:  hMSC  -­‐‑  Set  Rotary  Light  Switch  

 

If   the  Driver   wants   to   switch   the   position   and   the   conditions   are   fulfilled,   he   adjusts   the  switch   and   the   Rotary   Light   Switch   changes   its   mode   and   the   conditions   (see  Figure  4,  Figure  5,  and  Figure  6).    

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    7  

Driver Rotary Light Switch

Adjust Switch

Switch to Auto Position

Auto

1.1.1.1 – MSC – Switch to Auto

 

Figure  4:  MSC  -­‐‑  Switch  to  Auto  

Driver Rotary Light Switch

Adjust Switch

Switch to Exterior Light On Position

Exterior Light On

1.1.1.2 – MSC – Switch to Exterior Light On

 

Figure  5:  MSC  -­‐‑  Switch  to  Exterior  Light  On  

Driver Rotary Light Switch

Adjust Switch

Switch to Off Position

Off

1.1.1.3 – MSC – Switch to Off

 

Figure  6:  MSC  -­‐‑  Switch  to  Off  

 2.2.2 Set  Pitman  Arm  

The   Pitman   Arm   is   a   control   lever   attached   to   the   steering   column   and   part   of   the   user  interface.  By  switching  its  position,  the  Pitman  Arm  provides  the  functionalities  to  activate  or  deactivate  the  high  beam  and  the  direction  indicators  (see  Figure  7).  Basically,  it  is  possible  to  adjust   the  Pitman  Arm  on  the  horizontal  and  the  vertical  axis.  When  the  Pitman  Arm  is   in  the  horizontal  neutral  position  the  high  beam  can  be  activated  and  when  the  Pitman  Arm  is  in   a   vertical   neutral   position   the   direction   indicator   can   be   activated.   Subsequently,   an  activated  direction  indicator  can  be  activated  permanently  by  engaging  the  vertical  position  of   the   Pitman   Arm.   In   the   following,   the   referenced   bMSCs   are   described   and   provide  detailed  information  about  the  positions  of  the  Pitman  Arm.  

 

Specification  of  the  Behavioral  Requirements  

8  

Activate High Beam

Activate Direction Indicator

whenHorizontal Neutral

Deactivate High Beam

whenVertical Neutral

Deactivate Direction Indicator

Activate Permanantly

1.1.2 – hMSC – Set Pitman Arm

 

Figure  7:  hMSC  -­‐‑  Set  Pitman  Arm  

     

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    9  

High   Beam  Headlights.   If   the  Driver   wants   to   activate   the   high   beam   headlights,   he   can  either   push   away   and   engage   or   pull   and   hold   the  Pitman  Arm   (see  Figure  8).   By   pushing  away  and  engaging  the  Pitman  Arm,  the  high  beam  headlights  and  the  adaptive  high  beam  are   activated   permanently.   To   activate   the   high   beam   headlights   temporary   (so   called  flasher),   the  Driver   needs   to   pull   and   hold   the   Pitman   Arm.   To   deactivate   the   high   beam  headlights,   the  Driver   either   needs   to   release   the  Pitman   Arm   from   the   pulled   position   or  disengage  it  from  the  pushed  position  (see  Figure  9).  

 

Driver Pitman Arm

Push Away From Driverand Engage

Pushed

Switch to Pushed Position

Pull Towards Driver and Hold to Flash

Pulled

Switch to Pulled Position

alt

High Beam HeadlightsActivated

High Beam HeadlightsActivated

1.1.2.1 – MSC – Activate High Beam

 

Figure  8:  MSC  -­‐‑  Activate  High  Beam  

Driver Pitman Arm

Release from Pulled Position

Horizontal Neutral

Switch back to Horizontal Neutral Position

altwhenPulled,

High Beam HeadlightsActivated

Disengage from Pushed Position

Horizontal Neutral

Switch back to Horizontal Neutral Position

High Beam HeadlightsDeactivated

whenPulled,

High Beam HeadlightsActivated

High Beam HeadlightsDeactivated

1.1.2.2 – MSC – Deactivate High Beam

 

Figure  9:  MSC  -­‐‑  Deactivate  High  Beam  

 

   

Specification  of  the  Behavioral  Requirements  

10  

Direction   Indicator.   The  Driver   can   either   activate   the   left   or   right   direction   indicators   by  moving  the  Pitman  Arm  down  or  up  (see  Figure  10).  The  distinction  between  temporary  and  permanent  activation  of  the  direction  indicators  is  made  by  the  Pitman  Arm  deflection.  If  the  Pitman   Arm   is   engaged   by   the  Driver,   the   direction   indicators   are   activated   permanently,  otherwise  temporarily  (see  Figure  11).  

 

Driver Pitman Arm

Move Up to Blink Right

Up

Switch to Upper Position

Move Down to Blink Left

Down

Switch to Lower Position

alt

1.1.2.3 – MSC – Activate Direction Indicator

 

Figure  10:  MSC  -­‐‑  Activate  Direction  Indicator  

Driver Pitman Arm

Engage to Upper Position

Engaged Up

Engage to Upper Position

Engage to Lower Position

Engaged Down

Engage to Lower Position

whenDown

whenUp

alt

1.1.2.4 – MSC – Activate Permanently

 

Figure  11:  MSC  -­‐‑  Activate  Permanently  

 

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    11  

To   deactivate   the   direction   indicators,   the  Driver   needs   to   disengage   or   release   the  Pitman  Arm  from  the  upper  or  lower  position  (see  Figure  12).  

 

Driver Pitman Arm

Release from Upper Position

alt

Disengage from Upper Position

whenEngaged Up

whenUp

Vertical Neutral

Switch back to Vertical Neutral Position

Vertical Neutral

Switch back to Vertical Neutral Position

Release from lower Position

whenDown

Vertical Neutral

Switch back to Vertical Neutral Position

Disengage from lower Position

whenEngaged Down

Vertical Neutral

Switch back to Vertical Neutral Position

1.1.2.5 – MSC – Deactivate Direction Indicator

 

Figure  12:  MSC  -­‐‑  Deactivate  Direction  Indicator  

Specification  of  the  Behavioral  Requirements  

12  

2.2.3 Set  Hazard  Warning  Light  Switch  

The   Hazard   Warning   Light   Switch   is   also   part   of   the   user   interface   and   can   either   be  switched  “On”  or  “Off”  (see  Figure  13).  When  the  Driver  switches  the  Hazard  Warning  Light  Switch  on,  the  hazard  warning  light  gets  activated  -­‐‑  otherwise  deactivated.  

 

Driver Hazard Warning Light Switch

Switch Hazard Warning Light On

altwhen

Hazard Warning LightDeactivated

Hazard Warning LightActivated

Switch Hazard Warning Light Off

whenHazard Warning Light

Activated

Hazard Warning LightDeactivated

Activate Hazard Warning Light

Deactivate Hazard Warning Light

1.1.3 – MSC – Set Hazard Warning Light Switch

 

Figure  13:  MSC  -­‐‑  Set  Hazard  Warning  Light  Switch  

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    13  

2.2.4 Set  Instrument  Cluster  

The   Instrument  Cluster  provides  access   to  additional   settings   for   the   low  beam  headlights.  Either  the  settings  for  the  daytime  running  light  or  the  settings  for  the  ambient  light  could  be  accessed  (see  Figure  14).  

Set Daytime Running Light

SetAmbient Light

1.1.4 – hMSC – Set Instrument Cluster

 

Figure  14:  hMSC  -­‐‑  Set  Instrument  Cluster  

The  Daytime  Running  Light  can  be  activated  or  deactivated  by  the  Driver   in  the  Instrument  Cluster   in   the   menu   “Settings,   Vehicle   settings,   Daytime   running   light”   (see  Figure  15).  Furthermore,   the   Ambient   Light   can   be   activated   or   deactivated   in   the   menu   “Settings,  Vehicle  settings,  Ambient  lighting”  (see  Figure  16).  

Driver Instrument Cluster

Switch Daytime Running Light On

altwhen

Daytime Running LightDeactivated

Daytime Running LightActivated

Switch Daytime Running Light Off

whenDaytime Running Light

Activated

Daytime Running LightDeactivated

Activate Daytime Running Light

Deactivate Daytime Running Light

1.1.4.1 – MSC – Set Daytime Running Light

 

Figure  15:  MSC  -­‐‑  Set  Daytime  Running  Light  

Driver Instrument Cluster

Switch Ambient Light On

altwhen

Ambient LightDeactivated

Ambient LightActivated

Switch Ambient Light Off

whenAmbient Light

Activated

Ambient LightDeactivated

Activate Ambient Light

Deactivate Ambient Light

1.1.4.2 – MSC – Set Ambient Light

 

Figure  16:  MSC  -­‐‑  Set  Ambient  Light  

 

Specification  of  the  Behavioral  Requirements  

14  

2.2.5 Set  Darkness  Switch  

The   Darkness   Switch   is   part   of   the   user   interface   and   mounted   in   the   area   of   the   upper  control  field  -­‐‑  but  only  available  in  armored  vehicles.  If  the  Darkness  Switch   is  available,  the  Driver  can  activate  or  deactivate  the  Darkness  Mode  (see  Figure  17).  

 

Driver Darkness Switch

Switch Darkness Mode On

altwhen

Darkness ModeDeactivated

Darkness ModeActivated

Switch Darkness Mode Off

whenDarkness Mode

Activated

Darkness ModeDeactivated

Activate Darkness Mode

Deactivate Darkness Mode

1.1.5 – MSC – Set Darkness Switch

 

Figure  17:  MSC  -­‐‑  Set  Darkness  Switch  

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    15  

2.2.6 Set  Ignition  Key  

A   simplified   model   of   the   Ignition   Key   is   presented   in   Figure  18   to   ensure   a   consistent  behavior   of   the   ELS.   First   of   all,   the   key   could   be   inserted.  When   the   key   is   inserted,   the  engine  could  be  started  or  stopped.  As  long  as  the  engine  is  stopped,  it  is  possible  to  remove  the  key.  

whenInserted

InsertIgnition Key

whenEngine Started

Stop Engine

Start EngineRemoveIgnition Key

Simplified modelof the ignition key.

whenEngine

Stopped

1.1.6 – hMSC – Set Ignition Key

 

Figure  18:  hMSC  -­‐‑  Set  Ignition  Key  

 

All  referenced  MSCs  in  Figure  18  need  to  be  initialized  by  the  Driver  and  lead  to  a  change  of  the  local  conditions  of  the  Ignition  Key  (see  Figure  19,  Figure  20,  Figure  21,  and  Figure  22).  

 

Driver Ignition Key

whenRemoved

Insert Ignition Key

Inserted

1.1.6.1 – MSC – Insert Ignition Key

 

Figure  19:  MSC  -­‐‑  Insert  Ignition  Key  

Driver Ignition Key

Remove Ignition Key

Removed

1.1.6.2 – MSC – Remove Ignition Key

 

Figure  20:  MSC  -­‐‑  Remove  Ignition  Key  

 

Specification  of  the  Behavioral  Requirements  

16  

Driver Ignition Key

Start Engine

Engine Started

1.1.6.3 – MSC – Start Engine

 

Figure  21:  MSC  -­‐‑  Start  Engine  

Driver Ignition Key

Stop Engine

Engine Stopped

1.1.6.4 – MSC – Stop Engine

 

Figure  22:  MSC  -­‐‑  Stop  Engine  

 

2.3 Control  Headlights  

The   control   of   the   headlights   (see  Figure  23)   comprises   the   control   of   the   high   beam  headlights   (see  Section  2.3.1),   the   control  of   the   low  beam  headlights   (see  Section  2.3.2)   and  the  handling  of  overvoltage  (see  Section  2.3.3).  

 

Control High Beam

Headlights

Handle Overvoltage

Control Low Beam

Headlights

1.2 – hMSC – Control Headlights

 

Figure  23:  hMSC  -­‐‑  Control  Headlights  

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    17  

2.3.1 Control  High  Beam  Headlights  

The  behavioral   requirements   for   the   control   of   the  high  beam  headlights   are   structured   in  Figure  24.  Either  the  high  beam  headlights  are  activated  or  deactivated.  When  the  high  beam  headlights  are  deactivated,  the  manual  or  adaptive  high  beam  headlights  could  be  activated  (see  Section  2.3.1.1).  Subsequently  either  the  voltage  is  checked  and  the  high  beam  headlight  gets   adapted   (see  Section  2.3.1.3)   or   the   high   beam   headlights   could   be   deactivated  (see  Section  2.3.1.2)  if  they  were  activated.  

 

Activate Adaptive High Beam Headlights

Activate Manual High Beam Headlights

Deactivate High Beam Headlights

Adapt High Beam Headlights

whenDeactivated

whenActivated

Check Voltage

1.2.1 – hMSC – Control High Beam Headlights

 

Figure  24:  hMSC  -­‐‑  Control  High  Beam  Headlights  

     

Specification  of  the  Behavioral  Requirements  

18  

2.3.1.1 Activate  High  Beam  Headlights  

When  the  high  beam  headlights  are  activated  by  the  Pitman  Arm  and  the  Rotary  Light  Switch  is   in   “Off”-­‐‑   or   “Exterior   Light   On”-­‐‑Position   the  Adaptive   High   Beam   Headlight   switches   to  activated  and  activates  the  high  beam  headlights  with  a  fixed  illumination  area  of  220m  due  to  the  High  Beam  Module  (see  Figure  25).  The  activation  via  the  Pitman  Arm  includes  the  so-­‐‑called  flasher  (see  Section  2.2.2).  

 

Pitman ArmHigh Beam

ModuleAdaptive High

Beam Headlight

whenHigh Beam Headlights

Activated

High Beam Headlights Active

Activate

Activated

Activate HighBeam Headlights

Rotary Light Switch

whenOff

whenExterior Light On

alt

Not in Auto Mode

Illumination Areas = 220m

1.2.1.2 – MSC – Activate Manual High Beam Headlights

 

Figure  25:  MSC  -­‐‑  Activate  Manual  High  Beam  Headlights    

     

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    19  

The  activation  of   the  adaptive  high  beam  headlight   is   initialized  by   the  pushed  position  of  the  Pitman  Arm  and  the  auto  mode  of  the  Rotary  Light  Switch  (see  Figure  26).  After  activating  the   high   beam   headlights   at   the  High   Beam  Module,   the   voltage   needs   to   be   checked.   The  adaption  of  the  high  beam  headlights  is  not  available  with  subvoltage  and  the  illumination  area  is  set  to  default.  Otherwise,  the  adaption  is  activated  and  the  operational  availability  of  is  indicated  by  a  symbol  in  the  Instrument  Cluster.    

 

Pitman ArmHigh Beam

ModuleAdaptive High

Beam Headlight

whenHigh Beam

Headlights Activated,Pushed

High Beam Headlights Active

Activate

Activated

Rotary Light Switch

whenAuto

Auto Mode

Illumination Areas = 220m

alt

InstrumentCluster

Check Voltage

whenSubvoltage

whenNormal Voltage

BodyController

Voltage

ActivateAdaption

AdaptionActivated

Operational Availability

Activate HighBeam Headlights

1.2.1.3 – MSC – Activate Adaptive High Beam Headlights

 

Figure  26:  MSC  -­‐‑  Activate  Adaptive  High  Beam  Headlights  

Specification  of  the  Behavioral  Requirements  

20  

2.3.1.2 Deactivate  High  Beam  Headlights  

When   the  Pitman  Arm   is  moved  again   in   the  horizontal  neutral  position,   the  Adaptive  High  Beam   Headlight   is   deactivated   immediately   (see  Figure  27).   Furthermore   the   adaption   is  deactivated   (if   necessary)   and   the   operational   availability   is   updated   in   the   Instrument  Cluster.  

 

Pitman ArmHigh Beam

ModuleAdaptive High

Beam Headlight

whenHigh Beam Headlights

Deactivated

High Beam Headlights Inactive

Deactivate

Deactivated

Deactivate HighBeam Headlights

Adaption Deactivated

alt

whenAdaption Activated

DeactivateAdaption

InstrumentCluster

Operational Availability

1.2.1.1 – MSC – Deactivate High Beam Headlights

 

Figure  27:  MSC  -­‐‑  Deactivate  High  Beam  Headlights  

     

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    21  

2.3.1.3 Check  Voltage  and  Adapt  High  Beam  Headlights  

Before   the   high   beam   headlight   gets   adapted,   the   voltage   needs   to   be   checked   again  (see  Figure  28  and  Figure  26).  

 

Adaptive HighBeam Headlight

DeactivateAdaption

AdaptionDeactivated

alt

Check Voltage

whenSubvoltage,

Adaption Activated

whenNormal Voltage,

Adaption Deactivated

ActivateAdaption

AdaptionActivated

InstrumentCluster

Operational Availability

Operational Availability

BodyController

Voltage

1.2.1.4 – MSC – Check Voltage

 

Figure  28:  MSC  -­‐‑  Check  Voltage  

 

   

Specification  of  the  Behavioral  Requirements  

22  

When  the  adaption  is  activated  and  the  Camera  recognizes  the  lights  of  an  advancing  vehicle,  activated   high   beam   headlight   are   reduced   to   low   beam   headlight   within   0.5   seconds   by  reducing   the   illumination  area   to   65m   in   the  High  Beam  Module.   If   no  advancing  vehicle   is  recognized   any   more,   the   high   beam   illumination   is   restored   within   2   seconds   and   the  illumination  area  is  within  100m  and  300m,  depending  on  the  vehicle  speed.  

 

High BeamModule

Adaptive HighBeam Headlight

Calculate Illimination Areas

Calculated Illumination Areas

Illumination Areas = 220m

alt

whenAdaption Deactivated

whenAdaption Activated

ESP Control Unit

Vehicle Speed

Camera Unit

whenNo Vehicle Detected

No Vehicle Detected

alt

2sec

Check VehicleSpeed

whenVehicle Speed

> 30km/h

whenVehicle Detected

Vehicle Detected

Illumination Areas = 65m

0,5s

ec

1.2.1.5 – MSC – Adapt High Beam Headlights

 

Figure  29:  MSC  -­‐‑  Adapt  High  Beam  Headlights  

     

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    23  

2.3.2 Control  Low  Beam  Headlights  

In  Figure  30,   the   allowed   combinations  of   the   activation  and  deactivation  of   the   low  beam  headlights  as  well  as   the  control  of   the  cornering   light  are  presented.  The  activation  of   the  low   beam   headlights   can   be   done   under   several   conditions   (see  Section  2.3.2.1).  When   the  low  beam  headlights   are   activated,   they   could   either   be  deactivated   (see  Section  2.3.2.2)   or  the  cornering  light  could  be  controlled  (see  Section  2.3.2.3).  

Control Cornering

Light

whenActivated

Deactivate Low Beam Headlights

Activate Low Beam

Headlights

1.2.2 – hMSC – Control Low Beam Headlights

 

Figure  30:  hMSC  -­‐‑  Control  Low  Beam  Headlights  

 

2.3.2.1 Activate  Low  Beam  Headlights  

The   activation   of   the   low   beam  headlights   can   be   done   by   the   ambient   light,   the   daytime  running   light,   manually,   or   automatically.   Each   activation   ensures   conditions   without  interdependencies  to  keep  the  low  beam  headlights  active  (cf.  Section  2.3.2.2).  

Activate Ambient

Light

Activate Daytime

Running Light

Activate Low Beam Headlights

Manual

Activate Low Beam Headlights

Automatic

1.2.2.1 – hMSC – Activate Low Beam Headlights

 

Figure  31:  hMSC  -­‐‑  Activate  Low  Beam  Headlights  

Specification  of  the  Behavioral  Requirements  

24  

The   activation   of   the   ambient   light   needs   the   activation   in   the   Instrument   Cluster   and   the  deactivation  of  the  darkness  mode  in  the  Darkness  Switch  in  armored  vehicles  (see  Figure  32).  In   addition,   the   ambient   light   is   not   available   with   subvoltage,   therefore   the   voltage   gets  checked.   If   the   preconditions   are   given,   there   are   two   alternatives   to   activate   the   ambient  light.  As  soon  as  a  at   least  one  door  of   the  vehicle   is  opened  and   the  exterior  brightness   is  lower  than  the  threshold  S1,  the  Low  Beam  Headlight  sets  the  condition  activated  and  ambient  light   on   via   door,   and   activates   the   low   beam   headlights   via   the   High   Beam   Module.  Otherwise   the   ambient   light   gets   activated   as   soon   as   the   engine   is   switched   off   and   the  ignition  key  is  removed.  In  this  case,  the  Low  Beam  Headlight  sets  the  condition  activated  and  ambient  light  on  via  Key,  and  activates  the  low  beam  headlights  via  the  High  Beam  Module.  

High BeamModule

LowBeam HeadlightDarkness Switch

whenDarkness Mode

Deactivated

Activate

Activated,Ambient Light Door On

Activate LowBeam Headlights

BodyController

Exterior Brightness

Check Exterior Brightness

whenExterior Brightness < S1

alt

Darkness ModeDeactivated

Instrument Cluster

whenAmbient Light

Activated

Ambient LightActivated

alt

alt Door Opened

IgnitionKey

whenRemoved

Key Removed

Activate

Activated,Ambient Light Key On

Activate LowBeam Headlights

Check Voltage

Voltage

altwhen

Normal Voltage

1.2.2.1.1 – MSC – Activate Ambient LightDoor

Control UnitRoof ConsoleControl Unit

 

Figure  32:  MSC  -­‐‑  Activate  Ambient  Light  

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    25  

When   the   daytime   running   light   is   activated   in   the   Instrument  Cluster   and   the   engine   gets  started,  the  Low  Beam  Headlight  sets  the  condition  to  activated  and  daytime  running  light  on,  and  activates  the  low  beam  headlights  via  the  High  Beam  Module  (see  Figure  33).  

High BeamModule

LowBeam HeadlightIgnition Key

whenEngine Started

Instrument Cluster

whenDaytime Running Light

ActivatedEngine Started

Activate

Activated,Daytime Running Light On

Activate LowBeam Headlights

Daytime RunningLight Activated

1.2.2.1.2 – MSC – Activate Daytime Running Light

 

Figure  33:  MSC  -­‐‑  Activate  Daytime  Running  Light  

 

The  manual   activation   of   the   low   beam   headlights   is   triggered   when   the   exterior   light   is  switched   on   in   the  Rotary   Light   Switch   (see  Figure  34).   This   leads   to   the   setting   conditions  activated   and  manual   on   in   the  Low   Beam  Headlight,   and   the   activation   via   the  High   Beam  Module.  

High BeamModule

LowBeam Headlight

Activate

Activated,Manual On

Activate LowBeam Headlights

Rotary LightSwitch

whenExterior Light On

Exterior Light On

1.2.2.1.3 – MSC – Activate Low Beam Headlights Manual

 

Figure  34:  MSC  -­‐‑  Activate  Low  Beam  Headlights  Manual  

Specification  of  the  Behavioral  Requirements  

26  

When   the   Rotary   Light   Switch   is   in   auto   mode   and   the   darkness   mode   is   deactivated   (in  armored   vehicles),   the   exterior   brightness   is   checked   by   the   Low   Beam   Headlight  (see  Figure  35).   If   the   exterior   brightness   is   lower   than   the   threshold   S1,   the   Low   Beam  Headlight   sets   the   condition   to   activated   and   automatic   on,   and   activates   the   low   beam  headlights  via  the  High  Beam  Module.  

 

High BeamModule

LowBeam Headlight

Rotary LightSwitch

whenAuto

Darkness Switch

whenDarkness Mode

DeactivatedAuto Mode

Activate

Activated,Automatic On

Activate LowBeam Headlights

Roof ConsoleControl Unit

Exterior Brightness

Check Exterior Brightness

whenExterior Brightness < S1

alt

Darkness Mode Deactivated

1.2.2.1.4 – MSC – Activate Low Beam Headlights Automatic

 

Figure  35:  MSC  -­‐‑  Activate  Low  Beam  Headlights  Automatic  

     

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    27  

2.3.2.2 Deactivate  Low  Beam  Headlights  

For   the  deactivation  of   the   low  beam  headlights,  none  of   the  possible  activation  conditions  must   be   enabled.   Therefore,   the   four   activation   scenarios   (cf.  Section  2.3.2.1)   need   a  deactivation   scenario   (see  Figure  36).   Every   time   a   deactivation   scenario   was   passed,   the  conditions   are   checked   and   the   low   beam   headlights   either   remain   activated   or   get  deactivated.  

 

Deactivate Ambient

Light

Deactivate Daytime

Running Light

Deactivate Low Beam Headlights

Manual

Deactivate Low Beam Headlights

Automatic

Check Conditions and Switch Off

1.2.2.2 – hMSC – Deactivate Low Beam Headlights

 

Figure  36:  hMSC  -­‐‑  Deactivate  Low  Beam  Headlights  

 

Figure  37  describes  the  four  alternatives  to  deactivate  the  ambient  light.  In  armored  vehicles,  the   ambient   light   gets   deactivated   when   the   darkness   mode   is   activated   by   the  Darkness  Switch.   When   the   ambient   light   is   deactivated   in   the   Instrument   Cluster,   the   Low   Beam  Headlight   immediately   deactivated   both   activation   conditions.   The   third   alternative   only  concerns  the  activation  via  door  and  is  triggered  by  the  Door  Control  Unit  when  all  doors  are  closed.  As  long  as  the  ambient  light  was  activated  by  a  key  removal,  the  ambient  light  gets  deactivated  as  soon  as  none  of  the  actions  open  door,  close  door,  insert  or  remove  key  occur  within  the  next  30  seconds.  

Specification  of  the  Behavioral  Requirements  

28  

30se

c<

30se

c

LowBeam HeadlightDarkness Switch Door Control UnitInstrument Cluster

whenAmbient LightDeactivated

Ambient LightDeactivated

alt

Door Opened

Ignition Key

whenRemoved

Key Removed

whenDarkness Mode

Activated

Darkness ModeActivated

Ambient Light Door Off,Ambient Light Key Off

whenAmbient Light Door On

All Doors Closed

Ambient Light Door Off

Ambient Light Door Off,Ambient Light Key Off

whenAmbient Light Key On

alt

Ambient Light Key On

< 30

sec

Door Closed

whenAmbient Light Key On

Ambient Light Key On

< 30

sec

whenAmbient Light Key On

Ambient Light Key On

whenInserted

Key Inserted< 30

sec

whenAmbient Light Key On

Ambient Light Key On

whenAmbient Light Key On

Ambient Light Key Off

1.2.2.2.1 – MSC – Deactivate Ambient Light

 

Figure  37:  MSC  -­‐‑  Deactivate  Ambient  Light  

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    29  

The   daytime   running   light   gets   deactivated   either   by   deactivating   the   function   in   the  Instrument  Cluster  or  by  removing  the  Ignition  Key  (see  Figure  38).  

 

LowBeam HeadlightIgnition Key

whenEngine Started

Instrument Cluster

whenDaytime Running Light

DeactivatedEngine Started

Daytime Running Light Off

Daytime RunningLight Deactivated

alt

whenRemoved

Key Removed

Daytime Running Light Off

1.2.2.2.2 – MSC – Deactivate Daytime Running Light

 

Figure  38:  MSC  -­‐‑  Deactivate  Daytime  Running  Light  

     

Specification  of  the  Behavioral  Requirements  

30  

When  the  darkness  mode  gets  activated  in  armored  vehicles,  the  automatic  condition  of  the  Low   Beam   Headlight   is   set   to   off   (see  Figure  39).   Otherwise   the   exterior   brightness   gets  checked   and   the   Low   Beam   Headlight   deactivates   the   automatic   condition   3   seconds   after  exceeding  a  threshold  S2.  

 

3sec

LowBeam Headlight

Rotary LightSwitch

whenAuto

Darkness Switch

whenDarkness Mode

DeactivatedAuto Mode

Automatic Off

Roof ConsoleControl Unit

Exterior Brightness

Check Exterior Brightness

whenExterior Brightness > S2

alt

Darkness Mode Deactivated

whenAuto

whenDarkness Mode

ActivatedAuto Mode

Darkness Mode Activated

alt

Automatic Off

1.2.2.2.4 – MSC – Deactivate Low Beam Headlights Automatic

 

Figure  39:  MSC  -­‐‑  Deactivate  Low  Beam  Headlights  Automatic  

     

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    31  

To  deactivate  the  low  beam  headlights  manually,  the  driver  needs  to  switch  the  Rotary  Light  Switch  to  off  and  the  Low  Beam  Headlight  is  set  to  manual  off  (see  Figure  40).  

When   one   of   the   activation   conditions   of   the   low   beam   headlight   was   deactivated   the  conditions  are  checked,  and  only  if  all  conditions  are  set  to  off,  the  Low  Beam  Headlight  is  set  to   deactivated   and   the   low   beam   headlights   get   deactivated   via   the   High   Beam   Module  (see  Figure  41).  

LowBeam Headlight

Manual Off

Rotary LightSwitch

whenOff

Off Mode

1.2.2.2.3 – MSC – Deactivate Low Beam Headlights Manual

 

Figure  40:  MSC  -­‐‑  Deactivate  Low  Beam  Headlights  Manual  

LowBeam Headlight

High BeamModule

Deactivate

Deactivated

Deactivate LowBeam Headlights

whenAmbient Light Door Off,Ambient Light Key Off,

Daytime Running Light Off,Manual Off,

Automatic Off

1.2.2.2.5 – MSC – Check Conditions and Switch Off

 

Figure  41:  MSC  -­‐‑  Check  Conditions  and  Switch  Off  

2.3.2.3 Control  Cornering  Light  

When  the  darkness  mode  is  deactivated  and  direction  blinking  is  requested  by  the  Turning  Light,  the  cornering  light  is  activated  by  the  Low  Beam  Headlight  via  the  Body  Controller  if  the  vehicle   drives   slower   than   10   km/h   and   there   is   no   subvoltage   (see  Figure  42).   If   no  more  blinking  is  requested  for  10  seconds  the  cornering  light  gets  deactivated.  

Specification  of  the  Behavioral  Requirements  

32  

10se

c

BodyController

LowBeam HeadlightDarkness Switch

whenDarkness Mode

Deactivated

ESPControl Unit

Darkness ModeDeactivated

alt

alt

Check VehicleSpeed

whenVehicle Speed < 10km/h,

Normal Voltage

Turning Light

whenDirection Blinking Right

Activated

Activate Right Cornering Light

Right Cornering Light Activated

Activate Right Cornering Light

whenVehicle Speed < 10km/h,

Normal Voltage

whenDirection Blinking Left

Activated

Activate Left Cornering Light

Left Cornering Light Activated

Activate Left Cornering Light

whenDirection Blinking Left

Deactivated,Direction Blinking Right

Deactivated

Deactivate Cornering Light

Cornering Light Deactivated

DeactivateCornering Light

Check Voltage

Voltage

1.2.2.3 – MSC – Control Cornering Light

 

Figure  42:  MSC  -­‐‑  Control  Cornering  Light  

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    33  

2.3.3 Handle  Overvoltage  

To   protect   the   illuminants   from   burning   out   in   case   of   an   occurring   overvoltage,   the  Adaptive  High  Beam  Headlight  and  the  Low  Beam  Headlight  must  adapt  the  pulse  width  via  the  High  Beam  Module  and  the  Body  Controller  (see  Figure  43).  

Adaptive HighBeam Headlight

whenActivated

BodyController

Voltage

LowBeam Headlight

High BeamModule

Pulse Width Modulation

Adapt Pulse Width

whenActivated

whenRight Cornering Light Activated

Check Voltage

whenOvervoltage

alt

Pulse Width Modulation

Adapt Pulse Width

whenOvervoltage

alt

alt

whenLeft Cornering Light Activated

Voltage

Check Voltage

Pulse Width Modulation

Adapt Pulse Width

whenOvervoltage

alt

Pulse Width Modulation

Adapt Pulse Width

whenOvervoltage

alt

1.2.3 – MSC – Handle Overvoltage

 

Figure  43:  MSC  -­‐‑  Handle  Overvoltage  

Specification  of  the  Behavioral  Requirements  

34  

2.4 Control  Turn  Signal  

The  control  of  the  turn  signal  (see  Figure  44)  comprises  the  activation  and  deactivation  of  the  direction  and  tip  blinking,  and  the  control  of  the  hazard  warning  light  (see  Section  2.4.3).  The  direction  and  tip  blinking  need  to  be  differentiated  between  blinking  left  (see  Section  2.4.1)  or  right   (see  Section  2.4.2).   To   activate   one   of   the   blinking   directions,   the   other   blinking  direction  must  be  deactivated.  This  represents  the  vertical  neutral  position  of  the  pitman  arm  (cf.  Section  2.2.2).  However,  controlling  the  hazard  warning  switch  is   independent  from  the  actual  blinking  status.  

 

Activate Direction Blinking Left

Activate Direction Blinking Right

ControlHazard Warning

Light

Deactivate Direction Blinking

Left

Deactivate Direction Blinking

Right

whenDirection Blinking Right Deactivated

Activate Tip Blinking Left

Activate Tip Blinking Right

whenDirection Blinking Right Activated

whenDirection Blinking Left Deactivated

whenDirection Blinking

Left Activated

whenHazard Warning Light

Deactivated

1.3 – hMSC – Control Turning Lights

 

Figure  44:  hMSC  -­‐‑  Control  Turning  Lights  

     

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    35  

2.4.1 Direction  Blinking  Left  

The  activation  of  the  left  direction  blinking  is  triggered  by  the  Pitman  Arm  position  (engaged)  down   (see  Figure  45).   This   leads   to   the   activation   of   the   left   direction   indicators   by   the  Turning  Light   via   the  Body  Controller   and   the  Door  Control  Unit  with  a  pulse   ratio  bright   to  dark  1:1.  

 

Turning LightBody

Controller

Direction Blinking LeftActivated

Left Indicators (Pulse Ratio 1:1)

Activate Left Indicators

Pitman Arm

whenDown

whenEngaged Down

Activate Direction Blinking Left

alt

Activate Direction Blinking Left

1.3.2 – MSC – Activate Direction Blinking Left

Left Indicators (Pulse Ratio 1:1)

Activate Left Indicators

DoorControl Unit

 

Figure  45:  MSC  -­‐‑  Activate  Direction  Blinking  Left  

     

Specification  of  the  Behavioral  Requirements  

36  

When   the   Pitman   Arm   position   is   moved   to   down   for   less   than   0.5   seconds,   the   left   tip  blinking  is  activated  (see  Figure  46).  The  activation  of  tip  blinking  in  the  Turning  Light  leads  to  an  activation  of  the  left  direction  indicators  for  three  flashing  cycles.  

 

Turning LightBody

Controller

Tip Blinking LeftActivated

Left Indicators (Pulse Ratio 1:1)

Activate Left Indicators

Pitman Arm

whenDown

whenVertical Neutral

Activate Tip Blinking Left

Deactivate Tip Blinking Left

< 0,

5s

Blink for 3 Cycles

Tip Blinking LeftDeactivated

1.3.3 – MSC – Activate Tip Blinking Left

Left Indicators (Pulse Ratio 1:1)

Activate Left Indicators

Blink for 3 Cycles

DoorControl Unit

   

Figure  46:  MSC  -­‐‑  Activate  Tip  Blinking  Left  

 

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    37  

To  deactivate   the   left  direction  blinking,   the  Pitman  Arm  needs   to  be  moved   to   the  vertical  neutral  position  (see  Figure  47).  The  Turning  Light  switches  its  state  to  direction  blinking  left  deactivated  and  deactivates  the  left  direction  indicators  via  the  Body  Controller  and  the  Door  Control  Unit.  

 

Turning LightBody

Controller

Direction Blinking LeftDeactivated

Deactivate Left Indicators

Pitman Arm

whenVertical Neutral

Deactivate Direction Blinking Left

1.3.7 – MSC – Deactivate Direction Blinking LeftDoor

Control Unit

Deactivate Left Indicators

   

Figure  47:  MSC  -­‐‑  Deactivate  Direction  Blinking  Left  

 

   

Specification  of  the  Behavioral  Requirements  

38  

2.4.2 Direction  Blinking  Right  

The   right   direction   and   tip   blinking   is   analogous   to   the   left   side   (compare   Figure  48  with  Figure  45,  Figure  50  with  Figure  46,  and  Figure  49  with  Figure  47).  

Turning LightBody

Controller

Direction Blinking RightActivated

Right Indicators (Pulse Ratio 1:1)

Activate Right Indicators

Pitman Arm

whenUp

whenEngaged Up

Activate Direction Blinking Right

alt

Activate Direction Blinking Right

1.3.4 – MSC – Activate Direction Blinking RightDoor

Control Unit

Activate Right Indicators

Right Indicators (Pulse Ratio 1:1)

   

Figure  48:  MSC  -­‐‑  Activate  Direction  Blinking  Right  

Turning LightBody

Controller

Direction Blinking RightDeactivated

Deactivate Right Indicators

Pitman Arm

whenVertical Neutral

Deactivate Direction Blinking Right

1.3.6 – MSC – Deactivate Direction Blinking Right

Deactivate Right Indicators

DoorControl Unit

   

Figure  49:  MSC  -­‐‑  Deactivate  Direction  Blinking  Right  

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    39  

 

Turning LightBody

Controller

Tip Blinking RightActivated

Pitman Arm

whenUp

whenVertical Neutral

Activate Tip Blinking Right

Deactivate Tip Blinking Right

< 0,

5s

1.3.5 – MSC – Activate Tip Blinking Right

Right Indicators (Pulse Ratio 1:1)

Activate Right Indicators

Blink for 3 Cycles

Tip Blinking RightDeactivated

Right Indicators (Pulse Ratio 1:1)

Activate Right Indicators

Blink for 3 Cycles

DoorControl Unit

   

Figure  50:  MSC  -­‐‑  Activate  Tip  Blinking  Right  

 

2.4.3 Hazard  Warning  Light  

When   the   hazard   warning   light   gets   activated   via   the   Hazard   Warning   Light   Switch,   the  Turning  Light   activates  both   (left   and   right)  direction   indicators  via   the  Body  Controller  and  the  Door  Control  Unit   (see  Figure  51).   For   energy   saving   reasons,   the  pulse   ratio   is   reduced  (bright  to  dark  1:2)  when  the  Ignition  Key  is  removed.  To  deactivate  the  hazard  warning  light,  the  Hazard  Warning  Light   Switch  must   be   switched  off.   The  Turning  Light   sets   its   condition  back   to   hazard   warning   light   deactivated   and   direction   blinking   will   be   continued   -­‐‑   if  activated  (cf.  Figure  44).  

Specification  of  the  Behavioral  Requirements  

40  

Hazard WarningLight Switch

whenHazard Warning Light

Deactivated

whenHazard Warning Light

Activated

Turning Light

Hazard Warning Light Activated

BodyController

Hazard Warning LightActivated

Left Indicators (Pulse Ratio 1:2)

alt

IgnitionKey

whenRemoved

whenInserted

Key Removed

Right Indicators (Pulse Ratio 1:2)

Key Inserted

Left Indicators (Pulse Ratio 1:1)Right Indicators (Pulse Ratio 1:1)

Activate Left IndicatorsActivate Left Indicators

alt

Hazard Warning Light Deactivated

Hazard Warning LightDeactivated

Deactivate Left IndicatorsDeactivate Right Indicators

1.3.1 – MSC – Control Hazard Warning Light

DoorControl Unit

Activate Right IndicatorsActivate Right Indicators

Left Indicators (Pulse Ratio 1:2)Right Indicators (Pulse Ratio 1:2)

Left Indicators (Pulse Ratio 1:1)Right Indicators (Pulse Ratio 1:1)

Deactivate Left IndicatorsDeactivate Right Indicators

 

Figure  51:  MSC  -­‐‑  Control  Hazard  Warning  Light  

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    41  

2.5 Detect  Faults  

In  addition  to  the  handling  of  over-­‐‑  and  subvoltage  (e.g.,  Section  2.3.3),  the  system  provides  the   functionality   to   detect   defective   headlights   (see  Figure  52).   The  High   Beam  Module,   the  Body   Controller   and   the   Door   Control   Unit   transmit   the   illuminant   status   to   the   Defect  Detection,   which   checks   the   status   and   informs   the   Instrument   Cluster   about   defective  illuminants.  Finally,  the  Instrument  Cluster  prioritizes  the  displayed  information.  

 

Instrument ClusterHigh Beam

Module

Prioritize the Display

Defect Detection

Check Illuminant Status

Illuminant Status

whenDefective Illuminant Detected

1.4 – MSC – Detect Faults

BodyController

DoorControl Unit

Illuminant Status

Illuminant Status

 

Figure  52:  MSC  -­‐‑  Detect  Faults  

 

   

Specification  of  the  Functional  Design  

42  

3 Specification  of  the  Functional  Design  

The  model-­‐‑based  specification  of  a   first   functional  design  –  as  described   in   the   following  –  comprises   the   combination   of   function   networks   and   interface   automata.   The   interaction  between  system  functions  and  context  functions  is  described  by  function  network  diagrams.  Additionally,  the  internal  behavior  of  the  system  functions  is  specified  as  interface  automata.  The  context  of  the  system  and  the  interaction  of  the  main  system  functions  are  described  in  Section  3.1,   while   the   detailed   descriptions   of   the  main   system   functions   are   presented   in  Section  3.2,  3.3,  and  3.4.  

The   specified   functions   of   the   ELS   are   subdivided   into   system   and   context   functions.   An  overview  is  given  in  Table  2  and  Table  3.  

 

Table  2:  Context  Functions  

Context  Function   Shapes  

High  Beam  Module  

Context Function  

Body  Controller  

Use  Ignition  Key  

Measure  Exterior  Brightness  

ESP  Control  

Turn  Rotary  Light  Switch  

Set  Instrument  Cluster  

Door  Control  

Move  Pitman  Arm  

Detect  Vehicles  

Switch  Darkness  Mode  

Switch  Hazard  Warning  Light  

 

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    43  

Table  3:  System  Functions  

System  Function   Level   Shapes  

Control  Adaptive  Exterior  Lighting  System   0  

System Function  

   Control  Headlights   1  

       Control  High  Beam  Headlights   2  

           Activate  Manual  High  Beam  Headlights   3  

           Activate  Adaptive  High  Beam  Headlights   3  

           Deactivate  Adaptive  High  Beam  Headlights   3  

           Check  Voltage   3  

           Adapt  High  Beam  Headlights   3  

       Control  Low  Beam  Headlights   2  

           Activate  Low  Beam  Headlights   3  

               Activate  Low  Beam  Headlights  Manual   4  

               Activate  Low  Beam  Headlights  Automatic   4  

               Activate  Daytime  Running  Light   4  

               Activate  Ambient  Light   4  

                   Check  Conditions   5  

                   Activate  by  Door   5  

                   Activate  by  Key   5  

           Deactivate  Low  Beam  Headlights   3  

               Deactivate  Low  Beam  Headlights  Manual   4  

               Deactivate  Low  Beam  Headlights  Automatic   4  

               Deactivate  Daytime  Running  Light   4  

               Deactivate  Ambient  Light   4  

               Check  Conditions  and  Switch  Off   4  

           Control  Cornering  Light   3  

               Check  Conditions   4  

               Activate  Left  Cornering  Light   4  

               Deactivate  Left  Cornering  Light   4  

               Activate  Right  Cornering  Light   4  

               Deactivate  Rights  Cornering  Light   4  

       Handle  Overvoltage   2  

   Control  Turn  Lights   1  

Specification  of  the  Functional  Design  

44  

       Activate  Hazard  Warning  Light   2  

       Deactivate  Hazard  Warning  Light   2  

       Activate  Direction  Blinking  Left   2  

       Activate  Tip  Blinking  Left   2  

       Deactivate  Direction  Blinking  Left   2  

       Activate  Direction  Blinking  Right   2  

       Activate  Tip  Blinking  Right   2  

       Deactivate  Direction  Blinking  Right   2  

   Detect  Faults   1  

 

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    45  

3.1 Structure  of  the  Functional  Design  

The   Adaptive   Exterior   Lighting   System   comprises   three   main   system   functions   Control  Headlights,   Control   Turn   Lights,   and   Detect   Faults,   which   are   represented   by   the   abstract  system  function  Control  Adaptive  Exterior  Lighting  System.  The  context  of  this  abstract  system  function  is  described  in  a  context  diagram  (cf.  Figure  53).  As  modeled  in  the  context  diagram,  the   abstract   system   function   interacts   with   the   12   context   functions   and   interchanges   58  messages.   For   reasons   of   clarity   and   comprehensibility,   several  messages   are   summarized  and   labeled  with   an   expression   (e.  g.,   the  message  Key   {Inserted   |   Removed}   represents   the  messages  Key   Inserted   and  Key   Removed).   However,   condensed  messages   are   separated   on  lower  abstraction  levels.    

In   the   following,   the  meaning  of  all   interactions  between   functions   is  usually  described  on  the  lowest  abstraction  level  where  no  subdivision  of  functions  occurs.  

 

Control Adaptive Exterior Lighting SystemDetect Vehicles

Switch Hazard Warning Light

Move Pitman Arm

Body Controller

Measure Exterior Brightness

Turn Rotary Light Switch

Use Ignition KeyHigh Beam Module

SwitchDarkness Mode

ESP Control

Door Control

0 - Context

Set Instrument Cluster

 

Figure  53:  Context  Diagram  

 

   

Specification  of  the  Functional  Design  

46  

The  three  main  system  functions  Control  Headlights,  Control  Turn  Lights,  and  Detect  Faults  and  their  message  interchanges  are  presented  in  Figure  54.  In  contrast  to  the  context  diagram,  it  is  already   noticeable   how   the  messages   between   system   functions   and   context   functions   are  distributed  on  this   level  of  abstraction.  The  messages   for   the  activation  and  deactivation  of  the  hazard  warning  light  are  only  connected  to  the  system  function  Control  Turn  Lights,   for  example.   Moreover,   the   system   function   Control   Turn   Lights   informs   the   system   function  Control  Headlight  about  the  status  of  the  direction  blinking.    

 

Detect Faults

High Beam Module

Illum

inat

ion

Sta

tus

Control Turn Lights

Control Headlights

Detect VehiclesSwitchDarkness Mode

Door Control

Use Ignition Key

Switch Hazard Warning Light

Move Pitman Arm

Measure Exterior Brightness

Turn Rotary Light Switch

ESP Control

{Lef

t | R

ight

} Blin

king

Act

ivat

ed

{Lef

t | R

ight

} Blin

king

Dea

ctiv

ated

Body Controller

Illum

inat

ion

Sta

tus

Illum

inat

ion

Sta

tus

1 – Control Adaptive Exterior Lighting System

Set Instrument Cluster

 

Figure  54:  Function  Network  Diagram  –  Control  Adaptive  Exterior  Lighting  System  

 

In   the   following   sections,   the   three   main   system   function   Control   Headlights   (Section  3.2),  Control   Turn   Lights   (Section  3.3)   and  Detect   Faults   (Section  3.4)   with   their   interactions   and  internal  behavior  are  described  in  detail.  

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    47  

3.2 Control  Headlights  

The   control   of   the   headlights   (cf.  Figure  55)   is   subdivided   into   the   three   system   functions  Control  High  Beam  Headlights  (cf.  Section  3.2.1),  Control  Low  Beam  Headlights  (cf.  Section  3.2.2),  and  Handle  Overvoltage  (cf.  Section  3.2.3).  The  control  of  the  high  beam  headlights  is  triggered  by  the  horizontal  position  of  the  pitman  arm,  the  detection  of  vehicles,  the  vehicle  speed,  the  position  of  the  rotary  light  switch,  and  the  voltage.  Moreover,  the  activation  and  deactivation  as  well  as  the  illumination  areas  of  the  high  beam  headlights  are  transmitted  to  the  context  function  High  Beam  Module.  To  control  the  low  beam  headlights  and  the  cornering  light,  the  ambient  and  daytime  running  light  settings,  the  vehicle  speed,  the  position  of  the  rotary  light  switch,  the  voltage,  the  exterior  brightness,  the  status  of  the  darkness  mode  and  the  doors  as  well  as  the  information  about  the  ignition  key  are  used.  Moreover,  the  status  of  the  direction  blinking   from   the   system   function   Control   Turn   Lights   (cf.  Section  3.3)   is   required   for   the  cornering  light  functionality.  The  system  function  Handle  Overvoltage  needs  to  get  enabled  by  the  system  function  Control  High  Beam  Headlights  or  Control  Low  Beam  Headlights.  

High Beam Modul

Control Turn Lights

Detect Vehicles

SwitchDarkness Mode

Door Control

Use Ignition Key

Move Pitman Arm

Measure Exterior Brightness

Turn Rotary Light Switch

ESP Control

Push

ed

Pulle

d

Hor

izon

tal

Neu

tral

Body Controller

Set Instrument Cluster

Control High Beam Headlights

Control Low Beam Headlights

<<Enablement>>

Handle Overvoltage

Exte

rior L

ight

On

1.2 – Control Headlights

 

Figure  55:  Function  Network  Diagram  -­‐‑  Control  Headlights  

Specification  of  the  Functional  Design  

48  

3.2.1 Control  High  Beam  Headlights  

The   system   function   Control   High   Beam   Headlights   (see  Figure  56)   is   subdivided   into   the  system   functions   Activate   Manual   High   Beam   Headlights   and   Activate   Adaptive   High   Beam  Headlights  (see  Section  3.2.1.1),  Deactivate  High  Beam  Headlights  (see  Section  3.2.1.2),  and  Check  Voltage  and  Adapt  High  Beam  Headlights  (see  Section  3.2.1.3).  

By  modeling   the   dependencies   between   the   system   functions,   it   is   visible   that   the   system  function   Adapt   High   Beam   Headlights   needs   to   be   enabled   by   the   system   function   Check  Voltage.   In  addition,   the  system  functions  Check  Voltage   and  Deactivate  High  Beam  Headlights  need   the   enablement   by   the   system   functions   Activate   Manual   High   Beam   Headlights   or  Activate  Adaptive  High  Beam  Headlights.  Otherwise,  the  system  function  Deactivate  High  Beam  Headlights   enables   the   system   functions  Activate  Manual   High   Beam  Headlights   and  Activate  Adaptive  High  Beam  Headlights.  

As   an   interaction   between   the   system   functions,   the   status   of   the   adaption   is   transmitted  from  Activate   Adaptive   High   Beam   Headlights   and  Deactivate   High   Beam   Headlights   to   Check  Voltage  and  as  a  result  to  Adapt  High  Beam  Headlights.  The  other  interactions  between  context  and  system  functions  are  described  as  referred  to  in  Figure  56  in  the  following.  

 

High Beam Module

Detect Vehicles

Move Pitman ArmTurn Rotary Light Switch

ESP Control

Body Controller

Set Instrument Cluster

Off

Ext

erio

r Li

ght O

n

Activate Manual High Beam Headlights

Activate Adaptive High Beam Headlights

Check Voltage

Adapt High Beam Headlights

Deactivate High Beam Headlights

<<Enablement>>

<<Enablement>>

<<Enablement>>

Aut

o

Adoption Deactivated

1.2.1 – Control High Beam Headlights

 

Figure  56:  Function  Network  Diagram  -­‐‑  Control  High  Beam  Headlights  

 

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    49  

3.2.1.1 Activate  High  Beam  Headlights  

When  the  high  beam  headlights  are  activated  by  the  context  functions  Move  Pitman  Arm  and  Turn   Rotary   Light   Switch,   the  messages   with   fixed   Illumination   Areas   of   220m   and  Activate  High  Beam  Headlights   are   transmitted   to   the   context   function  High  Beam  Module   (Figure  57).  The  activation  by  the  pitman  arm  includes  the  so-­‐‑called  flasher  (cf.  Section  2.2.2).  

Pushed

1.2.1.1 – Activate Manual High Beam Headlights

Pulled?

Pushed?

Exterior Light On?

Off?

Activate;Activate HighBeam Headlights!

Illumination Areas (220m)!

Pulled Off Exterior Lights On

Activate HighBeam Headlights

IlluminationAreas

 

Figure  57:  Interface  Automaton  -­‐‑  Activate  Manual  High  Beam  Headlights  

The  activation  of   the  adaptive  high  beam  headlight   is   initialized  by   the  pushed  position  of  the  pitman  arm  and  the  auto  mode  of  the  rotary  light  switch  (see  Figure  58).  After  activating  the  high  beam  headlights  by   the  message  Activate  High  Beam  Headlights,   transmitted   to   the  context  function  High  Beam  Module,  the  voltage  needs  to  be  checked.  The  adaption  of  the  high  beam  headlights  is  not  available  with  subvoltage  and  the  illumination  area  is  set  to  default.  Otherwise  the  adaption  is  activated  and  the  Operational  Availability  of  the  adaptive  high  beam  headlight  is  indicated  by  a  symbol  in  the  instrument  cluster.    

Auto?

Pushed? Auto?

Pushed?

Activate;

Illumination Areas (220m)!

Activate HighBeam Headlights!Voltage?

CheckVoltage; Normal Voltage;Subvoltage;

AdoptionActivated!Operational Availability!

Pushed

1.2.1.2 – Activate Adaptive High Beam Headlights

VoltageAuto

Activate HighBeam Headlights

IlluminationAreas

OperationalAvailability

AdoptionActivated

 

Figure  58:  Interface  Automaton  -­‐‑  Activate  Adaptive  High  Beam  Headlights  

Specification  of  the  Functional  Design  

50  

3.2.1.2 Deactivate  High  Beam  Headlights  

When   the  pitman  arm   is  moved  again   in   the  horizontal  neutral  position,   the  Adaptive  High  Beam   Headlight   is   deactivated   immediately   (see  Figure  59).   Furthermore,   the   adaption   is  deactivated   (if   necessary)   and   the   operational   availability   is   updated   in   the   instrument  cluster.  

 

HorizontalNeutral

1.2.1.3 – Deactivate High Beam Headlights

HorizontalNeutral? Deactivate;

Check AdoptionAcitvation;

Adoption Deactivated!

Operational Availability!

Deactivate HighBeam Headlights

Deactivate HighBeam Headlights!

AdoptionDeactivated

 

Figure  59:  Interface  Automaton  -­‐‑  Deactivate  High  Beam  Headlights  

 

3.2.1.3 Check  Voltage  and  Adapt  High  Beam  Headlights  

Before   the   high   beam   headlight   gets   adapted,   the   voltage   needs   to   be   checked   again  (see  Figure  60,  cf.  Figure  58).  

 

Voltage

1.2.1.4 – Check Voltage

Voltage?

CheckVoltage;

NormalVoltage;

Operational Availability!

Subvoltage;

AdoptionDeactivated

AdoptionDeactivated?

AdoptionActivated?

DeactivateAdoption;

ActivateAdoption;

AdoptionActivated!

AdoptionDeactivated!

AdoptionActivated

AdoptionDeactivated

AdoptionActivated

 

Figure  60:  Interface  Automaton  -­‐‑  Check  Voltage  

 

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    51  

When  the  adaption  is  activated  and  the  context  function  Detect  Vehicles  recognizes  the  lights  of   an   advancing   vehicle,   the   activated   high   beam   headlights   are   reduced   to   low   beam  headlights   by   reducing   the   illumination   area   to   65m   in   the   context   function   High   Beam  Module.   If   no   advancing   vehicle   is   recognized   any   more,   the   high   beam   illumination   is  restored   and   the   illumination   area   is   calculated  within   100m  and   300m,  depending   on   the  vehicle  speed.  Otherwise,  when  the  adoption  is  deactivated,  the  illumination  areas  are  set  to  default  220m.  

 

1.2.1.5 – Adapt High Beam Headlights

Adoption Deactivated?

VehicleDetected?

IlluminationAreas

VehicleSpeed

AdoptionDeactivated

AdoptionActivated

AdoptionActivated?

No VehicleDetected?

VehicleSpeed?

CheckVehicleSpeed;

CalculateIllumination

Areas;Illumination

Areas!

IlluminationAreas (65m)!

Illumination Areas (220m)!

VehicleDetected

No VehicleDetected

 

Figure  61:  Interface  Automaton  -­‐‑  Adapt  High  Beam  Headlights  

   

Specification  of  the  Functional  Design  

52  

3.2.2 Control  Low  Beam  Headlights  

In   Figure  62,   the   subdivision   of   the   system   function   Control   Low   Beam   Headlights   by  introducing   the   system   functions   Activate   Low   Beam   Headlights   and   Deactivate   Low   Beam  Headlights   as   well   as  Control   Cornering   Light   is   presented.   The   activation   of   the   low   beam  headlights   can   be   done   under   several   conditions   (see  Section  3.2.2.1).  When   the   low   beam  headlights   are   activated,   they   could   either   be   deactivated   (see  Section  3.2.2.2)   or   the  cornering  light  could  be  controlled  (see  Section  3.2.2.3).  The  several  activation  conditions  are  transmitted   from   the   system   function  Activate   Low   Beam  Headlights   to   the   system   function  Deactivate  Low  Beam  Headlights.  Moreover,  the  system  function  Control  Cornering  Light  needs  to  get  informed  about  the  activation  status  of  the  low  beam  headlights  and  can  be  prevented  by   the   system   function  Deactivate   Low   Beam   Headlights   or   enabled   by   the   system   function  Activate  Low  Beam  Headlights.  Again,  a  more  detailed  description  of  the  interactions  with  the  context  functions  is  given  in  the  following  on  a  lower  level  of  abstraction.  

 

ActivateLow Beam Headlights

DeactivateLow Beam Headlights

ControlCornering Light

<<Enablement>>

SwitchDarkness Mode

Body Controller

ESP Control Control Turn Lights

<<Prevention>>

Set Instrument Cluster

Door Control

Measure Exterior Brightness

Use Ignition Key

High Beam Module

Turn Rotary Light Switch

Low Beam Headlights Deactivated

1.2.2 -Control Low Beam Headlights

 

Figure  62:  Function  Network  Diagram  -­‐‑  Control  Low  Beam  Headlights  

 

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    53  

3.2.2.1 Activate  Low  Beam  Headlights  

The   activation   of   the   low   beam  headlights   can   be   done   by   the   ambient   light,   the   daytime  running  light,  manually,  or  automatically  (see  Figure  63).  Each  activation  ensures  conditions  without  interdependencies  to  keep  the  low  beam  headlights  active  and  needs  to  inform  the  system   functions   Control   Cornering   Light   (cf.  Section  3.2.2.3)   and   Deactivate   Low   Beam  Headlights   (cf.  Section  3.2.2.2)   about   its   status.   In   the   following,   the   internal   behavior   of   all  possible  activation  functions  and  their  interactions  are  described  in  detail.  

 

DeactivateLow Beam Headlights

ControlCornering Light

SwitchDarkness Mode

Body Controller

Set Instrument Cluster

Door Control

Measure Exterior Brightness

Use Ignition Key

High Beam Module

Daytime Running Light Activated

Turn Rotary Light Switch

Activate Ambient Light

Activate Daytime Running Light

Activate Low Beam Headlights Manual

Activate Low Beam Headlights Automatic

1.2.2.1 – Activate Low Beam Headlights

ExteriorBrightness

 

Figure  63:  Function  Network  Diagram  -­‐‑  Activate  Low  Beam  Headlights  

 

   

Specification  of  the  Functional  Design  

54  

The  manual   activation   of   the   low   beam   headlights   is   triggered   when   the   exterior   light   is  switched  on  (see  Figure  64).  This  leads  to  the  transmission  of  the  messages  Activate  Low  Beam  Headlights  to  the  context  function  High  Beam  Module  and  Low  Beam  Headlights  Activated  to  the  system  function  Control  Cornering  Light.  Moreover,  the  system  function  Deactivate  Low  Beam  Headlight  gets  informed  about  the  manual  activation.  

 

Exterior LightOn

Activate LowBeam Headlights

1.2.2.1.3 – Activate Low Beam Headlights Manual

Exterior LightOn?

Activate LowBeam Headlights!

Low BeamHeadlights Activated

ManualOn

Low BeamHeadlights Activated!

ManualOn!

 

Figure  64:  Interface  Automaton  -­‐‑  Activate  Low  Beam  Headlights  Manual  

 

When   the   rotary   light   switch   is   in   auto   mode   and   the   darkness   mode   is   deactivated   (in  armored   vehicles),   the   exterior   brightness   from   the   context   function   Measure   Exterior  Brightness   is  checked  (see  Figure  65).   If   the  exterior  brightness   is   lower   than  a   threshold  S1,  the  low  beam  headlights  are  activated  and  automatic  is  set  to  on.  

 

DarknessmodeDeactivated

Activate LowBeam Headlights

1.2.2.1.4 – Activate Low Beam Headlights Autoamtic

ExteriorBrightness? Check Exterior Brightness;

Brightness < S1;

DarknessmodeDeactivated?

Activate LowBeam Headlights!

Brightness >= S1

Auto ExteriorBrightness

Low BeamHeadlights Activated

Auto?

AutomaticOn

Low BeamHeadlights Activated!

AutomaticOn!

 

Figure  65:  Interface  Automaton  -­‐‑  Activate  Low  Beam  Headlights  Automatic  

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    55  

When   the  daytime   running   light   is   activated  by   the   context   function  Set   Instrument  Cluster  and  the  engine  gets  started,  the  low  beam  headlights  are  activated  and  daytime  running  light  is  on  (see  Figure  66).    

1.2.2.1.2 – Activate Daytime Running Light

Daytime RunningLight Activated

Activate LowBeam Headlights

Daytime RunningLight Activated?

EngineStarted?

Low BeamHeadlights Activated

Daytime RunningLight On

Low BeamHeadlights Activated!

Daytime RunningLight On!

EngineStarted

Low BeamHeadlights Activated!

 

Figure  66:  Interface  Automaton  -­‐‑  Activate  Daytime  Running  Light  

 

The   system   function   Activate   Ambient   Light   is   divided   into   three   system   functions   again  (see  Figure  67).  First,  the  conditions  for  an  activation  need  to  be  checked,  and  afterwards  the  ambient  light  could  either  be  activated  by  door  or  by  key.  

 

Specification  of  the  Functional  Design  

56  

DeactivateLow Beam Headlights

ControlCornering Light

SwitchDarkness Mode

Body Controller

DarknessmodeDeactivated

Set Instrument Cluster

Ambient LightActivated

Voltage

Door Control

Measure Exterior Brightness Use Ignition Key

High Beam Module

Check Conditions

Activate by Door Activate by Key

1.2.2.1.1 – Activate Ambient Light

 

Figure  67:  Function  Network  Diagram  -­‐‑  Activate  Ambient  Light  

The   activation   of   the   ambient   light   needs   the   activation   in   the   instrument   cluster   and   the  deactivation   of   the   darkness   mode   in   armored   vehicles   (see  Figure  68).   In   addition,   the  ambient  light  is  not  available  with  subvoltage,  therefore  the  voltage  gets  checked.    

 

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    57  

Ambient LightActivated

ConditionsAccepted

1.2.2.1.1.1 – Check Conditions

DarknessmodeDeactivated?

Ambient LightActivated?

Voltage?

Check Voltage;ContitionsAccepted!

No Normal Voltage;

Normal Voltage;

Voltage DarknessmodeDeactivated

 

Figure  68:  Interface  Automaton  -­‐‑  Check  Conditions  

KeyRemoved

Activate LowBeam Headlights

1.2.2.1.1.3 – Activate by Key

ConditionsAccepted?

Activate LowBeam Headlights!

Low BeamHeadlights Activated

Low BeamHeadlightsActivated!

Ambient Light Key On!

KeyRemoved?

Ambient Light Key On

ConditionsAccepted

 

Figure  69:  Interface  Automaton  -­‐‑  Activate  by  Key    

 

If   the   preconditions   are   given,   there   are   two   alternatives   to   activate   the   ambient   light.   As  soon  as  at   least  one  door  of   the  vehicle   is  opened  and  the  exterior  brightness   is   lower  than  the  threshold  S1,  the  low  beam  headlights  are  activated  and  the  ambient  light  is  on  via  door  (see  Figure  70).  Otherwise,  the  ambient  light  gets  activated  as  soon  as  the  engine  is  switched  off  and  the  ignition  key  is  removed.  In  this  case,  the  low  beam  headlights  are  activated  and  the  ambient  light  is  on  via  Key  (see  Figure  69).  

 

ExteriorBrightness

Activate LowBeam Headlights

1.2.2.1.1.2 – Activate by Door

ConditionsAccepted?

Activate LowBeam Headlights!

Low BeamHeadlights Activated

Low BeamHeadlightsActivated!

Ambient Light Door On!

DoorOpened?

ExteriorBrightness?

Check ExteriorBrightness;

ExteriorBrightness < S1

Exterior Brightness >= S1

Ambient Light Door On

ConditionsAccepted

DoorOpened

 

Figure  70:  Interface  Automaton  -­‐‑  Activate  by  Door  

3.2.2.2 Deactivate  Low  Beam  Headlights  

For   the  deactivation  of   the   low  beam  headlights,  none  of   the  possible  activation  conditions  must   be   enabled.   Therefore,   the   four   activation   functions   (cf.  Section  3.2.2.1)   need   a  deactivation   function   (see  Figure  71).   Every   time   a   deactivation   function   is   completed,   the  

Specification  of  the  Functional  Design  

58  

conditions   are   checked   and   the   low   beam   headlights   either   remain   activated   or   become  deactivated  by  the  system  function  Check  Conditions  and  Switch  Off.  

 

ActivateLow Beam Headlights

ControlCornering Light

SwitchDarkness ModeSet Instrument Cluster Door Control Measure Exterior

BrightnessUse Ignition Key

High Beam Module

Turn Rotary Light Switch

Off

Low B

eam

Headlights

Activated

DeactivateAmbient Light

Deactivate Daytime Running Light

Deactivate Low Beam Headlights Manual

Check Conditions and Switch Off

Deactivate Low Beam Headlights Automatic

1.2.2.2 – Deactivate Low Beam Headlights

 

Figure  71:  Function  Network  Diagram  -­‐‑  Deactivate  Low  Beam  Headlights  

 

To  deactivate  the  low  beam  headlights  manually,   the  driver  needs  to  switch  the  rotary  light  switch  to  off  and  the  low  beam  headlights  are  Manual  Off  (see  Figure  72).  

When  the  darkness  mode  gets  activated  in  armored  vehicles,  the  automatic  condition  is  set  to  off   (see  Figure  73).   Otherwise,   the   exterior   brightness   gets   checked   and   the   low   beam  headlights  are  deactivated  after  exceeding  a  threshold  S2.  

 

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    59  

Off

1.2.2.2.3 – DeactivateLow Beam Headlights

Manual

ManualOn?

ManualOff

ManualOff!

ManualOn

Off?

 

Figure  72:  Interface  Automaton  -­‐‑  Deactivate  Low  Beam  Headlights  Manual  

DarknessmodeDeactivated

AutomaticOff

1.2.2.2.4 – Deactivate Low Beam Headlights Automatic

ExteriorBrightness?

Check ExteriorBrightness;

Brightness > S2;

DarknessmodeDeactivated?

Brightness <= S2;

Auto ExteriorBrightness

Auto?

AutomaticOn

AutomaticOff!

DarknessmodeActivated

DarknessmodeActivated?

Auto?

 

Figure  73:  Interface  Automaton  -­‐‑  Deactivate  Low  Beam  Headlights  Automatic  

 

The   daytime   running   light   gets   deactivated   either   by   deactivating   the   function   in   the  instrument  cluster  or  by  removing  the  ignition  Key  (see  Figure  74).  

 

1.2.2.2.2 – Deactivate Daytime Running Light

Daytime RunningLight Deactivated

Daytime RunningLight Off

Daytime RunningLight Deactivated?

EngineStarted?

Daytime RunningLight On

Daytime RunningLight Off!

EngineStarted

Key Removed?

Daytime RunningLight On?

KeyRemoved

 

Figure  74:  Interface  Automaton  -­‐‑  Deactivate  Daytime  Running  Light  

 

Figure  75  describes  the  four  alternatives  to  deactivate  the  ambient  light.  In  armored  vehicles,  the  ambient  light  gets  deactivated  when  the  darkness  mode  is  activated.  When  the  ambient  light   is   deactivated   by   the   context   function   Set   Instrument   Cluster,   the   Low   Beam  Headlight  immediately   deactivated   both   activation   conditions   (door   and   key).   The   third   alternative  only  concerns   the  activation  via  door  and   is   triggered  by   the   context   function  Door  Control  when  all  doors  are  closed.  As  long  as  the  ambient  light  was  activated  by  a  key  removal,  the  ambient  light  gets  deactivated  as  soon  as  none  of  the  actions  open  door,  close  door,  insert  or  remove  key  occur  within  the  next  30  seconds.  

Specification  of  the  Functional  Design  

60  

 

1.2.2.2.1 – Deactivate Ambient Light

Ambient Light Deactivated

Ambient Light{Door | Key} Off

DarknessmodeActivated

Ambient Light Door Off!

All DoorsClosed

Darknessmode Activated?

Ambient Light Door On

Ambient Light Key Off!

Ambient Light Deactivated?

Ambient Light Door On?

All DoorsClosed?

Ambient Light Key On?

Key Removed?

Key Inserted?

Door Closed?

Door Opened?

Check Time;

Ambient Light Key Off! Time > 30sec

Time <= 30sec

Door{Opened | Closed}

Key {Removed | Inserted}

 

Figure  75:  Interface  Automaton  -­‐‑  Deactivate  Ambient  Light  

 

If  one  of  the  activation  conditions  of  the  low  beam  headlight  was  deactivated  the  conditions  are  checked,  and  only  if  all  conditions  are  set  to  off,  the  low  beam  headlights  get  deactivated  (see  Figure  76).  For  reasons  of  clarity  and  comprehensibility  the  messages  Ambient  Light  Door  Off,  Ambient   Light   Key   Off,  Daytime   Running   Light   Off,  Automatic   Off,   and  Manual   Off   are  modeled  as  a  sequence,  but  the  order  is  interchangeable.  

 

Low BeamHeadlights Activated

1.2.2.2.5 – Check Conditions and Switch Off

Daytime RunningLight Off?

AutomaticOff?Manual Off?

Low BeamHeadlights Activated?

Ambient Light Key Off

AutomaticOff

Daytime RunningLight Off

Ambient Light Key Off?

DeactivateLow Beam Headlights!

Low BeamHeadlights Deactivated!

Ambient Light Door Off?

Ambient Light Door Off

ManualOff

Deactivate LowBeam Headlights

Low BeamHeadlights Deactivated

 

Figure  76:  Interface  Automaton  -­‐‑  Check  Conditions  and  Switch  Off  

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    61  

 

3.2.2.3 Control  Cornering  Light  

The  system   function  Control  Cornering  Light   is  divided   into   the   five   system   functions  Check  Conditions,   Activate   Left   Cornering   Light,   Activate   Right   Cornering   Light,   Deactivate   Left  Cornering   Light,   and   Deactivate   Right   Cornering   Light   (see  Figure  77).   The   activation   and  deactivation   is   triggered  by   the  system  function  Control  Turn  Lights   (cf.  Section  3.3)  and   for  the   activation   it   needs   to   receive   the   message  Conditions   Accepted   by   the   system   function  Check  Conditions.  

 

ActivateLow Beam Headlights

DeactivateLow Beam Headlights

SwitchDarkness Mode

Volta

ge

Body Controller

ESP Control

Control Turn Lights

Check Conditions

Activate Left Cornering Light

Activate Right Cornering Light

Deactivate Left Cornering Light

Deactivate Right Cornering Light

1.2.2.3 – Control Cornering Light

 

Figure  77:  Function  Network  Diagram  -­‐‑  Control  Cornering  Light  

 

When   the   low   beam   headlights   are   activated,   the   darkness   mode   is   deactivated.   The  conditions  for  an  activation  are  met  if  the  vehicle  drives  slower  than  10  km/h  and  there  is  no  subvoltage  (see  Figure  78).  

 

Specification  of  the  Functional  Design  

62  

Low BeamHeadlightsActivated

ConditionsAccepted

1.2.2.3.1 – Check Conditions

DarknessmodeDeactivated?Voltage?

VehicleSpeed?

CheckConditions;

Low BeamHeadlights Activated?Low Beam

Headlights Deactivated?

Contitions Accepted!

Conditions not fulfilled;

Conditions fulfilled;

Low BeamHeadlightsDeactivated

DarknessmodeDeactivated

Voltage VehicleSpeed

 

Figure  78:  Interface  Automaton  -­‐‑  Check  Conditions  

 

To   activate   the   left   cornering   light,   the   left   blinking  must   be   activated   and   the   conditions  must  be  met  (see  Figure  79),  and  to  deactivate  the  left  cornering  light,  the  left  blinking  must  be  deactivated  by  the  system  function  Control  Turn  Lights  (see  Figure  80).  

 

ConditionsAccepted

Activate LeftCornering Light

1.2.2.3.2 – Activate Left Cornering Light

Left BlinkingActivated?

Activate Left Cornering Light!

ConditionsAccepted?Left Blinking

Activated?

Left BlinkingActivated

 

Figure  79:  Interface  Automaton  -­‐‑  Activate  Left  Cornering  Light  

Deactivate Left Cornering Light!

1.2.2.3.3 – Deactivate Left Cornering Light

Left Blinking Deactivated?

Deactivate Left Cornering Light!

Left BlinkingDeactivated

 

Figure  80:  Interface  Automaton  -­‐‑  Deactivate  Left  Cornering  Light  

 

To   activate   the   left   cornering   light,   the   left   blinking  must   be   activated   and   the   conditions  must  be  met  (see  Figure  81),  and  to  deactivate  the  right  cornering  light,  the  left  blinking  must  be  deactivated  by  the  system  function  Control  Turn  Lights  (see  Figure  80).  

 

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    63  

ConditionsAccepted

Activate Right Cornering Light

1.2.2.3.4 – Activate Right Cornering Light

Right BlinkingActivated?

Activate Right Cornering Light!

ConditionsAccepted?Right Blinking

Activated?

Right BlinkingActivated

 

Figure  81:  Interface  Automaton  -­‐‑  Activate  Right  Cornering  Light  

Deactivate RightCornering Light!

1.2.2.3.5 – Deactivate Right Cornering Light

Right Blinking Deactivated?

Deactivate Right Cornering Light!

Right BlinkingDeactivated

 

Figure  82:  Interface  Automaton  -­‐‑  Deactivate  Right  Cornering  Light  

 3.2.3 Handle  Overvoltage  

To  protect   the   illuminants   from  burning  out   in   case  of  an  occurring  overvoltage,   the  pulse  width  gets  adapted  via  the  High  Beam  Module  and  the  Body  Controller  (see  Figure  83).  

 

Voltage?

Voltage

Check Voltage;

AdaptPulse Width!

Adapt Pulse Width

Overvoltagedetected;

Normal voltage;

1.2.3 – Handle Overvoltage

 

Figure  83:  Interface  Automaton  -­‐‑  Handle  Overvoltage  

 

3.3 Control  Turn  Signal  

The   system   function   Control   Turn   Lights   is   subdivided   into   the   eight   system   functions  Activate   Hazard  Warning   Light,  Deactivate   Hazard  Warning   Light,  Activate   Tip   Blinking   Right,  Activate  Direction  Blinking  Right,  Deactivate  Direction  Blinking  Right,  Activate  Tip  Blinking  Left,  Activate   Direction   Blinking   Left,   and   Deactivate   Direction   Blinking   Left   (cf.  Figure  84   and  Figure  85).  Compared  to  Figure  54  in  Section  3.1,  the  interactions  with  the  context  functions  are   distributed   and   the   system   function  Control   Headlights   receives   the   status   of   direction  blinking   from   several   system   functions   (cf.  Figure  84).   For   reasons   of   clarity   and  comprehensibility,   there  are   two  overviews  of   the   system   function  Control  Turn  Lights.   In  

Specification  of  the  Functional  Design  

64  

Figure  84,   only   the   interactions   and   messages   between   system   and   context   functions   are  presented,   and   in   Figure  85   an   overview   of   the   dependencies   of   the   system   functions   is  given.  

Basically,   the   messages   for   activation   and   deactivation   of   a   direction   indicator   are  transmitted  to  the  context  functions  Door  Control  and  Body  Controller,  which  are  responsible  for  the  physical  control  of  all  direction  indicators.  The  message  Pulse  Ratio   is  used  to  adjust  the  bright  to  dark  ratio  of  each  direction  indicator.  

To  control  the  hazard  warning  light,  the  system  functions  Activate  Hazard  Warning  Light  and  Deactivate  Hazard  Warning  Light   receive   the  messages   containing   the   current   settings  of   the  hazard  warning   light   switch   and   the   status   of   the   ignition  key.  As   an  output   the  Left   and  Right  Blinking  is  either  activated  or  deactivated.  The  internal  behavior  of  these  two  system  functions   is   presented   in   Section  3.3.3.   The   other   six   system   functions   on   this   level   of  abstraction  control  the  left  (cf.  Section  3.3.1)  and  right  (cf.  Section  3.3.2)  turn  signals.  

 

Control Headlights

Door Control

Use Ignition KeySwitch Hazard Warning Light

Move Pitman Arm

Body Controller

Activate Hazard Warning Light

Deactivate Hazard Warning Light

ActivateDirection Blinking Left

Activate Direction Blinking Right

ActivateTip Blinking Left

Activate Tip Blinking Right

DeactivateDirection Blinking Left

DeactivateDirection Blinking Right

1.1 – Control Turn Lights (Messages)

 

Figure  84:  Function  Network  Diagram  -­‐‑  Control  Turn  Lights  (Messages)  

 

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    65  

In   Figure  85,   all   dependencies   between   the   system   functions   are   modeled   explicitly.   For  example,  it  is  only  possible  to  control  the  blinking  functionalities  when  the  hazard  warning  light  is  deactivated.  Moreover,  the  left  and  right  blinking  functionalities  prevent  each  other,  as  it  is  only  possible  to  blink  for  one  direction.  

 

Activate Hazard Warning Light

Deactivate Hazard Warning Light

ActivateDirection Blinking Left

Activate Direction Blinking Right

ActivateTip Blinking Left

Activate Tip Blinking Right

DeactivateDirection Blinking Left

DeactivateDirection Blinking Right <<Enablement>>

<<Prevention>>

<<Enablement>>

<<Prevention>><<Enablement>>

<<Prevention>>

<<Enablement>>

<<Enablement>>

<<Enablement>>

<<Enablement>>

1.1 – Control Turn Lights (Dependencies)

 

Figure  85:  Function  Network  Diagram  -­‐‑  Control  Turn  Lights  (Dependencies)  

 

3.3.1 Direction  Blinking  Left  

The  activation  of  the  left  direction  blinking  is  triggered  by  the  context  function  Move  Pitman  Arm  and  its  position  Down  or  Down  Engaged  (see  Figure  86).  This  leads  to  the  activation  of  the  left   direction   indicators  with   a   pulse   ratio   bright   to  dark   1:1   by   transmitting   the  messages  Activate  Left   Indicators  and  Left  Pulse  Ratio   to   the  context   functions  Body  Controller  and  Door  Control.  Moreover,  the  system  function  Control  Headlights  gets  informed  by  the  message  Left  Blinking  Activated   (cf.  Figure  84).  For  reasons  of  clarity  and  comprehensibility,   the  messages  Activate  Left  Indicators,  Left  Blinking  Activated,  and  Left  Pulse  Ratio  are  modeled  as  a  sequence,  but  the  order  of  Activate  Left  Indicators  and  Left  Pulse  Ratio  is  interchangeable.  

To  deactivate   the   left  direction  blinking,   the  pitman  arm  needs   to  be  moved   to   the  vertical  neutral  position   (see  Figure  87).   In   this   case,   the  direction  blinking   left  gets  deactivated  via  the   context   functions  Body  Controller   and   the  Door  Control   and   the   system   function  Control  Headlights  gets  informed.  

Specification  of  the  Functional  Design  

66  

Down?

Down

ActivateLeft Indicators!

Left BlinkingActivated!

Left PulseRatio (1:1)!

Down Engaged

ActivateLeft Indicators

Left BlinkingActivated

Left PulseRatio

Down Engaged?

1.1.3 – Activate Direction Blinking Left

 

Figure  86:  Interface  Automaton  -­‐‑  Activate  Direction  Blinking  Left  

Vertical Neutral?

VerticalNeutral

DeactivateLeft Indicators!

Left Blinking Deactivated!

DeactivateLeft Indicators

Left BlinkingDeactivated

1.1.5 – Deactivate Direction Blinking Left

 

Figure  87:  Interface  Automaton  -­‐‑  Deactivate  Direction  Blinking  Left  

 

When   the   pitman   arm   position   is   moved   to   down   for   less   than   0.5   seconds,   the   left   tip  blinking   is  activated   (see  Figure  88).  The  activation  of   tip  blinking   leads   to  an  activation  of  the   left   direction   indicators   for   three   flashing   cycles.   Just   as   in   Figure  86,   the   messages  Activate  Left  Indicators,  Left  Blinking  Activated,  and  Left  Pulse  Ratio  are  modeled  as  a  sequence  for  reasons  of  clarity  and  comprehensibility,  but  the  order  of  Activate  Left  Indicators  and  Left  Pulse  Ratio  is  interchangeable.  

 

Down?

Down

ActivateLeft Indicators!

Left BlinkingActivated!

Left PulseRatio (1:1)!

Vertical Neutral

ActivateLeft Indicators

Left BlinkingActivated

Left PulseRatio

1.1.4 – Activate Tip Blinking Left

Vertical Neutral? Check Down Duration;

Duration > 0,5s;

 

Figure  88:  Interface  Automaton  -­‐‑  Activate  Tip  Blinking  Left  

   

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    67  

3.3.2 Direction  Blinking  Right  

The   right   direction   and   tip   blinking   is   analogous   to   the   left   side   (compare   Figure  89  with  Figure  86,  Figure  90  with  Figure  88,  and  Figure  87  with  Figure  91).  

 

Up?

Up

ActivateRight Indicators!

Right BlinkingActivated!

Right PulseRatio (1:1)!

Up Engaged

ActivateRight Indicators

Right BlinkingActivated

Right PulseRatio

Up Engaged?

1.1.6 – Activate Direction Blinking Right

 

Figure  89:  Interface  Automaton  -­‐‑  Activate  Direction  Blinking  Right  

 

Up?

Up

ActivateRight Indicators!

Right BlinkingActivated!

Right PulseRatio (1:1)!

Vertical Neutral

ActivateRight Indicators

Right BlinkingActivated

Right PulseRatio

1.1.7 – Activate Tip Blinking Right

Vertical Neutral? Check Up Duration;

Duration > 0,5s;

 

Figure  90:  Interface  Automaton  -­‐‑  Activate  Tip  Blinking  Right  

 

Vertical Neutral?

VerticalNeutral

DeactivateRight Indicators!

Right Blinking Deactivated!

DeactivateRight Indicators

Right BlinkingDeactivated

1.1.8 – Deactivate Direction Blinking Right

 

Figure  91:  Interface  Automaton  -­‐‑  Deactivate  Direction  Blinking  Right  

Specification  of  the  Functional  Design  

68  

3.3.3 Hazard  Warning  Light  

When  the  hazard  warning  light  gets  activated  via  the  context  function  Switch  Hazard  Warning  Light   (cf.  Figure  84),   the   left   and   right   direction   indicators   get   activated   via   the   context  functions  Body  Controller  and  Door  Control  (see  Figure  92).  Again,  the  system  function  Control  Headlight  is  informed  by  the  messages  Left  Blinking  Activated  and  Right  Blinking  Activated.  In  Figure  92,   the   interchangeability   of   messages   concerning   the   left   and   right   indicators   is  modeled  explicitly.  For  energy  saving  reasons,  the  pulse  ratio  is  reduced  (bright  to  dark  1:2)  when  the  ignition  key  is  removed.  

 

Hazard Warning LightActivated?

ActivateLeft Indicators

KeyInserted

ActivateLeft Indicators!

ActivateRight Indicators!

ActivateLeft Indicators!

ActivateRight Indicators!

Left BlinkingActivated!

Right BlinkingActivated!

Left BlinkingActivated!

Right BlinkingActivated!

KeyRemoved?

Left PulseRatio (1:2)!

Right PulseRatio (1:2)!

Left PulseRatio (1:2)!

Right PulseRatio (1:2)!

Left PulseRatio (1:1)!

Right PulseRatio (1:1)!

Left PulseRatio (1:1)!

Right PulseRatio (1:1)!

KeyInserted?

KeyRemoved

Hazard Warning LightActivated

ActivateRight Indicators

Left BlinkingActivated

Right BlinkingActivated

Left PulseRatio

Right PulseRatio

1.1.1 – Activate Hazard Warning Light

 

Figure  92:  Interface  Automaton  -­‐‑  Activate  Hazard  Warning  Light  

 

The   deactivation   is   also   triggered   by   the   context   function   Switch   Hazard   Warning   Light  (cf.  Figure  84),   and   the   left   and   right   direction   indicators   get   deactivated   via   the   context  functions  Body  Controller  and  Door  Control  (see  Figure  93).  Again,  the  system  function  Control  Headlight  is  informed  by  the  messages  Left  Blinking  Deactivated  and  Right  Blinking  Deactivated.  

 

Model-­‐‑Based  Engineering  of  an  Automotive  Adaptive  Exterior  Lighting  System  

    69  

Hazard Warning LightDeactivated?

DeactivateLeft Indicators

DeactivateLeft Indicators!

DeactivateRight Indicators!

DeactivateLeft Indicators!

DeactivateRight Indicators!

Left IndicatorsDeactivated!

Right IndicatorsDeactivated!

Left IndicatorsDeactivated!

Right IndicatorsDeactivated!

Hazard Warning LightDeactivated

DeactivateRight Indicators

Left BlinkingDeactivated

Right BlinkingDeactivated

1.1.2 – Deactivate Hazard Warning Light

 

Figure  93:  Interface  Automaton  -­‐‑  Deactivate  Hazard  Warning  Light  

 

3.4 Defect  Faults  

The   system   function   Detect   Faults   uses   the   message   Illuminant   Status   from   the   context  functions   Body   Controller   and   High   Beam   Module   to   check   these   statuses   and   to   identify  defective  illuminants.  The  information  about  defective  illuminants  is  then  transmitted  to  the  context   function   Set   Instrument   Cluster   (cf.  Figure  54   in   Section  3.1).   This   behavior   is  presented  in  Figure  94.  

 

Illumination Status?

Defective IlluminantInformation

Defective IlluminantInformation!

IlluminantStatus

Check IlluminantStatus;

DefectiveIlluminant Detected;

No Defective Illuminant Detected;

1.3 – Detect Faults

 

Figure  94:  Interface  Automaton  -­‐‑  Detect  Faults  

 

   

References  

70  

4 References  

Beetz   K,   Böhm   DW   (2012)   Challenges   in   Engineering   for   Software-­‐‑Intensive   Embedded  Systems.  In:  Pohl  K,  Hönninger  H,  Achatz  R,  Broy  M  (eds)  Model-­‐‑Based  Engineering  of  Embedded  Systems.  Springer  Berlin  Heidelberg,  pp  3–14  

Brinkkemper  S,  Pachidi  S  (2010)  Functional  Architecture  Modeling  for  the  Software  Product  Industry.   In:   Babar   MA,   Gorton   I   (eds)   Software   Architecture.   Springer   Berlin  Heidelberg,  pp  198–213  

Daun  M,  Tenbergen  B,  Weyer  DT  (2012)  Requirements  Viewpoint.  In:  Pohl  K,  Hönninger  H,  Achatz   R,   Broy  M   (eds)  Model-­‐‑Based   Engineering   of   Embedded   Systems.   Springer  Berlin  Heidelberg,  pp  51–68  

Daun  M,  Weyer   T,   Pohl  K   (2014)  Validating   the   Functional  Design   of   Embedded   Systems  against   Stakeholder   Intentions:   Proceedings   of   the   2nd   International  Conference   on  Model-­‐‑Driven  Engineering   and   Software  Development   2014.   SCITEPRESS   -­‐‑   Science  and  and  Technology  Publications,  pp  333–339  

De   Alfaro   L,   Henzinger   TA   (2001)   Interface   Automata.   Proceedings   of   the   8th   European  Software  Engineering  Conference  Held  Jointly  with  9th  ACM  SIGSOFT  International  Symposium  on  Foundations  of  Software  Engineering.  ACM,  New  York,  NY,  USA,  pp  109–120  

Houdek  F   (2013)  System  Requirements  Specification  Automotive  System  Cluster   (ELC  and  ACC).  Technical  University  of  Munich  

ITU   (2011)   Recommendation   ITU-­‐‑T   Z.120  :   Message   Sequence   Chart   (MSC).   International  Telecommunication  Union  

Jantsch   A,   Sander   I   (2000)   On   the   roles   of   functions   and   objects   in   system   specification.  Proceedings  of  the  Eighth  International  Workshop  on  Hardware/Software  Codesign,  2000.  CODES  2000.  pp  8–12  

Pretschner   A,   Broy  M,   Kruger   IH,   Stauner   T   (2007)   Software   Engineering   for   Automotive  Systems:  A  Roadmap.  2007  Future  of  Software  Engineering.  IEEE  Computer  Society,  Washington,  DC,  USA,  pp  55–71  

Sikora  E,  Tenbergen  B,  Pohl  K  (2012)  Industry  needs  and  research  directions  in  requirements  engineering  for  embedded  systems.  Requirements  Eng  17:57–78.  doi:  10.1007/s00766-­‐‑011-­‐‑0144-­‐‑x  

Weber   M,   Weisbrod   J   (2002)   Requirements   engineering   in   automotive   development-­‐‑experiences   and   challenges.   IEEE   Joint   International   Conference   on   Requirements  Engineering,  2002.  Proceedings.  pp  331–340  

 

 

 

 

Previously  published  ICB  -­‐‑  Research  Reports  

2015  

No  63  (January)  

  Schauer,  Carola;  Schauer,  Hanno:  „IT  an  allgemeinbildenden  Schulen:  Bildungsgegenstand  und    -­‐‑infrastruktur  –  Auswertung  internationaler  empirischer  Studien  und  Literaturanalyse“  

2014  

No  62  (October)    

Köninger,  Stephan;  Heß,  Michael:  „Konzeption  und  Implementierung  eines  Software-­‐‑Werkzeuges  zur  multiperspektivischen  Bewertung  innovativer  Produkte,  Projekte  und  Dienstleistungen  im  Projekt  Hospital  Engineering  

No  61  (May)  

  Schauer,  Carola;  Frank,  Ulrich:  “Wirtschaftsinformatik  an  Schulen.  Status  und  Desiderata  mit  Fokus  auf  Nordrhein-­‐‑Westfalen“  

No  60  (May)  

  Heß,  Michael:  “Multiperspektivische  Dokumentation  und  Informationsbedarfsanalyse  kardiologischer  Prozesse  sowie  Konzeptualisierung  ausgewählter  medizinischer  Ressourcentypen  im  Projekt  Hospital  Engineering“  

No  59  (May)  

  Goedicke,  Michael;  Kurt-­‐‑Karaoglu,  Filiz;  Schwinning,  Nils;  Schypula,  Melanie;  Striewe,  Michael:  “Zweiter  Jahresbericht  zum  Projekt  „Bildungsgerechtigkeit  im  Fokus“  (Teilprojekt  1.2  -­‐‑  „Blended  Learning“)  an  der  Fakultät  für  Wirtschaftswissenschaften“  

No  58  (March)  

  Breitschwerdt,  Rüdiger;  Heß,  Michael:  “Konzeption  eines  Bezugsrahmens  zur  Analyse  und  Entwicklung  von  Geschäftsmodellen  mobiler  Gesundheitsdienstleistungen  –  Langfassung“  

No  57  (March)  

  Heß,  Michael;  Schlieter,  Hannes  (Hrsg.):  “Modellierung  im  Gesundheitswesen  –  Tagungsband  des  Workshops  im  Rahmen  der  »Modellierung  2014«“    

2013  

No  56  (July)  

  Svensson,  Richard  Berntsson;  Berry,Daniel  M.;  Daneva,  Maya;  Doerr,  Joerg;  Espana,  Sergio;  Herrmann,  Andrea;  Herzwurm,  Georg;  Hoffmann,  Anne;  Pena,  Raul  Mazo;  Opdahl,  Andreas  L.;  Pastor,  Oscar;  Pietsch,Wolfram;  Salinesi,  Camille;  Schneider,  Kurt;  Seyff,  Norbert;  van  de  Weerd,  Inge;  Wieringa,  Roel;  Wnuk,  Krzysztof  (Eds.):  “19th  International  Working  Conference  on  Requirements  Engineering:  Foundation  for  Software  Quality  (REFSQ  2013).  Proceedings  of  the  REFSQ  2013  Workshops  CreaRE,  IWSPM,  and  RePriCo,  the  REFSQ  2013  Empirical  Track  (Empirical  Live  Experiment  and  Empirical  Research  Fair),  the  REFSQ  2013  Doctoral  Symposium,  and  the  REFSQ  2013  Poster  Session“  

Previously  published  ICB  -­‐‑  Research  Reports  

 

No  55  (May)  

Daun,   Marian;   Focke,   Markus;   Holtmann,   Jörg;   Tenbergen,   Bastian:   “Goal-­‐‑Scenario-­‐‑   Oriented  Requirements   Engineering   for   Functional   Decomposition   with   Bidirectional   Transformation   to  Controlled  Natural  Language.  Case  Study  »Body  Control  Module«”  

No  54  (March)  

  Fischotter,   Melanie;   Goedicke,   Michael;   Kurz-­‐‑Karaoglu,   Filiz;   Schwinning,   Nils;   Striewe,   Michael:  “Erster   Jahresbericht   zum   Projekt   „Bildungsgerechtigkeit   im   Fokus“   (Teilprojekt   1.2   –   „Blended  Learning“)  an  der  Fakultät  für  Wirtschaftswissenschaften“  

2012  

No  53  (December)  

  Frank,  Ulrich:  “Thoughts  on  Classification  /  Instantiation  and  Generalisation  /  Specialisation“  

No  52  (July)  

Berntsson-­‐‑Svensson,  Richard;  Berry,  Daniel;  Daneva,  Maya;  Dörr,  Jörg;  Fricker,  Samuel  A.;  Hermann,  Andrea;  Herzwurm,  Georg;  Kauppinen,  Marjo;  Madhayji,  Nazim  H.;  Mahaux,  Martin;  Paech,  Barbara;  Penzenstadler,   Birgit;   Pietsch,   Wolfram;   Salinesi,   Camille;   Schneider,   Kurt;   Seyff,   Norbert;   van   de  Weerd,   Inge:   “18th   International  Working  Conference   on  Requirements   Engineering:   Foundation   for  Software  Quality.  Proceedings  of  the  Workshops  RE4SuSy,  REEW,  CreaRE,  RePriCo,  IWSPM  and  the  Conference  Related  Empirical  Study,  Empirical  Fair  and  Doctoral  Symposium“  

No  51  (May)  

  Frank,  Ulrich:  “Specialisation  in  Business  Process  Modelling:  Motivation,  Approaches  and  Limitations“  

No  50  (March)  

  Adelsberger,  Heimo;  Drechsler,  Andreas;  Herzig,  Eric;  Michaelis,  Alexander;  Schulz,  Philip;  Schütz,  Stefan;  Ulrich,  Udo:  “Qualitative  und  quantitative  Analyse  von  SOA-­‐‑Studien.  Eine  Metastudie  zu  serviceorientierten  Architekturen“  

2011  

No  49  (December)  

  Frank,  Ulrich:  “MEMO  Organisation  Modelling  Language  (2):  Focus  on  Business  Processes“  

No  48  (December)  

  Frank,  Ulrich:  “MEMO  Organisation  Modelling  Language  (1):  Focus  on  Organisational  Structure“  

No  47  (December)  

  Frank,  Ulrich:  “MEMO  Organisation  Modelling  Language:  Requirements  and  Core  Diagram  Types“  

No  46  (December)  

  Frank,  Ulrich:  “Multi-­‐‑Perspective  Enterprise  Modelling:  Background  and  Terminological  Foundation“  

No  45  (November)  

  Frank,  Ulrich;  Strecker,  Stefan;  Heise,  David;  Kattenstroth,  Heiko;  Schauer,  Carola:  “Leitfaden  zur  Erstellung  wissenschaftlicher  Arbeiten  in  der  Wirtschaftsinformatik”  

 

 

No  44  (September)  

  Berenbach,  Brian;  Daneva,  Maya;  Dörr,  Jörg;  Fricker,  Samuel;  Gervasi,  Vincenzo;  Glinz,  Martin;  Hermann,  Andrea;  Krams;  Benedikt;  Madhavji,  Nazim  H.;  Paech,  Barbara;  Schockert,  Sixten;  Seyff,  Norbert  (Eds):  ”17th  International  Working  Conference  on  Requirements  Engineering:  Foundation  for  Software  Quality  (REFSQ  2011).  Proceedings  of  the  REFSQ  2011  Workshops  REEW,  EPICAL  and  RePriCo,  the  REFSQ  2011  Empirical  Track  (Empirical  Live  Experiment  and  Empirical  Research  Fair),  and  the  REFSQ  2011  Doctoral  Symposium”  

 

No  43  (February)  

  Frank,  Ulrich:  “The  MEMO  Meta  Modelling  Language  (MML)  and  Lnguage  Architecture  –  2nd  Edition”  

2010  

No  42  (December)  

  Frank,  Ulrich:  “Outline  of  a  Method  for  Designing  Domain-­‐‑Specific  Modelling  Languages”  

No  41  (December)  

  Adelsberger,Heimo;  Drechsler,  Andreas  (Eds):  “Ausgewählte  Aspekte  des  Cloud-­‐‑Computing  aus  einer  IT-­‐‑Management-­‐‑Perspektive  –  Cloud  Governance,  Cloud  Security  und  Einsatz  von  Cloud  Computing  in  jungen  Unternehmen”  

No  40  (October  2010)  Bürsner,  Simone;  Dörr,  Jörg;  Gehlert,  Andreas;  Herrmann,  Andrea;  Herzwurm,  Georg;  Janzen,  Dirk;  Merten,  Thorsten;  Pietsch,  Wolfram;  Schmid,  Klaus;  Schneider,  Kurt;  Thurimella,  Anil  Kumar  (Eds):  “16th  International  Working  Conference  on  Requirements  Engineering:  Foundation  for  Software  Quality.  Proceedings  oft  he  Workshops  CreaRE,  PLREQ,  RePriCo  and  RESC“  

No  39  (May  2010)  Strecker,  Stefan;  Heise,  David;  Frank,  Ulrich:  “Entwurf  einer  Mentoring-­‐‑Konzeption  für  den  Studiengang  M.Sc.  Wirtschaftsinformatik  an  der  Fakultät  für  Wirtschaftswissenschaften  der  Universität  Duisburg-­‐‑Essen“  

No  38  (February  2010)  Schauer,  Carola:  “Wie  praxisorientiert  ist  die  Wirtschaftsinformatik?  Einschätzungen  von  CIOs  und  WI-­‐‑Professoren“  

No  37  (January  2010)  Benavides,  David;  Batory,  Don;  Grunbacher,  Paul  (Eds.):  “Fourth  International  Workshop  on  Variability  Modelling  of  Software-­‐‑intensive  Systems”  

2009  

No  36  (December  2009)  Strecker,  Stefan:  “Ein  Kommentar  zur  Diskussion  um  Begriff  und  Verständnis  der  IT-­‐‑Governance  -­‐‑  Anregungen  zu  einer  kritischen  Reflexion”  

Previously  published  ICB  -­‐‑  Research  Reports  

 

No  35  (August  2009)  Rüngeler,  Irene;  Tüxen,  Michael;  Rathgeb,  Erwin  P.:“Considerations  on  Handling  Link  Errors  in  STCP“  

No  34  (June  2009)  Karastoyanova,  Dimka;  Kazhamiakan,  Raman;  Metzger,  Andreas;  Pistore,  Marco  (Eds.):  “Workshop  on  Service  Monitoring,  Adaption  and  Beyond”  

No  33  (May  2009)  Adelsberger,Heimo;  Drechsler  ,  Andreas;  Bruckmann,  Tobias;  Kalvelage,  Peter;  Kinne,  Sophia;  Pellinger,  Jan;  Rosenberger,  Marcel;  Trepper,  Tobias:  „Einsatz  von  Social  Software  in  Unternehmen  –  Studie  über  Umfang  und  Zweck  der  Nutzung“  

No  32  (April  2009)  Barth,  Manfred;  Gadatsch,  Andreas;  Kütz,  Martin;  Rüding,  Otto;  Schauer,  Hanno;  Strecker,  Stefan:  „Leitbild  IT-­‐‑Controller/-­‐‑in  –  Beitrag  der  Fachgruppe  IT-­‐‑Controlling  der  Gesellschaft  für  Informatik  e.  V.“  

No  31  (April  2009)  Frank,  Ulrich;  Strecker,  Stefan:  “Beyond  ERP  Systems:  An  Outline  of  Self-­‐‑Referential  Enterprise  Systems  –  Requirements,  Conceptual  Foundation  and  Design  Options”  

No  30  (February  2009)  Schauer,  Hanno;  Wolff,  Frank:  „Kriterien  guter  Wissensarbeit  –  Ein  Vorschlag  aus  dem  Blickwinkel  der  Wissenschaftstheorie  (Langfassung)“  

No  29  (January  2009)  Benavides,  David;  Metzger,  Andreas;  Eisenecker,  Ulrich  (Eds.):  “Third  International  Workshop  on  Variability  Modelling  of  Software-­‐‑intensive  Systems”  

2008  

No  28  (December  2008)  Goedicke,  Michael;  Striewe,  Michael;  Balz,  Moritz:  „Computer  Aided  Assessments  and  Programming  Exercises  with  JACK“  

No  27  (December  2008)  Schauer,  Carola:  “Größe  und  Ausrichtung  der  Disziplin  Wirtschaftsinformatik  an  Universitäten  im  deutschsprachigen  Raum  -­‐‑  Aktueller  Status  und  Entwicklung  seit  1992”  

No  26  (September  2008)  Milen,  Tilev;  Bruno  Müller-­‐‑Clostermann:  “  CapSys:  A  Tool  for  Macroscopic  Capacity  Planning”  

No  25  (August  2008)  Eicker,  Stefan;  Spies,  Thorsten;  Tschersich,  Markus:  “Einsatz  von  Multi-­‐‑Touch  beim  Softwaredesign  am  Beispiel  der  CRC  Card-­‐‑Methode”  

No  24  (August  2008)    Frank,  Ulrich:  “The  MEMO  Meta  Modelling  Language  (MML)  and  Language  Architecture  –  Revised  Version”  

 

 

No  23  (January  2008)    Sprenger,  Jonas;  Jung,  Jürgen:  “Enterprise  Modelling  in  the  Context  of  Manufacturing  –  Outline  of  an  Approach  Supporting  Production  Planning”  

No  22  (January  2008)    Heymans,  Patrick;  Kang,  Kyo-­‐‑Chul;  Metzger,  Andreas,  Pohl,  Klaus  (Eds.):  “Second  International  Workshop  on  Variability  Modelling  of  Software-­‐‑intensive  Systems"ʺ  

2007  

No  21  (September  2007)    Eicker,  Stefan;  Annett  Nagel;  Peter  M.  Schuler:  “Flexibilität  im  Geschäftsprozess-­‐‑management-­‐‑Kreislauf"ʺ  

No  20  (August  2007)    Blau,  Holger;  Eicker,  Stefan;  Spies,  Thorsten:  “Reifegradüberwachung  von  Software"ʺ  

No  19  (June  2007)    Schauer,  Carola:  “Relevance  and  Success  of  IS  Teaching  and  Research:  An  Analysis  of  the  ‚Relevance  Debate’  

No  18  (May  2007)    Schauer,  Carola:  “Rekonstruktion  der  historischen  Entwicklung  der  Wirtschaftsinformatik:  Schritte  der  Institutionalisierung,  Diskussion  zum  Status,  Rahmenempfehlungen  für  die  Lehre”  

No  17  (May  2007)    Schauer,  Carola;  Schmeing,  Tobias:  “Development  of  IS  Teaching  in  North-­‐‑America:  An  Analysis  of  Model  Curricula”  

No  16  (May  2007)    Müller-­‐‑Clostermann,  Bruno;  Tilev,  Milen:  “Using  G/G/m-­‐‑Models  for  Multi-­‐‑Server  and  Mainframe  Capacity  Planning”  

No  15  (April  2007)    Heise,  David;  Schauer,  Carola;  Strecker,  Stefan:  “Informationsquellen  für  IT-­‐‑Professionals  –  Analyse  und  Bewertung  der  Fachpresse  aus  Sicht  der  Wirtschaftsinformatik”  

No  14  (March  2007)    Eicker,  Stefan;  Hegmanns,  Christian;  Malich,  Stefan:  “Auswahl  von  Bewertungsmethoden  für  Softwarearchitekturen”  

No  13  (February  2007)    Eicker,  Stefan;  Spies,  Thorsten;  Kahl,  Christian:  “Softwarevisualisierung  im  Kontext  serviceorientierter  Architekturen”  

No  12  (February  2007)    Brenner,  Freimut:  “Cumulative  Measures  of  Absorbing  Joint  Markov  Chains  and  an  Application  to  Markovian  Process  Algebras”  

No  11  (February  2007)    Kirchner,  Lutz:  “Entwurf  einer  Modellierungssprache  zur  Unterstützung  der  Aufgaben  des  IT-­‐‑Managements  –  Grundlagen,  Anforderungen  und  Metamodell”  

Previously  published  ICB  -­‐‑  Research  Reports  

 

No  10  (February  2007)    Schauer,  Carola;  Strecker,  Stefan:  “Vergleichende  Literaturstudie  aktueller  einführender  Lehrbücher  der  Wirtschaftsinformatik:  Bezugsrahmen  und  Auswertung”  

No  9  (February  2007)    Strecker,  Stefan;  Kuckertz,  Andreas;  Pawlowski,  Jan  M.:  “Überlegungen  zur  Qualifizierung  des  wissenschaftlichen  Nachwuchses:  Ein  Diskussionsbeitrag  zur  (kumulativen)  Habilitation”  

No  8  (February  2007)    Frank,  Ulrich;  Strecker,  Stefan;  Koch,  Stefan:  “Open  Model  -­‐‑  Ein  Vorschlag  für  ein  Forschungsprogramm  der  Wirtschaftsinformatik  (Langfassung)”  

2006  

No  7  (December  2006)    Frank,  Ulrich:  “Towards  a  Pluralistic  Conception  of  Research  Methods  in  Information  Systems  Research”  

No  6  (April  2006)    Frank,  Ulrich:  “Evaluation  von  Forschung  und  Lehre  an  Universitäten  –  Ein  Diskussionsbeitrag”  

No  5  (April  2006)    Jung,  Jürgen:  “Supply  Chains  in  the  Context  of  Resource  Modelling”  

No  4  (February  2006)    Lange,  Carola:  “Development  and  status  of  the  Information  Systems  /  Wirtschaftsinformatik  discipline:  An  interpretive  evaluation  of  interviews  with  renowned  researchers,  Part  III  –  Results  Wirtschaftsinformatik  Discipline”  

2005  

No  3  (December  2005)    Lange,  Carola:  “Development  and  status  of  the  Information  Systems  /  Wirtschaftsinformatik  discipline:  An  interpretive  evaluation  of  interviews  with  renowned  researchers,  Part  II  –  Results  Information  Systems  Discipline”  

No  2  (December  2005)    Lange,  Carola:  “Development  and  status  of  the  Information  Systems  /  Wirtschaftsinformatik  discipline:  An  interpretive  evaluation  of  interviews  with  renowned  researchers,  Part  I  –  Research  Objectives  and  Method”  

No  1  (August  2005)  Lange,  Carola:  „Ein  Bezugsrahmen  zur  Beschreibung  von  Forschungsgegenständen  und  -­‐‑methoden  in  Wirtschaftsinformatik  und  Information  Systems“  

   

 

 

�������������������

���������������������������������������������������

Felix Föcker, Frank Houdek, Marian Daun, Thorsten Weyer

Realistic Example Specifications of

Behavioral Requirements and

Functional Design

ICB-Research Report No. 64

January 2015

Research Group Core Research Topics

Prof. Dr. H. H. AdelsbergerInformation Systems for Production and OperationsManagement

E-Learning, Knowledge Management, Skill-Management,Simulation, Artificial Intelligence

Prof. Dr. F. AhlemannInformation Systems and Strategic Management

Strategic planning of IS, Enterprise Architecture Management, IT Vendor Management, Project Portfolio Management, IT Governance, Strategic IT Benchmarking

Prof. Dr. P. ChamoniMIS and Management Science / Operations Research

Information Systems and Operations Research, Business Intelligence, Data Warehousing

Prof. Dr. K. EchtleDependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. EickerInformation Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. FrankInformation Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,IT Management, Knowledge Management

Prof. Dr. M. GoedickeSpecification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn Software Engineering

Design of Software Processes, Software Architecture, Usabi-lity, Mobile Applications, Component-based and Generative Software Development

PD Dr. C. Klüver Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann E-Business and E-Entrepreneurship

E-Business and Information Management, E-Entrepreneurship/E-Venture, Virtual Marketplaces and Mobile Commerce, Online-Marketing

Prof. Dr. K. PohlSoftware Systems Engineering

Requirements Engineering, Software Quality Assurance,Software-Architectures, Evaluation of COTS/Open Source-Components

Prof. Dr. Ing. E. RathgebComputer Network Technology

Computer Network Technology

Prof. Dr. R. UnlandData Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software Engineering, Internet Based Teaching

Prof. Dr. S. ZelewskiInstitute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,Information Management, Economic Analyses

ISSN 1860-2770 (Print)ISSN 1866-5101 (Online)

64Model-Based Engineering of an Automotive Adaptive Exterior Lighting System