modelisation tools for asset management · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-)...

29
17 – 04 – 2019 Paris Prof. Dr.-Ing. Marc ANTONI Rail System Director UIC, Rail System Department MODELISATION TOOLS FOR ASSET MANAGEMENT UIC Rail System Department

Upload: others

Post on 25-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

17 – 04 – 2019 Paris

Prof. Dr.-Ing. Marc ANTONIRail System DirectorUIC, Rail System Department

MODELISATION TOOLS FOR ASSET MANAGEMENT

UIC Rail System Department

Page 2: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

MODELISATION TOOLS FOR ASSET MANAGEMENT

1. Why does Asset management need Modelling ?

2. Modelling for Infrastructure management after

conception engineering

3. Modelling for Infrastructure management before

conception engineering

4. Summary

Page 3: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Target performance

of the network Line capacity, speed, acceptable

unavailability rate, safety rate,

track availability…

Levels of

maintenance and

renewal

State of Network Performance, level of

deterioration, evolution,

safety, security…

Traffic fees

Maintenance

costs

Asset management : looking for the optimal balance

1 - Why does Asset management need Modelling?

Value for

the society

Environment

changes

Page 4: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Three steps (example for track) :

3 – Tools for LCC calculation at the national or route levels, including

environmental effects, track possession and unavailability costs…

2 – Tools for the estimation of maintenance needs of the track

(with different renewal strategies)

1 – Work of the deterioration and failure laws

of each the track components

0 – Collect and Store in a coherent way data’s

2- Modelling for Infrastructure Management afterconception engineering

Page 5: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

• Failure laws of rails :

- lifespan of the rails on a

ballasted HSL is about

400MT with 3% of

cumulative defects,

700MT with 6%

- the parameters of these

laws are sensitive to track

topology and

aggressiveness of the

rolling stock…

MT

Step 1: Lifespan of the components (ballasted HSL)

2 - Modelling for Infrastructure Management afterconception engineering

The failure rate can grow more quickly if the rolling

stock has an important rate of “slippage” (20% for

some materials)

Page 6: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

0 100 200 300 400 500 600

Tau

x c

um

ulé

de d

éfa

illa

nce -

H(t

)

TBC (Mt)

H(t) empirique toutes LN

H(t) estimée toutes LN

Step 1: Lifespan of the components (ballasted HSL)

• Failure laws of

aluminothermy

welding:

- lifespan of a weld

on ballasted HSL is

about 400MT with

3% of cumulative

defects

[even without

preventive grinding]

MT

2 - Modelling for Infrastructure Management afterconception engineering

Page 7: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

• Failure laws of

manganese or

movable frogs:

- lifespan of these

components is longer

on wooden sleepers

then on concrete ones

- the parameters of

these laws are sensitive

to the aggressiveness

of the rolling stock

MT

Cœur à Pointe Fixe LGV

0

0,05

0,1

0,15

0,2

0,25

0,3

0 50 100 150 200 250 300 350

Cœur Pointe Fixe Béton

Cœur Pointe Fixe Bois

Step 1: Lifespan of the components (ballasted HSL)

2 - Modelling for Infrastructure Management afterconception engineering

Page 8: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

• Failure laws of

manganese or

movable frogs:

- lifespan of these

components is longer

on wooden sleepers

then on concrete ones

- the parameters of

these laws are sensitive

to the aggressiveness

of the rolling stock

MT

Cœur à Pointe Fixe LGV

0

0,05

0,1

0,15

0,2

0,25

0,3

0 50 100 150 200 250 300 350

Cœur Pointe Fixe Béton

Cœur Pointe Fixe Bois

Cœur à Pointe Mobile LGV

0

0,05

0,1

0,15

0,2

0,25

0,3

0 50 100 150 200 250 300 350

Cœur Pointe Mobile Béton

Cœur Pointe Mobile Bois

Step 1: Lifespan of the components (ballasted HSL)

MT

2 - Modelling for Infrastructure Management afterconception engineering

HSL manganese frogs

Page 9: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

• Failure laws of switch half

switch set:

- lifespan of these components

is longer on wood sleepers

then on concrete ones

- the parameters of these laws

are sensitive to the

aggressiveness of the rolling

stock and the hardness of the

track

Demi Aiguillage LGV

0

0,05

0,1

0,15

0,2

0,25

0,3

0 50 100 150 200 250 300 350

Demi aiguillage Beton

Demi aiguillage Bois

MT

Step 1: Lifespan of the components (ballasted HSL)

2 - Modelling for Infrastructure Management afterconception engineering

Page 10: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

−+= 128,0)Im( 5

N

bakN

• Geometry degradation laws:

- lifespan of the ballast, without

sand-gravel mix bitumen or

PAD, is approximately 25 years

on HSL (>300)

- this lifespan will be much

higher with sand-gravel mix

bitumen and/or PAD

- maintenance needs follow

Cochet-Maumy lawsThe parameters of these laws

depend on grinding, the type of

rolling stock, etc.

Coûts de maintien de la géométrie (yc surveillance)

sur voie ballastée LGV

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250 300 350

Voie Gr2 Sans Meulage

Voie Gr2 Avec Meulage Préventif

MT

Step 1: Lifespan of the components (ballasted HSL)

2 - Modelling for Infrastructure Management afterconception engineering

Page 11: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Some USP could have an influence on track lifespan and HSL

geometry specific Cochet-Maumy parameters

Step 1: Lifespan of the components (ballasted HSL)

2 - Modelling for Infrastructure Management afterconception engineering

Average of longitudinal levelling

Page 12: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Tools for estimation of track maintenance needs (EBM) :

Principe / ballasted track:

1 – Cyclical or programmed operations:Fixed charges determined by the standards for track surveillance, programmed

maintenance, structure…

2 – Preventive conditioned maintenance: - Levelling maintenance charges: Interventions conditioned by the information

coming from track surveillance. Probabilistic estimation of the intervention needs

for a specific route, for a UIC group of routes…

- Asset replacement charges: Interventions conditioned by asset defect

detection… Probabilistic estimation of the failure laws of each asset

Step 2: Estimation of maintenance needs (ballasted HSL)

2 - Modelling for Infrastructure Management afterconception engineering

Page 13: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

10 OCTOBRE 2011EMETTEUR

13

Example of estimation of maintenance needs for the French network

Switches & Crossing UIC 1 to 6

0 €

50 €

100 €

150 €

200 €

250 €

300 €

2008 2013 2018 2023 2028

Mil

lio

ns

Entr. mode 1

Entr. sc. 1

Entr. sc. 2

Entr. sc. 3

Entr. sc. 4

Entr. sc. 5

Entr. sc. 6

Entr. mode 3

Extrapolation non modélisable

Scénario SsR

Scénario 1

Scénario 2

Scénario 3

Scénario 4

Scénario 5

Scénario 6

Scénario RaD

2 - Modelling for Infrastructure Management afterconception engineering

Step 2: Estimation of maintenance needs (ballasted HSL)

Page 14: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

10 OCTOBRE 2011EMETTEUR

14

Example of estimation of maintenance needs for the French network

Switches & Crossing UIC 1 to 6 Normal Track UIC 1 to 6

0 €

50 €

100 €

150 €

200 €

250 €

300 €

2008 2013 2018 2023 2028

Mil

lio

ns

Entr. mode 1

Entr. sc. 1

Entr. sc. 2

Entr. sc. 3

Entr. sc. 4

Entr. sc. 5

Entr. sc. 6

Entr. mode 3

Extrapolation non modélisable

Scénario SsR

Scénario 1

Scénario 2

Scénario 3

Scénario 4

Scénario 5

Scénario 6

Scénario RaD

300 €

320 €

340 €

360 €

380 €

400 €

420 €

440 €

2005 2010 2015 2020 2025 2030M

illio

ns

Entr. Ss Renouv

Scénario de base

Variante 1 (+50%2-4)

Variante 2 (+50%5-6)

Variante 3 (+100%5-6)

Variante 4 (base prolongé)

Entr. Renouv à date (<1000km/an)

2 - Modelling for Infrastructure Management afterconception engineering

Step 2: Estimation of maintenance needs (ballasted HSL)

Page 15: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

HSL ballasted track and slab track (UIC gr3)

HSL300 - UIC - current track without switches

0 €

20 000 €

40 000 €

60 000 €

80 000 €

100 000 €

120 000 €

140 000 €

160 000 €

180 000 €

200 000 €

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

E/T

I/T

E+I/T

Step 3: LCC calculations (ballasted and unballasted HSL)

2 - Modelling for Infrastructure Management afterconception engineering

0 €

20 000 €

40 000 €

60 000 €

80 000 €

100 000 €

120 000 €

140 000 €

160 000 €

180 000 €

200 000 €

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

E/T

I/T

E+I/T

Co

To

Co

To

Page 16: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Thanks to its experience of component and sub-system behaviour a Infra Manager can:→ specify and optimise new components to facilitate

maintenance, taking into account usage, environment,specific quality targets,…

→ optimise the dimension of spare parts and the correspondingmaintenance organisation.

The following examples come from signalling:- choice of failure laws,- architecture choice for critical computerised system.

3 - Modelling for Infrastructure management beforeconception engineering

Page 17: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Modeling methods: renewal density for successive replaced components

3 - Modelling for Infrastructure management beforeconception engineering

• The renewal density gives the

replacements due to failure at

time t :

=

−−=1

]))'(1[()(n

ntFth

where * denotes the convolution.

• The integral of this function gives

the number of expected

replacements before time t .

Without system ageing

Reduced time trh(t

r)beta = 3,4

0,0000

0,0100

0,0200

0,0300

0,0400

0,0500

0,0600

0,0700

0,0800

0,0900

0,1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Somme

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Page 18: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Modeling methods: renewal density for successive replaced components

3 - Modelling for Infrastructure management beforeconception engineering

With system aging

• We can include the ageing of the

system (or effects of repairs) by

using a factor K

• This translates the fact that even a

new component has a reduced

lifetime if it is introduced into an

ageing system.

ηn = η0 ∙ K at the nth replacement.

0,0000

0,0100

0,0200

0,0300

0,0400

0,0500

0,0600

0,0700

0,0800

0,0900

0,1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Somme

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Reduced time trh(t

r)beta = 3,4

K = 0,75

Page 19: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Modeling methods: renewal density for successive replaced components

3 - Modelling for Infrastructure management beforeconception engineering

• Maintenance expenses: Y(t) = ci(t) + cu ∙ n ∙ h(t)

– ci: current costs

– cu: replacement costs for one component

– n: number of components

– h(t): renewal density

• Expected global maintenance expenses

(including renewal) per year:

=

+

+=1

0

1

/)]([/)(T

t

t

t

TtYXTTC

With X: renewal costs )(TE

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Som(X)/T

Som(1,7;Y)/T

Som(3,4;Y)/T

Som(5,1;Y)/T

Som(X)/T +Som(1,7;Y)/TSom(X)/T +Som(3,4;Y)/TSom(X)/T +Som(5,1;Y)/T

Co

To with K=1

Page 20: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Modeling methods: renewal density for successive replaced components

3 - Modelling for Infrastructure management beforeconception engineering

• Maintenance expenses: Y(t) = ci(t) + cu ∙ n ∙ h(t)

– ci: current costs

– cu: replacement costs for one component

– n: number of components

– h(t): renewal density

• Expected global maintenance expenses

(including renewal) per year:

=

+

+=1

0

1

/)]([/)(T

t

t

t

TtYXTTC

With X: renewal costs )(TE

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Som(X)/T

Som(1,7;Y)/T

Som(3,4;Y)/T

Som(5,1;Y)/T

Som(X)/T + Som(1,7;Y)/T

Co

To with K=0,8

Page 21: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

3 - Modelling for Infrastructure management beforeconception engineering

Modeling methods: renewal density for successive replaced components

Design choices could have a huge impact on a maintenance strategy and on the chances of reaching the right quality level (availability, security, safety…) with the economic target value

The terms of the requirements have to be chosen taking into consideration the context of use and the economic and organizational targets… which are not known by suppliers

Page 22: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

3 - Modelling for Infrastructure management beforeconception engineering

Architecture choice for a critical computerised system

Classical architecture

• Without independence between

System and Functional SW

Proposed architecture

• With distinction between HW&System

SW and the functional SW

Input (TOR or

communications

in the railway

context)

Output (TOR or

communications

in the railway

context)

Software supporting the execution of the

functionalities

Hardware

N of P architecture of the real time

computerised system – SIL4

development

I1

Interface

Functionalities (interpretable and deterministic

model as Petri nets with fixed writing and

interpretation rules)

Mixed functional and

basis Softwares

Probabilistic safety

Hardware

Page 23: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

3 - Modelling for Infrastructure management beforeconception engineering

Architecture choice for a critical computerized system

Classical architecture

• Without independence between

System and Functional SW

Proposed architecture

• With distinction between HW&System

SW and the functional SW

Functionalities (interpretable and

deterministic model as Petri nets with

fixed writing and interpretation rules)

Input (TOR or

communications

in the railway

context)

Output (TOR or

communications

in the railway

context)

Software supporting the execution of the

functionalities

Hardware

N of P architecture(s) of the real time

computerised system – SIL4

development

I1 Interface

I2 Interface

with

interpretation

rules…

Know-how

Know-what

Application of formal validation methods

Know-

why

Page 24: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

• Case 1 : without formal interface between HW and functional SW

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

CAPEX/T

OPEX/T

Cumul/T

Functional

Software

Renewal

Hardware

Renewal

(obsolescence)

Step 3: LCC calculations

3 - Modelling for Infrastructure Management afterconception engineering

Co

To

Page 25: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

• Case 2 : with a formal interface between HW and functional SW

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

CAPEX/T

OPEX/T

Cumul/T

Functional

Software

Renewal

Hardware

Renewal

(obsolescence)

Step 3: LCC calculations

3 - Modelling for Infrastructure Management afterconception engineering

Co

To

Page 26: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

• Case 2 : with a formal interface between HW and functional SW

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

CAPEX/T

OPEX/T

Cumul/T

Step 3: LCC calculations (Critical IT system with and without formal

interface between HW and functional SW)

Co

To

Modelisation for Infrastructure Management afterconception engineering

Page 27: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

29

This approach allows a good modelling of the intuitively perceived phenomena: - regeneration vs. maintenance- value of and value from the assets- a system cannot last indefinitely

The calibration of the model was based on accessible real data.

General approach → the application range is very wide. All replaceable infrastructure equipment can be used for such a study.

4 - Summary

Page 28: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

• Modelling is necessary to estimate

“value” and “risk” of and from our

infrastructures, in different scenarios

• The battle for maintenance is won or lost

at the system definition & design stage.

• It is essential to consider the industrial

balance of the trio made up of

“Maintenance costs – Network

Performances regarding the business –

Quality&Safety”… including security

4 - Summary

Page 29: MODELISATION TOOLS FOR ASSET MANAGEMENT · 0,03 0,035 0,04 0,045 0,05 0 100 200 300 400 500 600-) TBC (Mt) H(t) empirique toutes LN H(t) estimée toutes LN Step 1: Lifespan of the

Stay in touch with UIC!

Thank you for your kind attention!

Prof. Dr.-Ing. Marc ANTONI,Rail System Director

UIC Rail System Department

[email protected] Headquarters16 rue Jean Rey75015 Paris