monroe l. weber-shirk s chool of civil and environmental engineering fluid mechanics eit review

33
Monroe L. Weber-Shir k S chool of Civil and Environmental Engi neering Fluid Mechanics EIT Review

Upload: raina-mundy

Post on 31-Mar-2015

221 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Monroe L. Weber-Shirk

School of Civil and

Environmental Engineering

Fluid MechanicsFluid Mechanics

EIT ReviewEIT Review

Page 2: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Shear StressShear Stress

change in velocity with respect to distancechange in velocity with respect to distance

AFAF

2mN

2mN

dydu dydu

Tangential force per unit area

rate of shear

Page 3: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

P1 = 0P1 = 0 hh11

??

hh22

Manometers for High PressuresManometers for High Pressures

Find the gage pressure in the center of the sphere. The sphere contains fluid with 1 and the manometer contains fluid with 2.

What do you know? _____

Use statics to find other pressures.

Find the gage pressure in the center of the sphere. The sphere contains fluid with 1 and the manometer contains fluid with 2.

What do you know? _____

Use statics to find other pressures.

11

22

33

=P3=P3

1

2

For small h1 use fluid with high density. Mercury!Mercury!

+ h12+ h12 - h21- h21P1P1

Page 4: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Differential ManometersDifferential Manometers

h1

h3

Mercury

Find the drop in pressure between point 1 and point 2.

p1p2Water

h2

orificeorifice

= p2= p2

p1 - p2 = (h3-h1)w + h2Hg

p1 - p2 = h2(Hg - w)

p1p1 + h1w+ h1w - h2Hg- h2Hg- h3w- h3w

Page 5: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Forces on Plane Areas: Inclined Surfaces

Forces on Plane Areas: Inclined Surfaces

A’

B’B’

OO

OO

xx

yy

cycy

cxRx

RyRy

AhF cR ch

Free surfaceFree surface

centroid

center of pressurecenter of pressure

The origin of the y axis is on the free surface

Page 6: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

StaticsStatics

Fundamental Equations Sum of the forces = 0 Sum of the moments = 0

Fundamental Equations Sum of the forces = 0 Sum of the moments = 0

ApF c ApF c pc is the pressure at the __________________centroid of the area

yAy

IAy

AyIy xx

p 2

yAy

IAy

AyIy xx

p 2

Line of action is below the centroid

Page 7: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Properties of AreasProperties of Areas

yc

baIxc

yc

b

aIxc

A ab=2c

ay =

3

12xc

baI =

2ab

A =

3c

b dx

+=

3

36xc

baI =

2A Rp=4

4xc

RI

p=R

ycIxc

0xycI =

( )2

272xyc

baI b d= -

0xycI =

3c

ay =

d

cy R=

Page 8: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Properties of AreasProperties of Areas

3

4xc

baI

p=A abp=

43c

Ry

p=

ayc

b

Ixc

2

2R

Ap

=43c

Ry

p=

4

8xc

RI

p=

ycR

Ixc

0xycI =

0xycI =

4

16xc

RI

p=

2

4R

Ap

=Ryc

cy a=

Page 9: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Inclined Surface SummaryInclined Surface Summary

The horizontal center of pressure and the horizontal centroid ________ when the surface has either a horizontal or vertical axis of symmetry

The center of pressure is always _______ the centroid

The vertical distance between the centroid and the center of pressure _________ as the surface is lowered deeper into the liquid

What do you do if there isn’t a free surface?

The horizontal center of pressure and the horizontal centroid ________ when the surface has either a horizontal or vertical axis of symmetry

The center of pressure is always _______ the centroid

The vertical distance between the centroid and the center of pressure _________ as the surface is lowered deeper into the liquid

What do you do if there isn’t a free surface?

yAy

Iy x

p yAy

Iy x

p

Ay

Ixx xy

p Ay

Ixx xy

p coincide

below

decreases

Page 10: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

An elliptical gate covers the end of a pipe 4 m in diameter. If the gate is hinged at the top, what normal force F applied at the bottom of the gate is required to open the gate when water is 8 m deep above the top of the pipe and the pipe is open to the atmosphere on the other side? Neglect the weight of the gate.

hingewater

F

8 m

4 m

Solution SchemeMagnitude of the force applied by the waterMagnitude of the force applied by the water

Example using MomentsExample using Moments

Location of the resultant forceLocation of the resultant force

Find F using moments about hingeFind F using moments about hinge

Page 11: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Magnitude of the ForceMagnitude of the Force

ApF cr ApF cr

abA abA

abhFr abhFr

m 2m 2.5πm 10m

N 9800

3

rF m 2m 2.5πm 10

m

N 9800

3

rF

b = 2 m

a = 2.5 m

pc = ___

Fr= ________

h = _____

hingehingewaterwater

FF

8 m

4 m

FrFr

hh

10 m Depth to the centroid

1.54 MN

Page 12: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Location of Resultant ForceLocation of Resultant Force

4

3baI x

4

3baI x

hy hy

yAy

Iy x

p yAy

Iy x

p

abyba

yy p

4

3

aby

bayy p

4

3

ya

yy p 4

2

y

ayy p 4

2

m 12.54

m 2.5 2

yy p

m 12.54

m 2.5 2

yy p

abA abA

_______ yy p _______ yy p

________y ________y

hingehingewaterwater

FF

8 m

4 m

FrFr

12.5 m12.5 mSlant distance to surfaceSlant distance to surface

0.125 m0.125 m __px __px xxb = 2 m

a = 2.5 m

cp

Page 13: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Force Required to Open GateForce Required to Open Gate

How do we find the required force?How do we find the required force?

0hingeM 0hingeM

F = ______ b = 2 m

2.5 mlcp=2.625 m

m 5

m 2.625N 10 x 1.54 6

F

m 5m 2.625N 10 x 1.54 6

F

tot

cpr

l

lFF

tot

cpr

l

lFF

ltot

hingehingewaterwater

FF

8 m

4 m

FrFr

Moments about the hinge=Fltot - Frlcp=Fltot - Frlcp

809 kN809 kN

cpcp

Page 14: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Example: Forces on Curved Surfaces

Example: Forces on Curved Surfaces

Find the resultant force (magnitude and location) on a 1 m wide section of the circular arc.

FV =

FH = ApAp

water 2 m

2 m

3 m W1

W2

W1 + W2W1 + W2

= (3 m)(2 m)(1 m) + p/4(2 m)2(1 m)= (3 m)(2 m)(1 m) + p/4(2 m)2(1 m)= 58.9 kN + 30.8 kN= 58.9 kN + 30.8 kN= 89.7 kN= 89.7 kN

= (4 m)(2 m)(1 m)= (4 m)(2 m)(1 m)= 78.5 kN= 78.5 kN y

x

Page 15: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Example: Forces on Curved Surfaces

Example: Forces on Curved Surfaces

The vertical component line of action goes through the centroid of the volume of water above the surface.

21V W3

)m 2(4W)m 1(Fx

21V W

3)m 2(4

W)m 1(Fx

water 2 m

2 m

3 m

A

W1

W2

kN 89.7

kN 30.83

)m 2(4kN 58.9)m 1(

x

kN 89.7

kN 30.83

)m 2(4kN 58.9)m 1(

x

Take moments about a vertical axis through A.Take moments about a vertical axis through A.

= 0.948 m (measured from A) with magnitude of 89.7 kN= 0.948 m (measured from A) with magnitude of 89.7 kN

Page 16: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Example: Forces on Curved Surfaces

Example: Forces on Curved Surfaces

water 2 m

2 m

3 m

A

W1

W2

The location of the line of action of the horizontal component is given by

yAy

Iy x

p yAy

Iy x

p

12

3bhI x 12

3bhI x

b

h

xI xI

yy

m 4.083m 4m 1m 2m 4

m 0.667 4

py m 4.083m 4m 1m 2m 4

m 0.667 4

py

y

x

(1 m)(2 m)3/12 = 0.667 m4(1 m)(2 m)3/12 = 0.667 m4

4 m4 m

Page 17: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Example: Forces on Curved Surfaces

Example: Forces on Curved Surfaces

78.5 kN78.5 kN

89.7 kN89.7 kN

4.083 m

0.94

8 m

119.2 kN119.2 kN

horizontalhorizontal

verticalvertical

resultantresultant

Page 18: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

C

(78.5kN)(1.083m) - (89.7kN)(0.948m) = ___ 00

0.948 m

1.083 m

89.7kN

78.5kN

Cylindrical Surface Force CheckCylindrical Surface Force Check

All pressure forces pass through point C.

The pressure force applies no moment about point C.

The resultant must pass through point C.

All pressure forces pass through point C.

The pressure force applies no moment about point C.

The resultant must pass through point C.

Page 19: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Curved Surface TrickCurved Surface Trick

Find force F required to open the gate.

The pressure forces and force F pass through O. Thus the hinge force must pass through O!

All the horizontal force is carried by the hinge

Hinge carries only horizontal forces! (F = ________)

Find force F required to open the gate.

The pressure forces and force F pass through O. Thus the hinge force must pass through O!

All the horizontal force is carried by the hinge

Hinge carries only horizontal forces! (F = ________)

water 2 m

3 m

A

W1

W2FFOO

W1 + W2W1 + W2 11.23

Page 20: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Dimensionless parametersDimensionless parameters

Reynolds Number

Froude Number

Weber Number

Mach Number

Pressure Coefficient

(the dependent variable that we measure experimentally)

Reynolds Number

Froude Number

Weber Number

Mach Number

Pressure Coefficient

(the dependent variable that we measure experimentally)

VlRVlR

glVFgl

VF

2

2C

Vp

p 2

2C

Vp

p

lV

W2

lV

W2

cV

M cV

M

AVd

2

Drag2C

AVd

2

Drag2C

Page 21: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Model Studies and Similitude:Scaling Requirements

Model Studies and Similitude:Scaling Requirements

dynamic similitude geometric similitude

all linear dimensions must be scaled identically roughness must scale

kinematic similitude constant ratio of dynamic pressures at corresponding

points streamlines must be geometrically similar _______, __________, _________, and _________

numbers must be the same

dynamic similitude geometric similitude

all linear dimensions must be scaled identically roughness must scale

kinematic similitude constant ratio of dynamic pressures at corresponding

points streamlines must be geometrically similar _______, __________, _________, and _________

numbers must be the sameMach Reynolds Froude Weber

C fp M, R, F,W,geometrya fC fp M, R, F,W,geometrya f

Page 22: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Froude similarity

Froude number the same in model and prototype

________________________

define length ratio (usually larger than 1)

velocity ratio

time ratio

discharge ratio

force ratio

glVFgl

VFpm FF pm FF

pp

2p

mm

2m

Lg

V

LgV

pp

2p

mm

2m

Lg

V

LgV

p

2p

m

2m

L

V

LV

p

2p

m

2m

L

V

LV

m

pr L

LL

m

pr L

LL rr LV rr LV

rr

rr L

VL

t rr

rr L

VL

t

2/5rrr LLL rrrr LAVQ 2/5rrr LLL rrrr LAVQ

3 3rr r r r r r2

r

LF M a L L

tr= = =3 3r

r r r r r r2r

LF M a L L

tr= = =

difficult to change g

11.33

Page 23: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Control Volume EquationsControl Volume Equations

MassLinear MomentumMoment of MomentumEnergy

MassLinear MomentumMoment of MomentumEnergy

Page 24: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Conservation of MassConservation of Mass

cvcs

dt

d Av

cvcs

dt

d Av

021

222111 cscs

dd AvAv 021

222111 cscs

dd AvAv

0222111 AVAV 0222111 AVAV

mAVAV 222111 mAVAV 222111

1122

QAVAV 2211 QAVAV 2211

vv11AA11

V = spatial average of vV = spatial average of v

If mass in cv is constantIf mass in cv is constant

[M/t][M/t]

If density is constant [L3/t]If density is constant [L3/t]

Area vector is normal to surface and pointed out of cvArea vector is normal to surface and pointed out of cv

Page 25: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Conservation of MomentumConservation of Momentum

F M M 1 2

( ) ( )1 1 1 1 1 1V A Qr r=- =-M V V

M V V2 2 2 2 2 2 V A Qa f a fF V V Q Qa f a f1 2

F V V Q 2 1a fsspp FFFWF 21 sspp FFFWF 21

Page 26: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Energy EquationEnergy Equation

ltp hHg

Vz

pH

gV

zp

22

22

222

22

111

1

1

ltp hH

gV

zp

Hg

Vz

p 22

22

222

22

111

1

1

gV

Khl 2

2

g

VKhl 2

2

g

V

D

Lfh f

2

2

g

V

D

Lfh f

2

2

R64

f R64

f

laminar turbulent

Moody Diagram

Page 27: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

zz

Example HGL and EGL

z = 0

pump

energy grade line

hydraulic grade line

velocity head

pressure head

elevation

datum

2g

V2

2g

V2

pp

2 2

2 2in in out out

in in P out out T L

p V p Vz h z h h

g ga a

g g+ + + = + + + +

2 2

2 2in in out out

in in P out out T L

p V p Vz h z h h

g ga a

g g+ + + = + + + +

Page 28: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Smooth, Transition, Rough Turbulent Flow

Hydraulically smooth pipe law (von Karman, 1930)

Rough pipe law (von Karman, 1930)

Transition function for both smooth and rough pipe laws (Colebrook)

51.2

Relog2

1 f

f

51.2

Relog2

1 f

f

D

f

7.3log2

1

D

f

7.3log2

1

g

V

D

Lfh f

2

2

g

V

D

Lfh f

2

2

(used to draw the Moody diagram)

f

D

f Re

51.2

7.3log2

1

f

D

f Re

51.2

7.3log2

1

Page 29: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Moody DiagramMoody Diagram

0.01

0.10

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08R

fric

tion

fact

or

laminar

0.050.04

0.03

0.020.015

0.010.0080.006

0.004

0.002

0.0010.0008

0.0004

0.0002

0.0001

0.00005

smooth

lD

C pf

lD

C pf

D

D

0.02

0.03

0.04

0.050.06

0.08

Page 30: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

find head loss given (D, type of pipe, Q)

find flow rate given (head, D, L, type of pipe)

find pipe size given (head, type of pipe,L, Q)

Solution TechniquesSolution Techniques

Q Dgh

L DD

gh

L

f

f

F

HGGG

I

KJJJ

2 223 7

1785 2

2 3

. log.

./

/

DLQgh

QL

ghf f

FHGIKJ

FHGIKJ

LNMM

OQPP0 66 1 25

24 75

9 4

5 2 0 04

. .

.

.

. .

h fg

LQDf

82

2

5f

D

FH IK

LNM

OQP

0 25

3 75 74

0 9

2

.

log.

.Re .

Re 4QD

Page 31: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Power and EfficienciesPower and Efficiencies

Electrical power

Shaft power

Impeller power

Fluid power

Electrical power

Shaft power

Impeller power

Fluid power

electricP electricP

waterP waterP

shaftP shaftP

impellerP impellerP

IEIE

TT

TT

QHpQHp

Motor lossesMotor losses

bearing lossesbearing losses

pump lossespump losses

Page 32: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Manning FormulaManning Formula

1/2o

2/3h SR

1n

V 1/2o

2/3h SR

1n

V

The Manning n is a function of the boundary roughness as well The Manning n is a function of the boundary roughness as well as other geometric parameters in some unknown way...as other geometric parameters in some unknown way...

RAPh

A bh

P b h 2

Rbh

b hh 2

Hydraulic radius for wide channelsHydraulic radius for wide channels

Page 33: Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Mechanics EIT Review

Drag Coefficient on a Sphere Drag Coefficient on a Sphere

0.10.1

11

1010

100100

10001000

0.10.1 11 1010 102102 103103 104104 105105 106106 107107

Reynolds NumberReynolds Number

Dra

g C

oeff

icie

ntD

rag

Coe

ffic

ient Stokes Law

24ReDC =24ReDC =

2

2UACF dd

2

2UACF dd