mr. hallvar haugdal, finished his msc. in electrical

20
Mr. Hallvar Haugdal, finished his MSc. in Electrical Engineering at NTNU, Norway in 2016, specializing in numerical field calculations and electrical motor design. After his MSc he worked a Scientific Assistant also at NTNU, dealing with courses on electrical machines, power systems and field calculations. Since January 2018 he is a PhD student on Wide Area Monitoring- and Control Systems. โ€œOnline Mode Shape Estimation using Complex Principal Component Analysis and Clusteringโ€, Hallvar Haugdal (NTMU Norway)

Upload: others

Post on 03-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Mr. Hallvar Haugdal, finished his MSc. in Electrical Engineering at NTNU, Norway in 2016, specializing innumerical field calculations and electrical motor design. After his MSc he worked a Scientific Assistant also atNTNU, dealing with courses on electrical machines, power systems and field calculations. Since January 2018he is a PhD student on Wide Area Monitoring- and Control Systems.

โ€œOnline Mode Shape Estimation using Complex Principal Component Analysis and Clusteringโ€, Hallvar Haugdal(NTMU Norway)

Online Mode Shape Estimationusing Complex Principal

Component Analysis and Clustering

Hallvar Haugdal

Contents

โ€ข Motivationโ€ข Background theory

โ€ข (C)PCAโ€ข Clustering

โ€ข Proposed methodโ€ข Application to Kundur Two Area-system

Contents

โ€ข Motivationโ€ข Background theory

โ€ข (C)PCAโ€ข Clustering

โ€ข Proposed methodโ€ข Application to Kundur Two Area-system

Motivation

โ€ข Modal analysisโ€ข Powerful toolโ€ข Understanding of system dynamicsโ€ข Stability limitsโ€ข Design of controllersโ€ข Difficult due to inaccurate modellingโ€ข Load dependent

โ€ข Propose empirical approachโ€ข Relying only on Wide Area PMU measurementsโ€ข Correlationโ€ข Statistical learning

Two-part methodPart 1: Provide estimates of modes and mode shapes

โ€ข Moving window ~ 5 โˆ’ 10 s lengthโ€ข Using correlation, Complex Principal Component Analysis (CPCA)โ€ข Provide point estimates of modes shapes

Part 2: Compute averaged mode shapesโ€ข Differentiate between noise and modesโ€ข Clustering points resulting from Part 1โ€ข Averaged modes and -shapes computed as centroids of clusters

Contents

โ€ข Motivationโ€ข Background theory

โ€ข (C)PCAโ€ข Clustering

โ€ข Proposed methodโ€ข Application to Kundur Two Area-system

Principal Component Analysisโ€ข Matrix of ๐‘€๐‘€ series, ๐‘๐‘ samples:

๐—๐— =

๐ฑ๐ฑ๐Ÿ๐Ÿ๐ฑ๐ฑ๐Ÿ๐Ÿโ‹ฎ๐ฑ๐ฑ๐‘ด๐‘ด

=

๐‘ฅ๐‘ฅ1(๐‘ก๐‘ก1) ๐‘ฅ๐‘ฅ1 ๐‘ก๐‘ก2๐‘ฅ๐‘ฅ2 ๐‘ก๐‘ก1 ๐‘ฅ๐‘ฅ2 ๐‘ก๐‘ก2

โ‹ฏ ๐‘ฅ๐‘ฅ1 ๐‘ก๐‘ก๐‘๐‘๐‘ฅ๐‘ฅ2 ๐‘ก๐‘ก๐‘๐‘

โ‹ฎ๐‘ฅ๐‘ฅ๐‘€๐‘€ ๐‘ก๐‘ก1 ๐‘ฅ๐‘ฅ3 ๐‘ก๐‘ก2

โ‹ฑ๐‘ฅ๐‘ฅ๐‘€๐‘€ ๐‘ก๐‘ก๐‘๐‘

โ€ข Want to transform the correlated series ๐ฑ๐ฑ๐Ÿ๐Ÿ, ๐ฑ๐ฑ๐Ÿ๐Ÿ โ‹ฏ๐ฑ๐ฑ๐‘ด๐‘ด into uncorrelatedseries ๐ฌ๐ฌ๐Ÿ๐Ÿ, ๐ฌ๐ฌ๐Ÿ๐Ÿ โ‹ฏ ๐ฌ๐ฌ๐‘ด๐‘ด:

๐’๐’ =

๐ฌ๐ฌ๐Ÿ๐Ÿ๐ฌ๐ฌ๐Ÿ๐Ÿโ‹ฎ๐ฌ๐ฌ๐‘ด๐‘ด

= ๐”๐”๐‘ป๐‘ป๐—๐—, ๐’”๐’”๐’Š๐’Š = ๐ฎ๐ฎ๐’Š๐’Š๐‘ป๐‘ป๐‘ฟ๐‘ฟ

โ€ข Do this by eigendecomposition of the covariance matrix:

๐‚๐‚ =1

1 โˆ’ ๐‘๐‘๐—๐—๐—๐—๐“๐“

โ€ข Eigenvalues (ฮป๐‘–๐‘–) and -vectors (๐ฎ๐ฎ๐’Š๐’Š):

๐‚๐‚๐ฎ๐ฎ๐’Š๐’Š = ฮป๐‘–๐‘–๐ฎ๐ฎ๐’Š๐’Š, ๐‘–๐‘– = 1 โ€ฆ๐‘€๐‘€๐”๐” = ๐ฎ๐ฎ๐Ÿ๐Ÿ,๐ฎ๐ฎ๐Ÿ๐Ÿ โ‹ฏ๐ฎ๐ฎ๐‘ด๐‘ด

โ‡’ ๐”๐”โ€ฒ๐‚๐‚๐”๐” = ๐šฒ๐šฒ =

๐œ†๐œ†1๐œ†๐œ†2

โ‹ฑ๐œ†๐œ†๐‘€๐‘€

๐œ†๐œ†1> ๐œ†๐œ†2 > ๐œ†๐œ†3 โ€ฆ ๐œ†๐œ†๐‘€๐‘€

โ€ข Inversion gives time series from scores

๐—๐— = ๐”๐”๐’๐’

๐ฑ๐ฑ๐’Š๐’Š = ๏ฟฝ๐’‹๐’‹=๐Ÿ๐Ÿ

๐‘ด๐‘ด

๐‘ข๐‘ข๐‘–๐‘–,๐‘—๐‘—๐ฌ๐ฌ๐’‹๐’‹

โ€ข Contribution of ๐ฌ๐ฌ๐’‹๐’‹ in ๐ฑ๐ฑ๐’Š๐’Š given by coefficient ๐‘ข๐‘ข๐‘–๐‘–,๐‘—๐‘—

Complex Principal Component Analysisโ€ข Similar to conventional PCAโ€ข Additional steps:

โ€ข Empirical Mode Decomposition (EMD)โ€ข Detrendingโ€ข (Decomposition โ‡’ Intrinsic Mode Functions)

โ€ข Hilbert Transformโ‡’ Complex time series ๐ณ๐ณ๐’Š๐’Šโ€ข Complex covariance matrix:

๐‚๐‚ =1

๐‘๐‘ โˆ’ 1๐™๐™โˆ—๐™๐™

โ€ข Contribution of ๐ฌ๐ฌ๐’‹๐’‹ in ๐ณ๐ณ๐’Š๐’Š given by complexcoefficient ๐‘ข๐‘ข๐‘–๐‘–,๐‘—๐‘—

โ€ข Resembles observability mode shapesโ€ข Slower than PCA

โ€ข Due to EMD and Hilbert Transformโ€ข Works well with damped exponentialsโ€ข Noisy during steps [3]

Clustering

[2][4]

โ€ข Various methodsโ€ข K-meansโ€ข Gaussian Mixture Models

Contents

โ€ข Motivationโ€ข Background theory

โ€ข (C)PCAโ€ข Clustering

โ€ข Proposed methodโ€ข Application to Kundur Two Area-system

Proposed method, Part 1: Generating mode estimates

โ€ข Input: Starting out with time window1. PCA ๐—๐— โ‡’ ๐’๐’ (Scores)2. EMD Detrending3. Hilbert Transform4. CPCA ๐’๐’ โ‡’ ๐™๐™ (Complex scores)

โ€ข Complex PC Scores resemble modes (๐‘“๐‘“, ๐œ‰๐œ‰)โ€ข Complex Coefficients resemble mode shapes

โ€ข Output: Point in 2๐‘€๐‘€ + 1 dimensions๐‘๐‘ = ๐‘“๐‘“, Re ๐ถ๐ถ1 , Im ๐ถ๐ถ1 , Re ๐ถ๐ถ2 , Im ๐ถ๐ถ2 โ€ฆ Re ๐ถ๐ถ๐‘€๐‘€ , Im ๐ถ๐ถ๐‘€๐‘€

Proposed method, Part 2: Averaged mode estimates using Clusteringโ€ข Resulting points from Part 1 are assumed to populate input space more

densely close to areas corresponding to modesโ€ข Input: Matrix of ๐‘„๐‘„ point estimates

๐‘ƒ๐‘ƒ =

๐‘๐‘1๐‘๐‘2โ‹ฎ๐‘๐‘๐‘„๐‘„

=

๐‘“๐‘“, Re ๐ถ๐ถ1 , Im ๐ถ๐ถ1 โ€ฆ Re ๐ถ๐ถ๐‘€๐‘€ , Im ๐ถ๐ถ๐‘€๐‘€๐‘“๐‘“, Re ๐ถ๐ถ1 , Im ๐ถ๐ถ1 โ€ฆ Re ๐ถ๐ถ๐‘€๐‘€ , Im ๐ถ๐ถ๐‘€๐‘€

โ‹ฎ๐‘“๐‘“, Re ๐ถ๐ถ1 , Im ๐ถ๐ถ1 โ€ฆ Re ๐ถ๐ถ๐‘€๐‘€ , Im ๐ถ๐ถ๐‘€๐‘€

โ€ข Clustering of points (number of clusters unknown)โ€ข Output: Averaged mode shapes

โ€ข Centroids of clusters

Contents

โ€ข Motivationโ€ข Background theory

โ€ข (C)PCAโ€ข Clustering

โ€ข Proposed methodโ€ข Application to Kundur Two Area-system

Applicationโ€ข Kundur Two-Area Systemโ€ข Simulated data

โ€ข DigSILENT PowerFactoryโ€ข Short Circuits near generators

[1]

Application

๐‘๐‘1 ๐‘๐‘2 ๐‘๐‘3

Kundur Two-Area System โ€“ Part 1โ€ข Moving windowโ€ข Point estimates

ApplicationKundur Two-Area System โ€“ Part 2โ€ข Observationsโ€ข Clustering

ApplicationKundur Two-Area System โ€“ Part 2โ€ข Resulting

average mode shapes

โ€ข DigSILENTPowerFactoryModal Analysis

Concluding remarksโ€ข Appears to give reasonable results

โ€ข Possible to differentiate modes of similar frequency

โ€ข Potential improvementโ€ข Including dampingโ€ข Clustering

โ€ข Remove noiseโ€ข Frequency estimationโ€ข Rotation of mode shapes

โ€ข Further thoughtsโ€ข Clustering on ยซlong termยป moving windowโ€ข Use parallel windows of different lengthsโ€ข Track modesโ€ข Adaptive controllers

โ€ข Further testingโ€ข Simulations with amibent noiseโ€ข Real PMU data

References[1] P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1994.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York, NY: Springer New York, 2009.

[3] J. D. Horel, โ€œComplex Principal Component Analysis: Theory and Examples,โ€ Journal of Climate and Applied Meteorology, vol. 23, no. 12. pp. 1660โ€“1673, 1984.

[4] Yu's Machine Learning Garden, retrieved from http://yulearning.blogspot.com/2014/11/einsteins-most-famous-equation-is-emc2.html (2018)