mse 09 phase diagrams(39) 091116

Upload: eengali6515

Post on 02-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    1/39

    Introduction to

    .

    1http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    2/39

    Contents

    1 IntroductionIntroduction

    Solubility LimitSolubility Limit2

    Phase DiagramsPhase Diagrams3

    Microstructural Evolution durin CoolinMicrostructural Evolution durin Coolin4

    2

    --

    http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    3/39

    Issues to address

    en we com ne two e ements... What equilibrium state do we get?

    In particu ar, i we speci y...

    Composition (e.g., atomic % Ge atomic % Sn), andTemperature (T )

    Then...

    How many phases do we get? What is the composition of each phase?

    How much of each phase do we get?

    ase

    3Nickel atomCopper atom

    http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    4/39

    Phase: chemically and structurally homogeneous region of material.

    Components: chemically distinct and essentially indivisible

    substance.

    Solubility limit - maximum concentration of solute that may

    dissolve in a solvent at a given tem erature to form a solid solution.

    Precipitate - a solid phase that forms from the original matrix

    hase when the solubilit limit is exceeded.

    Phase diagram - graphical representation of the phases present

    and the ran es in com osition tem erature and ressure over

    which the phases are stable.

    : = +

    C : # components

    4

    F : degree of freedom (temperature, pressure, composition.)http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    5/39

    Binary phase diagram - A phase diagram for a system with two

    componen s. Ternary phase diagram - A phase diagram for a system with three

    .

    Isomorphous phase diagram - A phase diagram in which components

    display unlimited solid solubility.

    Liquidus temperature - The temperature at which the first solidbegins to form during solidification.

    Solidus temperature - The temperature below which all liquid hascompletely solidified.

    -metals that has its own unique composition, structure, and

    properties. Eutectic - A three-phase invariant reaction in which one liquid

    phase solidifies to produce two solid phases.

    5

    Peritectic - A three-phase reaction in which a solid and a liquidcombine to produce a second solid on cooling.http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    6/39

    Contents

    1 IntroductionIntroduction

    Solubility LimitSolubility Limit2

    Phase DiagramsPhase Diagrams3

    Microstructural Evolution durin CoolinMicrostructural Evolution durin Coolin4

    6

    --

    http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    7/39

    Phases & Solubility

    (a) The three forms of water

    gas, iqui so i are

    each a phase.

    (b) Water and alcohol have

    unlimited solubility.

    (c) Salt and water have limited

    solubility.

    (d) Oil and water have virtually

    7 no solubility.http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    8/39

    Solubility Limit

    -Liquid copper-nickel are

    completely soluble.

    - Solid copper-nickel are

    com letel soluble, with

    copper and nickel atoms

    occupying random lattice

    sites.

    8

    - In copper-zinc alloys containing more than 30 at. % Zn,

    a second phase forms because of the limited solubility of zinc in copper.http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    9/39

    Solubility Limit

    Solubility limit - maximum concentration of solute that may dissolve in asolvent at a given temperature to form a solid solution.

    Precipitate - a new solid phase that forms when the solubility limit is

    exceeded.

    (Fig. 9-1)

    9http://bp.snu.ac.kr

    C12H22O11 H2O

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    10/39

    Solubility Limit

    Phase Diagram of) Solubility

    100

    Water - Sugar System

    ture(

    L

    Limit (liquid)

    +60

    80

    emper

    (liquid solutioni.e., syrup)

    S(solidsu ar20

    40

    solubility limit at 20C?

    ar

    0 20 40 60 80 100

    65 r

    .

    If Co < 65 wt. % sugar: syrupPur

    Sug

    Pur

    Wat

    o > wt. sugar: syrup + sugar

    Solubilit limit increases with T :

    10

    e.g., if T= 100C, solubility limit = 80 wt. % sugarhttp://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    11/39

    Components and Phases

    om onenThe elements or compounds which are mixed initially

    (e.g., Al and Cu).

    Phases:The physically and chemically distinct material regions

    that result.

    Aluminum-Copper Alloy

    1 component (H2O)

    phase)

    ar e

    phase)

    11http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    12/39

    Contents

    1 IntroductionIntroduction

    Solubility LimitSolubility Limit2

    Phase DiagramsPhase Diagrams3

    Microstructural Evolution durin CoolinMicrostructural Evolution durin Coolin4

    12

    --

    http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    13/39

    Fundamental Concepts

    Phase diagram: graphical representation of the phases

    resent and the ran es in com osition tem erature

    and pressure over which the phases are stable. Gi s p ase ru e: F= + 2 P

    C: # components, P: # phases in equilibrium

    (Eq. 9-16)

    F: degree of freedom (temperature, pressure, composition.)

    ex 2 , = , = + = -

    1 phase F= 2

    2 phase F= 1

    3 phase F= 0 (invariant)

    13 * pressure constant F= C+ 1 Phttp://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    14/39

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    15/39

    Isomorphous Phase Diagram

    Complete liquid and solid solutions

    Constant ressure:(Fig. 9-3)

    15 F= C+ 1 P, C= 2, F= 3 - Phttp://bp.snu.ac.kr

    - 2009-10-28

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    16/39

    Phase Diagrams

    Tell us about the phases as a function of T, Co, and P For this course:

    - Binary systems: just 2 components

    - Inde endent variables: Tand Co (at P= 1 atm)

    1600

    1400

    1500T(C)

    L (liquid)

    Cu-Ni

    (FCC solid solution)1300

    1100

    1200

    (FCC solid

    16 20 40 60 80 10001000

    so u on

    wt% Ni http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    17/39

    Phase Diagrams: Number and Types of Phases

    Rule 1: If we know Tand Co, then we know:- the number and t es of hases resent.

    Examples:

    1600

    L li uid

    Cu-Ni

    ,

    1 phase:

    1400

    50,35)

    ,2 phases: L + 1300

    (FCC solidB(1

    1100 A(1100,60)

    17 wt% Ni20 40 60 80 10001000http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    18/39

    Phase Diagrams: Composition of Phases

    Rule 2: If we know Tand Co, then we know:- the composition of each phase.

    Examples: Cu-Ni systemT(C) (Fig. 9-3)

    At TA:

    Only Liquid (L)

    o

    130 0 L (liquid)

    TA tie line

    CL= Co( = 35wt% Ni)At TD:TB

    B

    At TB:

    C= Co( = 35wt% Ni)

    120 0

    (solid)D Both and L

    CL= Cliquidus( = 32wt% Ni here)

    TD

    18

    = solidus = w ere

    wt% NiC oC L Chttp://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    19/39

    Phase Diagrams: Fractions of Phases

    Rule 3: If we know Tand Co, then we know:- the amount of each phase (given in wt. or at. %).

    Cu-Ni system Examples:

    Co= 35wt%Ni

    T(C)

    A At TA: Only Liquid (L)

    WL= 100wt%, W= 0

    1300 L (liquid)B

    e ne

    At TB: Both and L

    WL= 0, W= 100wt%

    1200

    DB R S

    20 30 40 50443532CC C

    What would be WL and W?

    44 35S wt% Ni= =44 32

    wL R + S

    19

    = =

    25 %

    44 32

    wtW =R + S

    http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    20/39

    The Lever Rule (Proof)

    Sum of weight fractions:

    WL + W = 1

    =

    (Example 9-1)

    Combine above equations:

    = R

    R +SW =

    Co CLC C

    = S

    R+ SWL

    = CCo

    C C

    : CoCL C

    W

    L

    R = W

    S

    WWL 1 W

    20 solving gives Lever Rulehttp://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    21/39

    Contents

    1 IntroductionIntroduction

    Solubility LimitSolubility Limit2

    Phase DiagramsPhase Diagrams3

    Microstructural Evolution durin CoolinMicrostructural Evolution durin Coolin4

    21

    --

    http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    22/39

    Cooling in a Cu-Ni Binary (equilibrium)

    Phase diagram: Cu-Ni system. System is:

    (Fig. 9-4 incorrect)

    - binary

    2 components: Cu and Ni

    - isomorphous

    com lete solubilit

    .

    A phase field extendsFrom 0 to 100 wt. % Ni

    .

    ConsiderCo = 35 wt. % Ni

    What would be the

    22 microstructures?http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    23/39

    Coolin in Cu-Ni(nonequilibrium) .

    (skip)

    F g. -5

    ConsiderCo = 35 wt. % Ni. X

    23http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    24/39

    Contents

    1 IntroductionIntroduction

    Solubility LimitSolubility Limit2

    Phase DiagramsPhase Diagrams3

    Microstructural Evolution durin CoolinMicrostructural Evolution durin Coolin4

    24

    --

    http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    25/39

    Binary Eutectic Systems

    A special compositionwith an eas meltin T

    Greek - Easily melting (Fig. 9-7)

    2 components

    utectic reactionL

    ____

    25http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    26/39

    Binary Eutectic Systems

    2 components as a spec a compos onwith a minimum melting T.

    Ex.: Cu-Ag system 1200

    T(C) (Fig. 9-7)

    (L,, )

    Limited solubility: L + L+

    1000

    : mostly Cu: mostly Ag

    600E

    8.0 71.9 91.2

    CE: Min. melting T +

    400

    20 40 60 80 1000 CE

    Cu Composition (wt. %) Ag

    26http://bp.snu.ac.kr

    - 2009-11-02

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    27/39

    Example: Pb-Sn Eutectic System

    For a 40 wt. % Sn 60 wt. % Pb alloy at 150C, find...

    - e a e re en

    - the compositions of the phases:

    (Fig. 9-8)

    (Fig. 9-9) = wt. n

    C = 99 wt. % Sn

    T C

    300

    - the relative amountsof each phase: L + L+200

    qu

    =59

    =

    18.3 61.9 97.8150

    R S 88

    =29

    =

    +

    27

    88

    http://bp.snu.ac.krPb Composition (wt. %) Sn

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    28/39

    Microstructures in Eutectic Systems - I

    Co < 2 wt. % Sn

    T(C) L: Co wt. % Sn4 00

    (Fig. 9-11)

    esu

    polycrystal of grains 3 00 L

    L +

    2 0 0 : C o wt%SnT E

    - n

    System)

    1 00 +

    1 0 2 00 3 0

    28

    C o , wt% Sn2

    C o

    (room T solubility limit) http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    29/39

    Microstructures in Eutectic Systems - II

    2 wt. % Sn < Co < 18.3 wt. % Sn

    T C L: C o wt.% Sn(Fig. 9-12)

    with fine crystals. L400

    L

    : C owt%SnL +

    300

    200

    TE

    1 00 + XX

    Pb-Snsystem

    C wt. % n1 0 200

    C30

    29 (solubility limit at TE)

    (solubility limit at Troom

    18.3.

    )

    http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    30/39

    Microstructures in Eutectic Systems - III

    o = E Result Eutectic microstructure --- alternating.

    -(Fig. 9-13) (Fig. 9-14)T(C)

    300L: Cowt%Sn

    L + 200 L +183C

    100 +160m

    : 18.3wt%Sn

    0

    : 97.8wt%Sn

    30 Co, wt% SnC

    E18.3 97.8

    61.9http://bp.snu.ac.kr

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    31/39

    Formation of Eutectic Lamellar Structure

    (Fig. 9-15)

    31http://bp.snu.ac.kr

    E

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    32/39

    Microstructures in Eutectic Systems

    18.3 wt. % Sn < Co < 61.9 wt. % Sn Result: crystals and an eutectic microstructure

    Just above TE : L(Fig. 9-16)

    C = 18.3 wt. % Sn

    C L = 61.9 wt. % Sn300 L

    L

    WL = (1-Wa) =50 wt. %R + S

    W

    ==50 wt. %L +

    200 TEL + SR

    -

    system

    Just below TE :C = 18.3 wt. % Sn

    1 00

    + C = 97.8 wt. SnS

    R + SW = =73 wt. %

    20 400 600

    80 100Co18.3 61.9

    r mary

    97.8

    eutectic eutectic

    32

    W = 27 wt. %o, w . n

    http://bp.snu.ac.kr

    (Fig. 9-17)

    I i R i

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    33/39

    Invariant Reactions

    ___

    ____

    33http://bp.snu.ac.kr

    O h E l

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    34/39

    Other Examples

    Fi . 9-20

    34http://bp.snu.ac.kr

    O h E l

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    35/39

    Other Examples

    . -

    35http://bp.snu.ac.kr

    Other Examples

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    36/39

    Other Examples

    (Fig. 9-22)

    36http://bp.snu.ac.kr

    C t t

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    37/39

    Contents

    1 IntroductionIntroduction

    Solubility LimitSolubility Limit2

    Phase DiagramsPhase Diagrams3

    Microstructural Evolution duringMicrostructural Evolution during4

    oo ngoo ng

    37

    --

    http://bp.snu.ac.kr

    F C h s di m

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    38/39

    Fe-C phase diagram

    iron (Fig. 9-24)

    (FCC)

    A

    iron Cementite Fe CB

    err te(BCC)

    soft & ductile

    hard & brittle

    A; eutectic

    38

    B; eutectoidconcen ra on . w . w . w

    iron steel cast ironhttp://bp.snu.ac.kr

    S

  • 8/10/2019 MSE 09 Phase Diagrams(39) 091116

    39/39

    Summary

    Phase diagrams are useful tools to determine: The number and types of phases.

    The at. % or wt. % of each phase.

    .

    For the given Tand composition of the system.

    Binary alloys allow various ranges of microstructures.

    Problems from Chap. 9 http://bp.snu.ac.kr

    . - . - . - . -

    Prob. 9-9 Prob. 9-11 Prob. 9-12 Prob. 9-17

    39

    ro . - ro . - ro . - ro . -

    http://bp.snu.ac.kr