multi-resolution analysis

23
© 2002-2003 by Yu Hen Hu ECE533 Digital Image Processing Multi-Resolution Analysis

Upload: zariel

Post on 06-Jan-2016

62 views

Category:

Documents


0 download

DESCRIPTION

Multi-Resolution Analysis. Non-stationary Property of Natural Image. Pyramidal Image Structure. Z-transform. The z-transform is the discrete time version of Laplace transform. Given a sequence {x(n)}, its z-transform is: In particular,. Z-Transform and Fourier Transform. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu1ECE533 Digital Image Processing

Multi-Resolution Analysis

Page 2: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu2ECE533 Digital Image Processing

Non-stationary Property of Natural Image

Page 3: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu3ECE533 Digital Image Processing

Pyramidal Image Structure

Page 4: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu4ECE533 Digital Image Processing

Z-transform

The z-transform is the discrete time version of Laplace transform.

Given a sequence {x(n)}, its z-transform is:

In particular, ( ) ( ) ( ) n

n

X z x n x n z

Z

1 ( ) ( ) 1

( ) 1 ( ) ( )

n n n

n

n nn

n n

x n x n z

x n z x n z X z

Z

Page 5: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu5ECE533 Digital Image Processing

Z-Transform and Fourier Transform

Discrete time Fourier transform (DTFT):

Discrete Fourier Transform:

( ) ( ) ( ) ( ) j

j j n

z en

X e X j x n e X z

2 /

12 /

2 /0

1( ) ( ) ( ) ( )j kn N

Nj kn N j

z e k Nn

X k x n e X z X eN

Page 6: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu6ECE533 Digital Image Processing

Frequency Domain Representation

Discrete time Fourier transform (DTFT)

Discrete Fourier Transform (DFT)

( ) ( ) ( )jj j n

z en

X e X z x n e

2 /

12 /

0

( ) ( ) ( )j k N

Nj kn N

z en

X k X z x n e

Z-plane

Re{z}

Im{z}

Page 7: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu7ECE533 Digital Image Processing

Sub-sequence of a Finite Sequence

Let x(n) = x(0) x(1) x(2) x(3) x(4) x(5) x(6) …

x0(n) = x(0) 0 x(2) 0 x(4) 0 x(6) …

x1(n) = 0 x(1) 0 x(3) 0 x(5) 0 …

Then, clearly, x0(n) + x1(n) = x(n), and

x0(n) = [x(n) + (1)nx(n)]/2, x1(n) = [x(n) (1)nx(n)]/2

Denote X(z) to be the Z-transform of x(n), then

0

1

( ) 1 ( ) 1( ) ( ) ( )

2 2

( ) 1 ( ) 1( ) ( ) ( )

2 2

n

n

x n x nX z X z X z

x n x nX z X z X z

Z

Z

Page 8: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu8ECE533 Digital Image Processing

Z transform of a Sub-sequence

Define

Let WM =exp(j2/M), then

One may write

( )( )

0 .kx n n Mn k

x notherwise

1( )

0

1( ) ( )

Mm n k

k Mm

x n W x nM

1( )

0

,

0

Mm n kM

m

M n kW

otherwise

1( )

0

1

0

1

0

1

0

1( ) ( )

1( )

1( )

1

Mm n k

k Mm

Mmk mn

M Mm

Mmk mn n

M Mm n

Mmk m

M Mm

X z W x nM

W W x nM

W W x n zM

W X zWM

Z

Z

Page 9: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu9ECE533 Digital Image Processing

Decimation (down-sample)

M-fold decimator

yk(n) = x(Mn+k) = xk(Mn+k) , 0 k M1

Example. M = 2. y0(n) = x(2n), y1(n) = x(2n+1),

( ) /

/ 1/ 1/ 1/

0

( ) ( ) ( )

( ) ( )

Mn kn k M

k k kn

k M Mk M M mk M m

k M Mm

Y z x Mn k z x z

zz x z W X z W

M

11/ 2 1/ 2 1/ 2

0 20

1/ 2 1/ 211/ 2 1/ 2

1 2 20

1 1( ) ( ) ( ) ( )

2 2

( ) ( ) ( ) ( )2 2

m

m

m m

m

Y z X z W X z X z

z zY z W X zW X z X z

Page 10: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu10ECE533 Digital Image Processing

Interpolation (up-sample)

L-fold Expander

Example. L = 2. {zL(n)} ={x(0), 0, x(1), 0, x(2), 0, …} and

( / ) / : integer,( )

0 .Lx n L n L

z nOtherwise

/( ) ( ) ( ) ( / )

( )

n Ln LL L L

n n

mL L

m

Z z z n z n z x n L z

x m z X z

Z

22 ( )z n X zZ

Page 11: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu11ECE533 Digital Image Processing

Frequency Scaling

2 44 2 0

X(j)

2 44 2 0

X(j)

2 44 2 0

X(j2)

Page 12: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu12ECE533 Digital Image Processing

Frequency domain Interpretation

For M = 2, with decimation

Note that

For L = 2, with interpolation,

In general, M-fold down-samples will stretch the spectrum M-times followed by a weighted sum. This may cause the aliasing effect.

L-fold up-sample will compress the spectrum L times

/ 2 / 20

/ 2/ 2 / 2

1

1( ) ( ) ( )

2

( ) ( ) ( )2

j j j

jj j j

Y e X e X e

eY e X e X e

/ 1/

0

12 / 2 /

0

( ) ( )

1( )

j k M Mj mk j M m

k M Mm

M kj m M j m M

m

eY e W X e W

M

e X eM

( )j j LLZ e X e

2 20 1( ) ( ) ( )j j j jX e Y e e Y e

22 ( ) ( )j jZ e X e

Page 13: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu13ECE533 Digital Image Processing

Two-band Sub-band Filter

Page 14: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu14ECE533 Digital Image Processing

Filter-banks

10 0 1 1

1/ 2 1/ 20 0 0

1/ 21/ 2 1/ 2

1 1 1

20 0 0 0

21 1 1 1

0 0 1 1

0 0 0

( ) ( ) ( ), ( ) ( ) ( )

1( ) ( ) ( )

2

( ) ( ) ( )2

( ) ( ) ( ) ( ) / 2

( ) ( ) ( ) ( ) / 2

ˆ ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( ) (

2

Y z H z X z Y z z H z X z

V z Y z Y z

zV z Y z Y z

U z V z Y z Y z

U z V z z Y z Y z

X z G z U z G z U z

G z H z X z H

1 11 1 1

0 0 1 1

0 0 1 1

) ( )

( ) ( ) ( ) ( ) ( )2( )

( ) ( ) ( ) ( )2( )

( ) ( ) ( ) ( ) .(7.1.8)2

z X z

zG z z H z X z z H z X z

X zG z H z G z H z

X zG z H z G z H z Eq

G0(z)

G1(z)

v0(n)

v1(n)

u0(n)

u1(n)

+ˆ( )x n

H0(z)

H1(z)

z

x(n) v0(n)

v1(n)

y0(n)

y1(n)

Page 15: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu15ECE533 Digital Image Processing

Frequency Response

1/ 2 1/ 20 0 0

1/ 2 1/ 2 1/ 2 1/ 20 0

/ 2 / 2/ 2 / 20 0 0

1/ 21/ 2 1/ 2

1 1 1

1/ 21/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1 1

1( ) ( ) ( )

21

( ) ( ) ( ) ( )2

1( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( )2

( ) ( ) 1 ( )2

j jj j j

V z Y z Y z

H z X z H z X z

V e H e X e H e X e

zV z Y z Y z

zz H z X z z H z

1/ 2

1/ 2 1/ 2 1/ 2 1/ 21 1

/ 2 / 2/ 2 / 21 1 1

( )

1( ) ( ) ( ) ( )

21

( ) ( ) ( ) ( ) ( )2

j jj j j

X z

H z X z H z X z

V e H e X e H e X e

H0(z)

H1(z)

z

x(n) v0(n)

v1(n)

y0(n)

y1(n)

Page 16: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu16ECE533 Digital Image Processing

Frequency Domain Interpretation

22 0

|X(j)|= |X(ej)|

22 0

|X(j)Ho(j)|=|X(j()Ho(j()|=|Y0(j)|

22 0

|X(j)Ho(j)|=|X(j()Ho(j()|=|V0(j)|

Page 17: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu17ECE533 Digital Image Processing

Frequency Domain Interpretation

22 0

|X(j)|= |X(ej)|

22 0

|X(j)H1(j)|=|X(j()H1(j()|=|Y1(j)|

22 0

|X(j)H1(j)|=|X(j()H1(j()|=|V1(j)|

Page 18: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu18ECE533 Digital Image Processing

Perfect Reconstruction

Desired PR (perfect reconstruction) condition:

Implies:

It can be shown that

H0(z): low pass filter, H1(z): high pass filter

Usually, both are chosen to be FIR filters

ˆ( ) ( )x n x n D

0 0 1 1

0 0 1 1

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) 0

DG z H z G z H z z

G z H z G z H z

0 1 1 0( ) ( ), ( ) ( )G z H z G z H z

Page 19: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu19ECE533 Digital Image Processing

Perfect Reconstruction Filter Families

Page 20: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu20ECE533 Digital Image Processing

2D Sub-band Filter

2-D four-band filter bank for sub-band image coding

Page 21: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu21ECE533 Digital Image Processing

Daubechie’s Orthogonal Filters

Page 22: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu22ECE533 Digital Image Processing

Sub-band Decomposition Example

A 4-band split of the vase in fig.7.1 using sub-band coding system of Fig. 7.5

Page 23: Multi-Resolution Analysis

© 2002-2003 by Yu Hen Hu23ECE533 Digital Image Processing

3-stage Forward DWT