multi-scale simulations of the growth and assembly of colloidal nanoscale materials

38
Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials Kristen A. Fichthorn Department of Chemical Engineering Department of Physics Penn State University DE-FG0207ER46414

Upload: tamber

Post on 16-Mar-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Kristen A. Fichthorn Department of Chemical Engineering Department of Physics Penn State University. Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials. DE-FG0207ER46414. Complex Nanostructures in Colloidal Crystal Growth: How Do They Form?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Multi-Scale Simulations of the Growth and Assembly of Colloidal

Nanoscale MaterialsKristen A. Fichthorn

Department of Chemical EngineeringDepartment of PhysicsPenn State University

DE-FG0207ER46414

Page 2: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Complex Nanostructures in Colloidal Crystal Growth: How Do They Form?

Ostwald Ripening

Cluster-ClusterAggregation

OrientedAttachment

How Does OA Happen?

Page 3: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Complex Nanostructures in Colloidal Crystal Growth: Oriented AttachmentOriented Attachment of TiO2:Intrinsic Crystal Forces

Oriented Attachment andthe Mesocrystal State:The Role of Solvent

R. Penn and J. Banfield, Geochim.Cosmochim. Acta 63, 1549 (1999).

M. Alimohammadi and K. Fichthorn, Nano Lett. 9, 4198 (2009).

V. Yuwano, N. Burrows, J. Soltis, and R. Penn, JACS 132, 2163 (2010).

Page 4: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Complex Nanostructures in Colloidal Crystal Growth: Capping Agents

Y. Sun, B. Mayers, T. Herricks, andY. Xia, Nano Lett. 3, 955 (2003).

Page 5: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Polyol ProcessSolvent: Ethylene GlycolSalt: AgNO3

“Stabilizer”: PVP

What Happensin the Pot?B. Wiley,…Y. Xia, Chem. Eur. J. 11, 454 (2005).

“One-Pot” Solution-Phase Synthesis of Nanostructured Metal Materials

N,N-DMF ReductionSolvent: N,N-DMF

Salt: AgNO3

“Stabilizer”: PVP

All Kinds ofNano-Shapes

Heat at ~400 K

Page 6: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

B. Wiley,…Y. Xia, Chem. Eur. J. 11, 454 (2005).

Reductionof Ag Nucleation

Growth

Nanostructure Formation:General Aspects

Determined bySalt and…Solvent or PVP? Probably Determined

by PVP…

SeedFormation

Page 7: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Does PVP Prefer Ag(100) Over Ag(111)?

Nanowires from Multiply-Twinned DecahedralSeeds

Nanocubes from Single-Crystal Cubo-OctahedralSeeds

One Possible Role of PVP: Surface-Sensitive Binding

G. Grochola, I. Snook, and S. Russo, J. Chem. Phys. 127, 194707 (2007).

Y. Sun, B. Mayers, T. Herricks, and Y. Xia, Nano Lett. 3, 955 (2003).

Page 8: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Interaction of PVP with Ag(100) and Ag(111):First-Principles Challenges

Direct Bonding +van der Waals (vdW)

vdW

Historically DFT Described Direct Bonds,Including vdW Interactions is New… S. Grimme, J. Comput. Chem. 27, 1787 (2006).M. Dion,…, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).K. Lee, …, D. C. Langreth, B. I. Lundqvist, Phys. Rev. B 82, 081101 (2010).

L. Delle Site, K. Kremer, Int. J. Quant. Chem. 101, 733 (2005).

nCoarse-Grained

Model

Page 9: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Interaction of PVP with Ag(100) and Ag(111): VASP 5.2.11

• (4×4×14) Super Cell• Slab: 6 layers• Vacuum: 8 layers

• PAW-PBE (GGA) ± DFT-D2 ± TS*• Assess the Influence of

vdW Interactions• Cut-off: 29.4 Ry• k-points: (4×4×1)• Ab-initio Molecular Dynamics• Static Total-Energy Calculations

*Implemented in VASP by Wissam Al-Saidi

Page 10: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

van der Waals Interactions in DFT: How Do We Describe Ag??

aS. Grimme, J. Comput. Chem. 27, 1787 (2006).bA. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009) .cE. Zaremba and W. Kohn, Phys. Rev. B 13, 2279 (1976).dS. Eichenlaub, C. Chan, and S. P. Beaudoin, J. Coll. Int. Sci. 248, 389 (2002).eA. Khein, D. J. Singh, and C. J. Umrigar, Phys. Rev. B 51, 4105, (1995).fH. Li, et al., Phys. Rev. B 43, 7305 (1991).gF. R. De Boer, et al., Cohesion in Metals, Amsterdam, (1988).hM. Chelvayohan and C.H.B. Mee, J. Phys. C: Solid State Phys.15, 2305 (1982).

BA AB

ABdampvdW R

CfE

,6

6)]1(exp[1

1),()(

0

0

AB

AB

RfRABABdamp d

RRf

PBE DFT-D2a TS+ZKb+c ExperimentC6

(J nm6 mol-1) --- 24.67 6.89 6.25d

R0(Å) --- 1.64 1.34 ---aAg (Å) 4.16 4.15 4.02 4.07e

D12 Ag(100) (%) -2.05 1.3 -1.75 ±1.5f,g

D12 Ag(111) (%) -0.3 1.61 -0.32 0.5 ± 0.8h

Page 11: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Binding Conformations:No vdW Interactions

Experimental IR and XPS:PVP Binds to Ag via the O and/or N Atom.

Ag(100)

TopHollow

BridgeAg(111)

Topfcc

Hollowhcp

Hollow

Bridge

Trial & Error:Bonding with O Atom Down

F. Bonet et al., Bull. Mater. Sci. 23, 165 (2000).Z. Zhang et al., J. Solid State Chem. 121, 105 (1996).H. H. Huang et al., Langmuir 12, 909 (1996).

Page 12: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Binding Energies: No vdW Interactions

Adsorption site Ethane 2-Pyrrolidone(100) Hollow 0.0 0.19(100) Bridge 0.0 0.22

(100) Top - 0.21(111) fcc Hollow 0.0 0.19(111) hcp Hollow - 0.16

(111) Bridge - 0.20(111) Top - 0.26

Bond Strength (eV)

Predominantly vdW

Ag(100)

TopHollow

Bridge

Ag(111)

Topfcc

Hollowhcp

Hollow

Bridge

Preference for Ag(111): Contrary to Expectations

) ( surfacemoleculesurfacemoleculebind EEEE

Ethane Binds:X.-L. Zhou and J. M. White, J. Phys. Chem. 96, 7703 (1992).

Page 13: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

)( surfacemoleculesurfacemoleculebind EEEE

vdW Interactions Support Structure-Directing Hypothesis

Site PBE PBEDFT-D2

PBETS+ZK

(100) Hollow 0.19 1.05 0.59(100) Bridge 0.22 1.34 0.77

(100) Top 0.21 1.05 0.60(111) fcc 0.19 0.61 0.58(111) hcp 0.16 0.80 0.58

(111) Bridge 0.20 0.70 0.62(111) Top 0.26 0.79 0.64

Bond Strength (eV)

Why Such Big Differences Between Methods??

Page 14: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

DFT-D2: Ag(100) Reconstructs

eV 27.0 )100(

D EEE hexhex

Ag(100) Reconstruction has not been Observed Experimentally…

Page 15: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

TS+ZK:2-Pyrrolidone on Ag(100)

HollowEbind = 0.59

Bridge Ebind = 0.77

Top Ebind = 0.60

Hollow || Ebind = 0.77Bridge ||

Ebind = 0.81

Top ||Ebind = 0.78

Lots of Options!Binding via O and N

F. Bonet et al., Bull. Mater. Sci. 23 (2000).Z. Zhang et al., J. Solid State Chem. 121 (1996).H. H. Huang et al., Langmuir 12 (1996).

Page 16: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

KTkTEPP

400 );/exp(139)111(

)100( D

PVP ~139 Times More Likely to Bind toAg(100) “Sides” than Ag(111) “Ends”

Page 17: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

TS+ZK EnergiesTS+ZK Geometries

PBE Energies TS+ZK Geometries D

Site Ebind EPauli+Edirect bond EvdW(100) Hollow || 0.78 0.36 0.42(100) Bridge || 0.81 0.32 0.48

(100) Top || 0.77 0.30 0.47(111) Top ┴ 0.64 0.12 0.51

(111) Bridge ┴ 0.62 0.09 0.53(111) Bridge || 0.63 -0.19 0.82

TS+ZK Method: Break-Downof Binding Energy

bonddirectPaulivdWbind EEEE

Page 18: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

TS+ZK EnergiesTS+ZK Geometries

PBE Energies TS+ZK Geometries D

Site Ebind EPauli+Edirect bond EvdW(100) Hollow || 0.78 0.36 0.42(100) Bridge || 0.81 0.32 0.48

(100) Top || 0.77 0.30 0.47(111) Top ┴ 0.64 0.12 0.51

(111) Bridge ┴ 0.62 0.09 0.53(111) Bridge || 0.63 -0.19 0.82

TS+ZK Method: Break-Downof Binding Energy

bonddirectPaulivdWbind EEEE

Ag(100): vdW and Direct Bonding Synergize

Page 19: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

TS+ZK EnergiesTS+ZK Geometries

PBE Energies TS+ZK Geometries D

Site Ebind EPauli+Edirect bond EvdW(100) Hollow || 0.78 0.36 0.42(100) Bridge || 0.81 0.32 0.48

(100) Top|| 0.77 0.30 0.47(111) Top ┴ 0.64 0.12 0.51

(111) Bridge ┴ 0.62 0.09 0.53(111) Bridge || 0.63 -0.19 0.82

TS+ZK Method: Break-Downof Binding Energy

bonddirectPaulivdWbind EEEE

Ag(111): vdW is the Dominant Attractive ForceSometimes the only Attractive Force

Page 20: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

• We Observed Stronger Binding to Ag(100) when we Include vdW As Inferred by Experiment

Conclusions• We Studied Surface-Sensitivity of PVP Binding to Ag(111) and Ag(100)

• DFT-D2 Reconstructs Ag(100)

• Ag(100) Preference from Synergy Between vdW Attraction and Direct Bonding

Page 21: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Oriented Attachment in Crystal Growth:Role of Intrinsic Crystal Forces

See Also:M. Niederberger and H. Cölfen, Phys. Chem. Chem. Phys. 8, 3271 (2006). Q. Zhang, S. Liu, and S. Yu, J. Mater. Chem. 19, 191 (2009).

HRTEM: Oriented Attachment of TiO2 NanoparticlesR. Penn and J. Banfield, Geochim. Cosmochim.Acta 63, 1549 (1999).

Page 22: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Dipole-Dipole Interactions May Assemble Nanoparticles

T. Zhang, N. Kotov, and S. Glotzer, Nano Lett. 7, 1670 (2007).

Z. Tang and N. Kotov, Adv. Mater. 17, 951 (2005); Z. Tang, N. Kotov, M. Giersig, Science 297, 237 (2002).

CdTe Nanoparticle Chains

+ - + -

Page 23: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Two WulffNanocrystals

(001) TruncatedNanocrystals

(112) TruncatedNanocrystals

i

iiq r=35 D

=0

=250 D

=75 D

TiO2 (Anatase) NanocrystalsMatsui-Akaogi Force FieldMol. Sim. 6, 239, 1991.*

Page 24: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Aggregation of Wulff Nanocrystals

Page 25: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Nanocrystal Aggregation:The Hinge Mechanism

Initial Contact of Edges:The “Hinge” Rotation About the “Hinge”

Page 26: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Nanocrystal Aggregation:Driven by Electrostatic Forces

M. Alimohammadi and K. Fichthorn, Nano Lett. 9, 4198 (2009).

Page 27: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Nanocrystal Aggregation: Driven by Multipoles from Under-CoordinatedSurface Atoms

M. Alimohammadi and K. Fichthorn, Nano Lett. 9, 4198 (2009).

Page 28: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

HRTEM Image Showing Oriented Attachment of 5 TiO2 NanoparticlesR. Penn and J. Banfield, Geochim. Cosmochim. Acta 63, 1549 (1999).

Simulation vs. Experiment: Still Have a Way to Go

Aqueous EnvironmentHour (or longer) Times

Vacuum EnvironmentNanosecond Times

Page 29: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Nanocrystal Aggregation is Driven by Local Interactions.

We Should Re-Think the Dipole Idea…

Conclusions

P. Schapotschnikow et al., Nano Lett. 10, 3966 (2010).

Also found this for capped and uncapped PbSe…

Page 30: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

1D Nanostructures form via Mesocrystals and Oriented Attachment

M. Giersig, I. Pastoriza-Santos, L. Liz-Marzan,J. Mater. Chem. 14, 607 (2004).

Ag Nanowires

V. Yuwano, …, and R. Penn,JACS 132, 2163 (2010).

Goethite Nanowires

Page 31: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Solvent Ordering and Solvation Forces

Solvent Density Profile

Solvent ordering around solvophilic nanoparticlesY. Qin and K. A. Fichthorn, J. Chem. Phys. 119, 9745 (2003).Y. Qin and K. A. Fichthorn, Phys. Rev. E 73, 020401 (2006).

Page 32: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

MD: Aggregation of a Small, Isotropic*Crystal with a Larger, Anisotropic Crystal

*Relatively

RectangularCuboid

SquarePlate

2

1

32

1

● Generic Anisotropic fcc Nanoparticles● Solvophilic Nanoparticles● Strong vdW Attraction (Ag)● Isotropic Organic Solvent

Page 33: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Aggregation of Small and Large Nanocrystals: Mesocrystal States

Mesocrystal State 1One Solvent Layer

Mesocrystal State 1One Solvent Layer

Mesocrystal State 2Two Solvent Layers

Page 34: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Mesocrystal States: Free-Energy Minima

Escape-Time Distribution

Aggregation Probability

kTGeR

eRtf/

Rt

~

)(D

RA eP 1)(

Aggregation of Small and Large Nanocrystals: Mesocrystal States

Mesocrystal State 1One Solvent Layer

Mesocrystal State 1One Solvent Layer

Mesocrystal State 2Two Solvent Layers

Page 35: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Aggregation:Fastest at End of RectangleSlowest on Face of SquareEven on SidesMesocrystal State 1

Most FrequentMesocrystal State 2Occurs on SquareMesocrystal State 3

DissociationNot Typically FrequentDissociation

Nanocrystal Encounters:Frequency of Outcomes

3

1

2

1

2

Aggregation is the Most FrequentOn the Smallest Facets,Perpetuating 1D Growth

Page 36: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Disruption Solvent Ordering at EdgesLeads to Fast Aggregation on Small Facets

Square Plate

Rectangle

7.26.66.05.44.84.23.63.02.41.81.20.60

r/rb

Rectangle

Page 37: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Conclusions

Solvent Ordering Around Nanocrystal SurfacesPromotes Growth of 1D Nanostructures

Leads to Mesocrystal States

Faster Aggregation on Smaller Facets

Page 38: Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Collaborators

FundingNSF DMR-1006452, NIRT CCR-0303976, CBET-0730987DOE DE-FG0207ER46414ACS, EPA, NCSA

Mozhgan AlimohammadiHaijun FengAzar ShahrazJin Pyo HongDr. Ya ZhouDr. Yangzheng Lin

AlumsDr. Yong QinDr. Rajesh SathiyanarayananDr. Leonidas Gergidis

Fritz Haber InstituteAlexander TkatchenkoVictor Gonzalo Ruiz LopezMatthias Scheffler

Univ. of PittsburghDr. Wissam Al-Saidi