multilayer ceramic capacitors (mlccs)

40
1 Multilayer Ceramic Capacitors (MLCCs) Design and Characteristics

Upload: others

Post on 12-Dec-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multilayer Ceramic Capacitors (MLCCs)

1

Multilayer Ceramic Capacitors (MLCCs)

Design and Characteristics

Page 2: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

CapacitorWhat is it?

DielectricElectrode

Distance

𝐶 =𝜖𝑜𝐾𝐴

𝑑

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝐹) =𝑄 = 𝐶ℎ𝑎𝑟𝑔𝑒 (𝐶)

𝑉 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉)

+ -

Farads

Page 3: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Ideal CapacitorsBucket of Water Analogy

D𝑒𝑝𝑡ℎ 𝑜𝑓 𝑊𝑎𝑡𝑒𝑟 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝐴𝑟𝑒𝑎 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑊𝑎𝑡𝑒𝑟 = 𝐶ℎ𝑎𝑟𝑔𝑒, 𝑄

Much less water (charge) stored

for the same voltage

X7RC0G

𝑟

Page 4: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Form Factor

Page 5: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Design

Page 6: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

MLCCs

C = Design Capacitance

K = Dielectric Constant

A = Overlap Area

d = Ceramic Thickness

n = Number of Electrodes

C = e0KA(n-1)

d

Detailed Cross Section

Inner Electrode

End Termination

Barrier Layer

Termination Finish

Dielectric Material

+

-

Capacitances in parallel are additive

CT=C1+C2+C3+….Cn

Page 7: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Typical Construction

Ceramic Dielectric

Internal Electrode (Ni for

BME, Ag/Pd for PME)

Termination (External

Electrode, Cu for BME, Ag

for PME)

Plated Sn finish

for Solderability

Barrier Layer

(Plated Ni)

Page 8: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Dielectric Technology

C0G

PME & BME

200oC

U2J

BME

X8R

BME

X8L

BME

X7R

PME & BME

175oC

X5R

BME

Y5V

BME

Z5U

BME

BP

PME

C0G @ Rated V

BX

PME

X7R +15/25% @

Rated V

BR

PME

X7R & +15/-40% @ Rated V

Commercial & Automotive Grade Dielectric Materials

Military & Hi-Rel Dielectric Materials

Class 1 Class 2 Class 3

Class 1 Class 2

Page 9: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Characteristics

Page 10: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Relative Capacitance vs. Temperature (TCC)

Temperature

‘K’

Ma

gn

itu

de

X7R

C0G (NP0)

X5R

Z5U

Y5V

‘Room’Ambient

U2J

Class 3

Class 2

Class 1

Page 11: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Dielectric ClassificationClass 1 (Per EIA – 198)

Alpha

Symbol

Significant

Figure of

Temp

Coefficient

ppm/ºC

Numerical

Symbol

Multiplier to

significant

figure

Alpha

Symbol

Tolerance of

Temp

Coefficient

± ppm/ºC

C 0 0 -1 G 30

B 0.3 1 -10 H 60

L 0.8 2 -100 J 120

A 0.9 3 -1000 K 250

M 1.0 4 -10000 L 500

P 1.5 5 +1 M 1000

R 2.2 6 +10 N 2500

S 3.3 7 +100

T 4.7 8 +1000

U 7.5 9 +10000

Class I Dielectrics

C0G Example

U2J Example

Operating Temperature -55oC to +125oC

Page 12: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Dielectric ClassificationClass 2 and 3 (per EIA-198)

Alpha

Symbol

Low

Temperature

(ºC)

Numerical

Symbol

High

Temperature

(ºC)

Alpha

Symbol

Max cap

change over

temp. range

(%)

Z +10 2 +45 A ±1.0

Y -30 4 +65 B ±1.5

X -55 5 +85 C ±2.2

6 +105 D ±3.3

7 +125 E ±4.7

8 +150 F ±7.5

9 +200 P ±10

R ±15

S ±22

* L +15 to - 40

T +22 to - 33

U +22 to - 56

V +22 to - 82

CL

AS

S 3

CL

AS

S 2

* Industry Classification (Non EIA-198)

Page 13: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

-90%

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

0 4 8 12 16 20

Cap

acit

ance

Ch

ange

DC Voltage (V)

Capacitance versus DC VoltageX7R 1206 10uF 16V

Capacitance StabilityVersus DC Voltage – Class 2 and Class 3

Page 14: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Capacitance StabilityVersus DC Voltage – Class 2 and Class 3

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

0 1 2 3 4 5 6

Cap

acit

ance

Ch

ange

DC Voltage (V)

Capacitance Change vs. DC Bias1210 vs 0805, X7R, 10uF, 6.3V

1210

0805

Page 15: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Voltage Coefficient (Class 2 and 3)DC Bias

BaTiO3 above Curie point

• Cubic

• No Dipole

BaTiO3 below Curie point

• Tetragonal

• Creates Dipole

Face Centered Cubic

Crystal Structure

+

-

Page 16: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

-70%-60%-50%-40%-30%-20%-10%0%10%

0 4 8 12 16 20Cap

acit

ance

Ch

ange

DC Voltage (V)

Capacitance versus DC VoltageX7R 1206 10uF 16V

Voltage Coefficient (Class 2 and 3)DC Bias

+V

-VDomains

10V DC

VDC

-

Page 17: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Class 2 BaTiO3

Ferroelectric

VAC

Ferroelectric dipoles in domains align with

the AC Field

Domain wall heating &

Signal distortion

Class 1 CaZrO3

Paraelectric

Paraelectric dipoles align with AC field

No domains, so

No Domain wall heating &

Reduced signal distortion

VAC

AC Coupling and Signal Distortion X7R vs. C0G

Page 18: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

-10.0%

-5.0%

0.0%

5.0%

10.0%

0 0.5 1 1.5 2 2.5 3

Cap

acit

ance

Ch

ange

AC Voltage (Vrms)

Capacitance versus AC VoltageX7R 1206 10uF 16V

Voltage Coefficient (Class 2 and 3)AC Bias

Measurement Conditions

Capacitance Frequency Voltage (AC)

≤10uF 1kHz 1Vrms

>10uF 120Hz 0.5Vrms

VAC

Page 19: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Capacitance Measurements of Class 2 Capacitance out of Spec???? VAC

✓ Instrument Calibrated

✓ AC Voltage 1Vrms

✓ Frequency 1kHz

Example: 1210 10uF 10% Tolerance

Capacitance out of Specification!!!!

Page 20: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Capacitance Measurements of Class 2 VAC

Danger Zone: >1uF

Measurement frequency switches

from 1kHz to 120Hz

VSZS

Instrument

ZCap

VCap

Page 21: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Capacitance Measurements of Class 2 ALC Function (Auto Leveling Control)

VAC

Example: 1210 10uF 10% Tolerance

Within

Specification!!!!

Page 22: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Capacitance Measurements of Class 2 Lower Source Impedance Meters

VAC

No ALC NeededKeysight E4981A Capacitance Meter

Page 23: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Class 1 MLCCsUltra Stable versus Voltage VAC

-20%

-10%

0%

10%

20%

0 4 8 12 16 20

Cap

ch

ange

(%

)

DC Voltage (V)

Capacitance Change vs DC VoltageC0G 1210 220nF 25V

-10.0%

-5.0%

0.0%

5.0%

10.0%

0 0.5 1 1.5 2 2.5 3

Cap

ch

ange

(%

)

AC Voltage (Vrms)

Capacitance Change vs AC BiasC0G 1210 220nF 25V

No change with DC voltage No change with AC voltage

DC Voltage AC Voltage

Page 24: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

1 10 100 1,000 10,000 100,000

Pe

rce

nta

ge

No

min

al

Time Post Heat (Hours)

Capacitance StabilityVersus Time (Aging) Class 2

https://ec.kemet.com/design-tools/aging-calculator-for-ceramics

Re

fere

nc

e

Solder Process

8,7

77 H

r=

1Y

r

87,7

70

Hr

= 1

0 Y

r

Nominal Capacitance Tolerance

Page 25: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

-15%

-10%

-5%

0%

5%

10%

15%

1 10 100 1,000 10,000 100,000

Pe

rce

nta

ge

No

min

al

Time Post Heat (Hours)

Capacitance StabilityVersus Time (Aging) Class 1

No change with Time

Page 26: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Piezoelectricity and Electrostriction

- -

- - - -

+ + + +

+ +

Mechanical Distortion

+

-

+

-

Page 27: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Audible Noise

AC Voltage

Piezoelectricity and Electrostriction

Z

X

Y

Electrical Noise

PiezoelectricityElectrical Noise Electrostriction

Audible Noise

Page 28: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Common Failure Modes

Page 29: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Ceramic Materials are Inherently Brittle

Ceramic Properties• High chemical bond strength

• High Elastic Modulus

• Low Ductility

• Very Hard

Page 30: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Typical Crack Signatures

The major sources of MLCC cracks are:

• Mechanical damage (impact)

‒ Aggressive pick and place

‒ Physical mishandling

• Thermal shock (parallel plate crack)

‒ Extreme temperature cycling

‒ Hand soldering

• Do not touch electrodes while hand soldering!

• Flex or Bend stress

‒ Occurs after mounted to board

‒ Common for larger chips (>0805)

Mechanical

Damage

Flex Crack

Thermal Shock Crack

Failure is not always immediate!

Page 31: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

External Forces on Ceramic Material

Force

Compression

Strong under compression

Force Force

Tension

Weak under tension

Force

Page 32: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Flex CrackingExcessive Bending

High Stress Region

MLCC Under Tension

Finite Element Analysis

Page 33: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Flex CrackingExcessive Bending

Flex crack signature

MLCC Active Area

Starts here

Page 34: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Capacitor Mitigation SolutionsLevel 1 Protection – Basic Level of Crack Protection

MLCC Active AreaFloating Electrode Open Mode

Pros• Serial design

• Fails open

Cons• Reduced capacitance in the same volume

Pros• Crack doesn’t go through active area

• Fails open

Cons• Reduced capacitance in the same volume

Page 35: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Capacitor Mitigation SolutionsLevel 2 Protection – Intermediate Level of Crack Protection

Pros• Increased flex capability

• High volumetric efficiency

Cons• Fail short

Flexible Termination (FT-CAP)

End Termination/

External

Electrode (Cu)

Flexible

Termination

Epoxy Layer (Ag)

Barrier Layer (Ni)

Termination Finish

(100% Matte

Sn/SnPb–5% Pb min)

Conductive-Epoxy

Conductive-Epoxy

Crack

Page 36: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Capacitor Mitigation SolutionsLevel 3 Protection – High Level of Crack Protection (Hybrid Technology)

Pros• Increased flex capability

• Floating Electrode design

• Fail Open

Cons• Reduced capacitance in the same volume

Flexible Termination (FT-CAP) +

Floating ElectrodeFlexible Termination (FT-CAP) +

Open Mode

Page 37: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Thermal ShockWhy is it an issue?

Circuit BoardInner Electrode

End Termination

Barrier LayerTermination Finish

Dielectric Material

CTE – Coefficient of Thermal Expansion

Thermal Shock Cracks → CTE Mismatch

Page 38: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Thermal ShockCauses – Hand Soldering

Internal Temperature GradientsUneven Expansion and Contraction

COLD HOTHand Solder Tips• Don’t touch capacitor termination

• Pre-heat assembly

• Larger case sizes are more sensitive

Page 39: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Thermal ShockCauses – Solder Wave

Solder Wave

Molten Solder

PCB Travel

Page 40: Multilayer Ceramic Capacitors (MLCCs)

© 2019 KEMET Corporation

Thank You