multiplicative invariant theoryzhang/seattlenit2012/...multiplicative invariant theory seattle...

68
Multiplicative Invariant Theory Workshop “Noncommutative Invariant Theory” U Washington, Seattle 05/27/2012 Jessie Hamm Temple University, Philadelphia Special Thanks to Dr. Martin Lorenz

Upload: others

Post on 05-Jul-2020

7 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Multiplicative InvariantTheory

Workshop “Noncommutative Invariant Theory”U Washington, Seattle 05/27/2012

Jessie HammTemple University, Philadelphia

Special Thanks to Dr. Martin Lorenz

Page 2: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

OverviewPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 2

■ Introductionto multiplicative invariants: definitions, examples, . . .

Page 3: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

OverviewPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 2

■ Introductionto multiplicative invariants: definitions, examples, . . .

■ Regularity: reflection groups and semigroup algebras

Page 4: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

OverviewPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 2

■ Introductionto multiplicative invariants: definitions, examples, . . .

■ Regularity: reflection groups and semigroup algebras

■ TheCohen-Macaulay property: reminders on CM rings, some resultson multiplicative invariants, and some problems

Page 5: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Part I: Introduction

Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Page 6: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Multiplicative invariantsPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 4

■ Given: a groupG and aG-latticeL ∼= Z

n; so

G → GL(L) ∼= GLn(Z)

anintegral representationof G

k

k k k

k k

k k

Page 7: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Multiplicative invariantsPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 4

■ Given: a groupG and aG-latticeL ∼= Z

n; so

G → GL(L) ∼= GLn(Z)

■ Choose a base ringk and form thegroup algebra

k[L] =⊕

m∈L

kxm ∼= k[x±1

1 , . . . , x±1n ] , x

mxm′

= xm+m′

TheG-action onL extends uniquely to a“multiplicative” or“exponential”action on thek-algebrak[L]: g(xm) = x

g(m)

k k

Page 8: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Multiplicative invariantsPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 4

■ Given: a groupG and aG-latticeL ∼= Z

n; so

G → GL(L) ∼= GLn(Z)

■ Choose a base ringk and form thegroup algebra

k[L] =⊕

m∈L

kxm ∼= k[x±1

1 , . . . , x±1n ] , x

mxm′

= xm+m′

TheG-action onL extends uniquely to a“multiplicative” or“exponential”action on thek-algebrak[L]: g(xm) = x

g(m)

■Problem: k[L]G = {f ∈ k[L] | g(f) = f ∀g ∈ G} = ?

Page 9: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example #1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 5

Multiplicative inversion in rank 2:(k = Z)

G = 〈g | g2 = 1〉L = Ze1 ⊕ Ze2action:g(ei) = −ei

Page 10: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example #1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 5

Multiplicative inversion in rank 2:(k = Z)

G = 〈g | g2 = 1〉L = Ze1 ⊕ Ze2action:g(ei) = −ei

Puttingxi = xei we have: Z[L] = Z[x±1

1 , x±12 ] with g(xi) = x−1

i

Page 11: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example #1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 5

Multiplicative inversion in rank 2:(k = Z)

G = 〈g | g2 = 1〉L = Ze1 ⊕ Ze2action:g(ei) = −ei

Puttingxi = xei we have: Z[L] = Z[x±1

1 , x±12 ] with g(xi) = x−1

i

Straightforward calculation

Z[L]G = Z[ξ1, ξ2]⊕ ηZ[ξ1, ξ2]

ξi = xi + x−1i

η = x1x2 + x−11 x−1

2

ηξ1ξ2 = η2 + ξ21 + ξ22 − 4

Page 12: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example #1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 5

Multiplicative inversion in rank 2:(k = Z)

G = 〈g | g2 = 1〉L = Ze1 ⊕ Ze2action:g(ei) = −ei

Hence: Z[L]G ∼= Z[x, y, z]/(x2 + y2 + z2 − xyz − 4)

Page 13: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example #1′: linear analogPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 6

Linear inversion in rank 2: G = 〈g | g2 = 1〉L = Ze1 ⊕ Ze2action:g(ei) = −ei

Page 14: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example #1′: linear analogPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 6

Linear inversion in rank 2: G = 〈g | g2 = 1〉L = Ze1 ⊕ Ze2action:g(ei) = −ei

Now: S(L) = Z[x1, x2] with g(xi) = −xi

Page 15: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example #1′: linear analogPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 6

Linear inversion in rank 2: G = 〈g | g2 = 1〉L = Ze1 ⊕ Ze2action:g(ei) = −ei

Now: S(L) = Z[x1, x2] with g(xi) = −xi

One obtains:

S(L)G = Z[ξ1, ξ2]⊕ ηZ[ξ1, ξ2]

ξi = x2i

η = x1x2

η2 = ξ1ξ2

Page 16: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example #1′: linear analogPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 6

Linear inversion in rank 2: G = 〈g | g2 = 1〉L = Ze1 ⊕ Ze2action:g(ei) = −ei

Hence: Z[L]G ∼= Z[x, y, z]/(z2 − xy)

Page 17: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Some Special FeaturesPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7

Back to general multiplicative actions:

L aG-lattice

k a commutative base ring

k[L] the group algebra

Page 18: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Some Special FeaturesPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7

Multiplicative invariants have a Z-structure:

ak-basis ofk[L]G is given by the distinct orbit sums

orb(m) :=∑

m′∈G(m)

xm′

(m ∈ L)

k[L]G = k⊗

Z

Z[L]G

Page 19: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Some Special FeaturesPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7

It suffices to considerfinite groups:

eachorb(m) is supported onLfin = {m ∈ L | [G : Gm] < ∞}

stabilizer ofm ∈ L

G acts onLfin through the finite quotientG = G/KerG(Lfin). Thus:

k[L]G = k[Lfin]G

Page 20: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Some Special FeaturesPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7

In particular,k[L]G is always affine/k

(Hilbert # 14 ok).

Page 21: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Finite Linear GroupsPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 8

Jordan (1880):GLn(Z) has only finitely many finite subgroups up toconjugacy.

Page 22: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Finite Linear GroupsPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 8

Jordan (1880):GLn(Z) has only finitely many finite subgroups up toconjugacy.

there are onlyfinitely manymultiplicative invariant algebras

k[L]G (up to∼=) with rankL bounded

Page 23: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Finite Linear GroupsPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 8

n # fin. G ≤ GLn(Z) # max’l G(up to conj.) (up to conj.)

1 2 1

2 13 2

3 73 4

4 710 9

5 6079 17

6 85311 39

Page 24: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Pioneers of MITPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 9

■ Bourbaki : “Invariants exponentiels”(Chap. VI§ 3 of Groupes etalgebres de Lie, 1968)

R(g) ∼= Z[Λ]W ∼= Z[x1, . . . , xrank g]

whereR(g) = representation ring of a semisimple Lie algebrag, Λ =weight lattice ofg, andW = Weyl group.

Page 25: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Pioneers of MITPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 9

■ Bourbaki : “Invariants exponentiels”(Chap. VI§ 3 of Groupes etalgebres de Lie, 1968)

R(g) ∼= Z[Λ]W ∼= Z[x1, . . . , xrank g]

whereR(g) = representation ring of a semisimple Lie algebrag, Λ =weight lattice ofg, andW = Weyl group.

■ Steinberg, Richardson(1970s)

Page 26: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Pioneers of MITPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 9

■ Bourbaki : “Invariants exponentiels”(Chap. VI§ 3 of Groupes etalgebres de Lie, 1968)

R(g) ∼= Z[Λ]W ∼= Z[x1, . . . , xrank g]

whereR(g) = representation ring of a semisimple Lie algebrag, Λ =weight lattice ofg, andW = Weyl group.

■ Steinberg, Richardson(1970s)

■ “∆-methods” for group rings:Passman, Zalesskiı, Roseblade, DanFarkas “multiplicative invariants”

(mid 1980s)

Page 27: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Part II: Regularity

Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Page 28: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Regularity at 1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 11

Notations: G a finite groupL ∼= Z

n a faithfulG-lattice

k = k a field withchar k ∤ |G|

Will explain the following result . . .

Page 29: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Regularity at 1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 11

Theorem 1TFAE (1) k[L]G is regular atπ(1)(2) G acts as a reflection group onL(3)k[L]G = k[M ] is a semigroup

algebra withε(M) ⊆ k

Page 30: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Regularity at 1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 11

Theorem 1TFAE (1) k[L]G is regular atπ(1)(2) G acts as a reflection group onL(3)k[L]G = k[M ] is a semigroup

algebra withε(M) ⊆ k

Here,

X = Spec k[L]π

−→ X/G = Spec k[L]G

1 = Ker ε

whereε : k[L] −→ k is the counit:ε(xm) = 1 for all m ∈ L

Page 31: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Regularity at 1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 11

Theorem 1TFAE (1) k[L]G is regular atπ(1)(2) G acts as a reflection group onL(3)k[L]G = k[M ] is a semigroup

algebra withε(M) ⊆ k

(1)⇒ (2) useslinearization: PutE = Ker ε. Then

L

k

= L⊗ k

∼→ E/E2

m⊗ 1 7→ xm − 1 + E2

leads to S(L

k

)Gπ(0)

∼=

k[L]Gπ(1). Now use the S-T-C Theorem.

Page 32: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Regularity at 1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 11

Theorem 1TFAE (1) k[L]G is regular atπ(1)(2) G acts as a reflection group onL(3)k[L]G = k[M ] is a semigroup

algebra withε(M) ⊆ k

(2)⇒ (3) usesroot systems: ∃ root systemΦ so that

ZΦ ⊆ L ⊆ Λ(Φ) with G = W(Φ)

UseBourbaki’s Thm: Z[Λ(Φ)]W(Φ) is a polynomial algebra.

Page 33: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Regularity at 1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 11

Theorem 1TFAE (1) k[L]G is regular atπ(1)(2) G acts as a reflection group onL(3)k[L]G = k[M ] is a semigroup

algebra withε(M) ⊆ k

(3)⇒ (1) usestorus actions:

(3) ⇔X/G = Spec k[L]G is an affine toric variety so thatπ(1)belongs to the open torus orbit

This implies (1).

Page 34: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example #1 RevisitedPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 12

Recall:multiplicative inversion(rank2)

G = 〈g | g2 = 1〉L = Ze1 ⊕ Ze2action:g(ei) = −ei

k[L]G ∼= k[x, y, z]/(x2 + y2 + z2 − xyz − 4)

k[L]G is not a semigroupalgebra:

Page 35: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Ex #2: Un and the root latticeAn−1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 13

Notation: Un =⊕n

1 Zei∼= Z

n

An−1 = {∑

i ziei ∈ Un |∑

i zi = 0} ∼= Z

n−1

Sn-action: σ(ei) = eσ(i) (σ ∈ Sn)

Page 36: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Ex #2: Un and the root latticeAn−1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 13

Notation: Un =⊕n

1 Zei∼= Z

n

An−1 = {∑

i ziei ∈ Un |∑

i zi = 0} ∼= Z

n−1

Sn-action: σ(ei) = eσ(i) (σ ∈ Sn)

Note: Sn acts as a reflection group;transpositions are reflections

Page 37: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Ex #2: Un and the root latticeAn−1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 13

Notation: Un =⊕n

1 Zei∼= Z

n

An−1 = {∑

i ziei ∈ Un |∑

i zi = 0} ∼= Z

n−1

Sn-action: σ(ei) = eσ(i) (σ ∈ Sn)

Putxi = xei ∈ k[Un]; soσ(xi) = xσ(i) for σ ∈ Sn. Then

k[Un] = k[x±11 , . . . , x±1

n ] = k[x1, . . . , xn][s−1n ] ,

wheresn =∏n

1 xi is thenth elementary symmetric polynomial.

Page 38: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Ex #2: Un and the root latticeAn−1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 13

Notation: Un =⊕n

1 Zei∼= Z

n

An−1 = {∑

i ziei ∈ Un |∑

i zi = 0} ∼= Z

n−1

Sn-action: σ(ei) = eσ(i) (σ ∈ Sn)

∴ k[Un]Sn = k[x1, . . . , xn][s

−1n ]Sn

= k[x1, . . . , xn]Sn [s−1

n ]

= k[s1, . . . , sn−1, s±1n ]

∼= k[Zn−1+ ⊕ Z]

elem. symmetric poly’s

Page 39: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Ex #2: Un and the root latticeAn−1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 13

Notation: Un =⊕n

1 Zei∼= Z

n

An−1 = {∑

i ziei ∈ Un |∑

i zi = 0} ∼= Z

n−1

Sn-action: σ(ei) = eσ(i) (σ ∈ Sn)

Now,

k[An−1] = k[Un]0 ,

the degree0-component for the (Sn-stable) “total degree” grading of

k[Un] = k[x±11 , . . . , x±1

n ].

Page 40: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Ex #2: Un and the root latticeAn−1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 13

Notation: Un =⊕n

1 Zei∼= Z

n

An−1 = {∑

i ziei ∈ Un |∑

i zi = 0} ∼= Z

n−1

Sn-action: σ(ei) = eσ(i) (σ ∈ Sn)

Get

k[An−1]Sn ∼= k[M ]

withM =

{

(t1, . . . , tn−1) ∈ Z

n−1+ |

iti ∈ nZ

}

Page 41: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Ex #2: Un and the root latticeAn−1Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 13

Notation: Un =⊕n

1 Zei∼= Z

n

An−1 = {∑

i ziei ∈ Un |∑

i zi = 0} ∼= Z

n−1

Sn-action: σ(ei) = eσ(i) (σ ∈ Sn)

C[An−1]Sn is not regular:

(n > 2; picture forn = 3)

Page 42: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

RegularityPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 14

Here is the global version of Theorem 1(same notations and hypotheses)

Page 43: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

RegularityPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 14

Theorem 1′ TFAE (1) k[L]G is regular(2)G acts as a reflection group onL

andH1(G/D, LD) = 0(3) k[L]G ∼= k[Zr

+ ⊕ Z

s](4)∃ root systemΦ s.t.L/LG ∼= Λ(Φ)

andG = W(Φ)

Here,D is the subgroup ofG that is generated by the “diagonalizable”reflections, conjugate inGL(L) to

d =

(

−11

...1

)

Page 44: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

RegularityPart I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 14

n

# finiteG ≤ GLn(Z)(up to conjugacy)

# reflection groupsG(up to conjugacy)

# cases withk[L]G regular

2 13 9 7

3 73 29 18

4 710 102 51

Page 45: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Part III: The Cohen-MacaulayProperty

Part I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Page 46: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Reminder: CM RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 16

■ Hypotheses: R a comm. noetherian ringa an ideal ofR

Page 47: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Reminder: CM RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 16

■ Hypotheses: R a comm. noetherian ringa an ideal ofR

■ Always:

height a ≥ depth a = inf{i | H ia(R) 6= 0}

Page 48: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Reminder: CM RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 16

■ Hypotheses: R a comm. noetherian ringa an ideal ofR

■ Always:

height a ≥ depth a = inf{i | H ia(R) 6= 0}

(Zariski) topologydimension theory

(homological) algebra

Page 49: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Reminder: CM RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 16

■ Hypotheses: R a comm. noetherian ringa an ideal ofR

■ Always:

height a ≥ depth a = inf{i | H ia(R) 6= 0}

(Zariski) topologydimension theory

(homological) algebra

■ Def: R is Cohen-Macaulayiff equality holds forall (maximal) idealsa

Page 50: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Some Examples of CM RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 17

■ Standard example:R an affine domain/PIDk, finite / somepolynomial subalgebraP = k[x1, . . . , xn]. Then:

R CM ⇔ R is freeoverP

Page 51: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Some Examples of CM RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 17

■ Standard example:R an affine domain/PIDk, finite / somepolynomial subalgebraP = k[x1, . . . , xn]. Then:

R CM ⇔ R is freeoverP

■ Hierarchy: catenary

regular +3 complete⋂ +3 Gorenstein +3 CM

KS

dim 0

6>✉✉✉✉✉✉✉✉✉

✉✉✉✉✉✉✉✉✉ dim 1reduced

KS

dim 2normal

^f❋❋❋❋❋❋❋❋

❋❋❋❋❋❋❋❋

Page 52: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Invariant RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 18

Hypotheses: R a CM ringG a finite group acting onR

Page 53: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Invariant RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 18

Hypotheses: R a CM ringG a finite group acting onR

If the trace mapR → RG , r 7→∑

Gg(r), is epi (“non-modular case”)

thenRG is CM; otherwiseusually not.

Page 54: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Invariant RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 18

Hypotheses: R a CM ringG a finite group acting onR

If the trace mapR → RG , r 7→∑

Gg(r), is epi (“non-modular case”)

thenRG is CM; otherwiseusually not.

Here is anecessary condition. . .

Page 55: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Invariant RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 18

Hypotheses: R a CM ringG a finite group acting onRRk = { k-reflectionsonR }AssumeR noetherian/RG

automorphisms belonging tothe inertia group of someprime of height≤ k

Proposition(L. - Pathak)

RG CM & H i(G, R) = 0 (0 < i < k)

⇒ res : Hk(G, R) →∏

H⊆Rk+1

Hk(H, R)

Page 56: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Invariant RingsPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 18

Hypotheses: R a CM ringG a finite group acting onRRk = {k-reflectionsonR }AssumeR noetherian/RG

Proposition(L. - Pathak)

RG CM & H i(G, R) = 0 (0 < i < k)

⇒ res : Hk(G, R) →∏

H⊆Rk+1

Hk(H, R)

Note: The (H i = 0)-condn

is vacuous fork = 1 bireflections.

Page 57: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Mult. Invariants: CM-propertyPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 19

Notations: G is a finite group6= 1L aG-lattice, WLOG faithful

Page 58: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Mult. Invariants: CM-propertyPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 19

Notations: G is a finite group6= 1L aG-lattice, WLOG faithful

SoG → GL(L), g 7→ gL. In this setting,

g ∈ G is ak-reflectiononk[L]

⇐⇒ rank(gL − IdL) ≤ k

”g is ak-reflection onL” — or onL⊗

Z

Q

Page 59: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Mult. Invariants: CM-propertyPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 19

Notations: G is a finite group6= 1L aG-lattice, WLOG faithful

Theorem 2(L, TAMS ’06)

If Z[L]G is CM then allGm/R2(Gm) for m ∈ L are

perfect groups, but notall Gm are.

subgroup gen. bybireflections onL

Page 60: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Mult. Invariants: CM-propertyPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 19

Notations: G is a finite group6= 1L aG-lattice, WLOG faithful

Theorem 2(L, TAMS ’06)

If Z[L]G is CM then allGm/R2(Gm) for m ∈ L are

perfect groups, but notall Gm are.

Corollary (“3-copies conjecture”) Z[L⊕r]G is never CMfor r ≥ 3.

Page 61: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Mult. Invariants: CM-propertyPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 19

Notations: G is a finite group6= 1L aG-lattice, WLOG faithful

Theorem 2(L, TAMS ’06)

If Z[L]G is CM then allGm/R2(Gm) for m ∈ L are

perfect groups, but notall Gm are.

Note that the conclusions of Theorem 2 only refer to therationaltype

of L. In fact . . .

Page 62: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Mult. Invariants: CM-propertyPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 19

Notations: G is a finite group6= 1L aG-lattice, WLOG faithful

Theorem 2(L, TAMS ’06)

If Z[L]G is CM then allGm/R2(Gm) for m ∈ L are

perfect groups, but notall Gm are.

Proposition If k[L]G is CM then so isk[L′]G for any G-latticeL′ so thatL′ ⊗ Q

∼= L⊗ Q.

Page 63: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example: Sn-latticesPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 20

What are theSn-latticesL such thatZ[L]Sn is CM ?

Page 64: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example: Sn-latticesPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 20

We know:

■ only the structure ofL

Q

= L⊗

Z

Q matters (Proposition)

■ Sn must act as a bireflection group onL (Theorem 2), and hence onall simple constituents ofL

Q

Page 65: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example: Sn-latticesPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 20

Classification results of irreducible finite linear groups containing abireflection (Huffman and Wales, 70s) imply,for n ≥ 7:

L

Q

∼= Q

r ⊕ (Q−)s⊕ (An−1)

t

Q

(s+ t ≤ 2)

sign representation ofSn

Page 66: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

Example: Sn-latticesPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 20

In all cases,Z[L]Sn is indeed CM, with the possibleexception of

L = A2n−1

This case reduces to

Problem(open forp ≤ n/2)

Are the “vector invariants”

Fp[x1, . . . , xn, y1, . . . , yn]Sn CM?

Page 67: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

SummaryPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 21

LetL be aG-lattice, whereG is a finite group.

G is generated byreflectionsonL

Bourbaki, Farkas

L.

*2

Z[L]G is asemigroup algebra

?

jr

Hochster

��

G is generated bybireflectionsonL

Z[L]G isCohen-Macaulay+3

?

ks

Page 68: Multiplicative Invariant Theoryzhang/SeattleNIT2012/...Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7 Back to general multiplicative actions: L a G-lattice k a commutative

ThanksPart I: Introduction Part II: RegularityPart III: The Cohen-Macaulay Property

Multiplicative Invariant Theory Seattle 05/27/2012 – slide 22

Thanks for your attention!