natural susy at the 13 tev lhc: limits, naturalness and ... · sus-16-014, 0-lep (h t sus-16-015,...

56
Natural SUSY at the 13 TeV LHC: limits, naturalness and the bumps Angelo Monteux 1610.08059 w/ M. Buckley, S. Macaluso, D. Feld, D. Shih + work in progress New High Energy Theory Center Rutgers University IBS CTPU Focus Workshop, Dec 7th 2016 A. Monteux (Rutgers) Natural SUSY after ICHEP 12/07/2016 1 / 21

Upload: others

Post on 22-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Natural SUSY at the 13 TeV LHC:limits, naturalness and the bumps

Angelo Monteux1610.08059 w/ M. Buckley, S. Macaluso, D. Feld, D. Shih

+ work in progress

New High Energy Theory CenterRutgers University

IBS CTPU Focus Workshop, Dec 7th 2016

A. Monteux (Rutgers) Natural SUSY after ICHEP 12/07/2016 1 / 21

Page 2: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Prelude

The LHC back on after 2 years upgrade: highest energy (andluminosity) collider we ever had!With 15–20 fb−1 of public data shown at ICHEP, better reachthan 8 TeV. At present time, Lint. ∼35 fb−1!

Perfect time to look beyond simplified topologies considered byATLAS and CMS - comprehensive re-interpretation (recasting)

Are there overlooked SUSY signatures?

Will show limits on natural SUSY spectra (10% fine-tuned orbetter). Many fully-natural scenarios are still viable - althoughprefer low messenger scales.

1/21

Page 3: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

No clear signals of new physics in ∼100 searches at 13 TeV (RIP γγ).Limits on colored new physics are strong.

(a) (b)

(c)

g

g

�02

�02

p

p

q q

�01

Z

qq

�01

Z

(d)

Figure 1: The decay topologies of (a) squark-pair production and (b, c, d) gluino-pair production, in the simplifiedmodels with (a) direct decays of squarks and (b) direct or (c, d) one-step decays of gluinos.

using the Powheg-Box v1 generator. This generator uses the four-flavour scheme for the NLO matrix-element calculations together with the fixed four-flavour PDF set CT10f4 [56]. For this process, thedecay of the top quark is simulated using MadSpin tool [60] preserving all spin correlations, while for allprocesses the parton shower, fragmentation, and the underlying event are generated using Pythia 6.428[61] with the CTEQ6L1 [62] PDF set and the corresponding Perugia 2012 tune (P2012) [63]. The topquark mass is set to 172.5 GeV. The hdamp parameter, which controls the pT of the first additional emissionbeyond the Born configuration, is set to the mass of the top quark. The main e↵ect of this is to regulatethe high-pT emission against which the ttbar system recoils [58]. The tt events are normalized to theNNLO+NNLL [64, 65]. The s- and t-channel single-top events are normalized to the NLO cross-sections[66, 67], and the Wt-channel single-top events are normalized to the NNLO+NNLL [68, 69].

For the generation of tt + EW processes (tt+W/Z/WW) [70], the MG5_aMC@NLO 2.2.3 [36] generatorat LO interfaced to the Pythia 8.186 parton-shower model is used, with up to two (tt+W, tt+Z(! ⌫⌫/qq)),one (tt+Z(! ``)) or no (tt+WW) extra partons included in the matrix element. The ATLAS underlying-event tune A14 is used together with the NNPDF2.3LO PDF set. The events are normalized to theirrespective NLO cross-sections [71, 72].

Diboson processes (WW, WZ, ZZ) [73] are simulated using the Sherpa 2.1.1 generator. For processeswith four charged leptons (4`), three charged leptons and a neutrino (3`+1⌫) or two charged leptons andtwo neutrinos (2`+2⌫), the matrix elements contain all diagrams with four electroweak vertices, and arecalculated for up to one (4`, 2`+2⌫) or no partons (3`+1⌫) at NLO and up to three partons at LO using theComix and OpenLoops matrix-element generators, and merged with the Sherpa parton shower using theME+PS@NLO prescription. For processes in which one of the bosons decays hadronically and the otherleptonically, matrix elements are calculated for up to one (ZZ) or no (WW, WZ) additional partons at NLOand for up to three additional partons at LO using the Comix and OpenLoops matrix-element generators,

5

) [GeV]g~m(1000 1200 1400 1600 1800 2000

) [G

eV]

0 1χ∼m

(

200

400

600

800

1000

1200

1400

1600

1800

2000

2200 ATLAS Preliminary -1 = 13 TeV, 13.2-14.8 fbs, 0-lepton, ATLAS-CONF-2016-078

0

1χ∼q q→g~

, 0-lepton, ATLAS-CONF-2016-0780

1χ∼Wq q→g~

, 1-lepton, ATLAS-CONF-2016-0540

1χ∼Wq q→g~

, SS leptons, ATLAS-CONF-2016-0370

1χ∼WZq q→g~

, SS leptons, ATLAS-CONF-2016-0370

1χ∼t t→g~

3b jets, ATLAS-CONF-2016-052≥, 0

1χ∼t t→g~

3b jets, ATLAS-CONF-2016-052≥, 0

1χ∼b b→g~

[GeV]g~m800 1000 1200 1400 1600 1800 2000

[GeV

]10 χ∼

m

0

200

400

600

800

1000

1200

1400

1600

1800

2000 CMS Preliminary

10χ∼t t→ g~, g~g~ →pp ICHEP 2016

(13 TeV)-112.9 fb

ExpectedObserved

)missTSUS-16-014, 0-lep (H

)T2SUS-16-015, 0-lep (M)TαSUS-16-016, 0-lep ()φ∆SUS-16-019, 1-lep (

2-lep (SS)≥SUS-16-020, 3-lep≥SUS-16-022,

SUS-16-030, 0-lep (top tag)

1 Introduction

Supersymmetry (SUSY) [1–6] is a well motivated extension of the Standard Model (SM) that introducessupersymmetric partner (superpartner) particles to each of the SM particles and that provides a naturalsolution [7, 8] to the hierarchy problem [9–12]. The top squark or stop (t), which is the superpartnerof the top quark, is expected to be relatively light due to its large contribution to the Higgs boson massradiative corrections [13, 14]. A common theoretical strategy for avoiding strong constraints from thenon-observation of proton decay [15] is to introduce a multiplicative quantum number called R-parity. IfR-parity is conserved [16], SUSY particles are produced in pairs and the lightest supersymmetric particle(LSP) is stable. This analysis follows the typical assumption that the lightest neutralino1 ( �0

1) is the LSP.Since the �0

1 interacts only weakly, it can serve as a candidate for dark matter [17, 18].

The analysis described in this note closely follows and extends the previous search for stop productionusing 2015 data [19]. This note presents a search targeting the direct production of the lighter stop2 (t1),illustrated by the diagrams in Figure 1. The stop can decay into a variety of final states, depending amongstother things on the SUSY particle mass spectrum, in particular on the masses of the stop, chargino andlightest neutralino. When the decay into b �±1 is kinematically allowed, the t1 decay branching ratio (BR)is determined by the stop mixing matrix and the field content of the neutralino/chargino sector.

In addition to the direct stop search, a dark matter (DM) scenario [20–22] is also studied. Figure 2illustrates a Feynman diagram where the DM particles (represented by �) are pair-produced via a spin-0mediator (either scalar or pseudo-scalar). The mediator couples to the SM particles by mixing with theHiggs sector.

t1

t1p

p

�01

t

�01

t

t1

t1

�±1

�⌥1

p

p

b

�01

b

�01

W⌥

Figure 1: Diagrams illustrating the direct pair production of t1 particles and their decays, which are referred to ast1 ! t + �0

1 (left) and t1 ! b + �±1 (right). Furthermore, a mixed decay scenario where each t1 decays via eithert1 ! t + �0

1 and t1 ! b + �±1 for various BR is considered (not shown). For simplicity, no distinction is madebetween particles and antiparticles.

The analysis presented here targets final states with one lepton, where the W boson from one of the topquarks decays to an electron or muon (either directly or via a ⌧ lepton) and the W boson from the other

1 The charginos �±1,2 and neutralinos �01,2,3,4 are the mass eigenstates formed from the linear superposition of the charged and

neutral superpartners of the Higgs and electroweak gauge bosons (higgsinos, winos and binos).2 The superpartners of the left- and right-handed top quarks, tL and tR, mix to form the two mass eigenstates t1 and t2, where

t1 is the lighter one.

2

[GeV]1t

~m

200 300 400 500 600 700 800 900

[GeV

]10 χ∼

m

0

100

200

300

400

500

600

1

0χ∼ W b →1t~

/ 1

0χ∼ t →1t~

1

0χ∼ t →1t~

1

0χ∼ W b →1t~

1

0χ∼ c →1t~

-1=8 TeV, 20 fbs

t

) < m

10

χ∼,1t~

m(

∆W

+ m

b

) < m

10

χ∼,1t~

m(

) < 0

10

χ∼, 1t~

m(

1

0χ∼ t →1t~

/ 1

0χ∼ W b →1t~

/ 1

0χ∼ c →1t~

/ 1

0χ∼ b f f' →1t~

production, 1t~1t

~ Status: ICHEP 2016

ATLAS Preliminary

1

0χ∼W b

1

0χ∼c

1

0χ∼b f f'

Observed limits Expected limits All limits at 95% CL

=13 TeVs

[CONF-2016-077]-1t0L 13.2 fb

[CONF-2016-050]-1t1L 13.2 fb

[CONF-2016-076]-1t2L 13.3 fb

[1604.07773]-1MJ 3.2 fb

Run 1 [1506.08616]

[GeV]t~m

200 400 600 800 1000 1200

[GeV

]10 χ∼

m

0

100

200

300

400

500

600

700

800

900

CMS Preliminary

10χ∼ t→ t~, t

~t~ →pp ICHEP 2016

13 TeVExpectedObserved

-1), 12.9 fbmissTSUS-16-014, 0-lep (H

-1), 12.9 fbT2SUS-16-015, 0-lep (M-1), 12.9 fbTαSUS-16-016, 0-lep (-1SUS-16-029, 0-lep stop, 12.9 fb

-1SUS-16-030, 0-lep (top tag), 12.9 fb-1SUS-16-028, 1-lep stop, 12.9 fb

-1Combination 0-lep and 1-lep stop, 12.9 fb

0

1χ∼

+ m

t

= m

t~m

– some interesting excesses in stop searches? 1 TeV stop? . . . will mention later. . . 2/21

Page 4: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Natural SUSY

Main reason for weak scale SUSY is naturalness of Higgs potential.Not all sparticles created equal! Most relevant are higgsinos, stops andgluinos.

[Dimopoulos,Giudice ’95; Cohen,Kaplan,Nelson ’96; Papucci,Ruderman,Weiler ’10]

SUSY breaking parameters are set at the messenger scale Λ, evolve via RGE

to the weak scale. → upper bound on masses

∆M =∂ logm2

h

∂ logM2UV

.

3/21

Page 5: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Natural SUSY

Main reason for weak scale SUSY is naturalness of Higgs potential.Not all sparticles created equal! Most relevant are higgsinos, stops andgluinos.

[Dimopoulos,Giudice ’95; Cohen,Kaplan,Nelson ’96; Papucci,Ruderman,Weiler ’10]

SUSY breaking parameters are set at the messenger scale Λ, evolve via RGE

to the weak scale. → upper bound on masses

∆M =∂ logm2

h

∂ logM2UV

.

light higgsinos

light stops

light gluinos

3/21

Page 6: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Natural SUSY

Main reason for weak scale SUSY is naturalness of Higgs potential.Not all sparticles created equal! Most relevant are higgsinos, stops andgluinos.

[Dimopoulos,Giudice ’95; Cohen,Kaplan,Nelson ’96; Papucci,Ruderman,Weiler ’10]

SUSY breaking parameters are set at the messenger scale Λ, evolve via RGE

to the weak scale. → upper bound on masses

∆M =∂ logm2

h

∂ logM2UV

.

light higgsinos

light stops

light gluinos

Leading log formulas: full calculations give ≈ similar conclusions

3/21

Page 7: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Recasting

Search Data (fb−1) Reference

ATLAS 2-6 jets + MET 13.3 ATLAS-CONF-2016-078

ATLAS 8-10 jets + MET 18.2 ATLAS-CONF-2016-095

ATLAS b-jets+MET 14.8 ATLAS-CONF-2016-052

CMS jets + MET (HmissT ) 12.9 CMS-PAS-SUS-16-014

ATLAS SSL/3L 13.2 ATLAS-CONF-2016-037

ATLAS 1L+jets+MET 14.8 ATLAS-CONF-2016-054

ATLAS multi-jets (RPV) 14.8 ATLAS-CONF-2016-057

ATLAS lepton+many jets 14.8 ATLAS-CONF-2016-094

Our pipeline:

Madgraph5 AMC@NLO 2.3.3

Pythia 8.219

Delphes 3.3.2

ROOT 5.34

validated against official plots −→– include 50% “recast uncertainty”

800 1000 1200 1400 1600

200

400

600

800

1000

m(g) [GeV]

m(χ10)[GeV

]

p p → gg, g→ qq'χ1±, χ1

±→Wχ20, χ2

0→Zχ10

ATLAS-CONF-2016-095

13 TeV, L=18.2 fb-1

ATLAS

Us

4/21

Page 8: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Results: vanilla SUSY

R-parity conserving MSSM with degenerate squarks.������� ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

����������[���

]

��� ����+�������� �-��+�������� ���+�������� �-������� ������

Green: better-than-10% fine-tuned regions.Large cross sections, large MET: Vanilla SUSY is . 2-5% fine-tuned.(8 TeV limits with SIM framework.)

[Evans, Kats]

g

t, b, q1,2

H

5/21

Page 9: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Results: vanilla SUSY

R-parity conserving MSSM with degenerate squarks.������� ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

����������[���

]

��� ����+�������� �-��+�������� ���+�������� �-������� ������

Simplest,most boringSUSY flavorexcluded

Green: better-than-10% fine-tuned regions.Large cross sections, large MET: Vanilla SUSY is . 2-5% fine-tuned.(8 TeV limits with SIM framework.)

[Evans, Kats]

g

t, b, q1,2

H

5/21

Page 10: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

SUSY beyond Vanilla

Nature did not like Vanilla, but more flavors of SUSY than you can count!

Two ways to reduce the limits:

reduce the cross sections:make the final states harder to see:

6/21

Page 11: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

SUSY beyond Vanilla I

Two ways to reduce the limits:

reduce the cross sections

Valence squark production is enhanced byt-channel gluino. If only stops/sbottoms, crosssections are greatly reduced.

0.01

0.02

0.10.1

0.5

���� ���� ���� ���� �������

����

����

����

����

����

������ ����

��������

g

tL, tR, bL

H

← σ(g, tL, tR, bL)

Σiσ(g, qi)

7/21

Page 12: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

SUSY beyond Vanilla IITwo ways to reduce the limits:

reduce the cross sections

make the final states harder to see:

R-parity violation: with SM field content, B,L violated at tree-level

WRPV ∼ µ′iLiHu + λijkLiLj`ck + λ′ijkLiQjd

ck + λ′′ijku

cidcjdck

proton decay → |λ′λ′′| . 10−25.Ad hoc assumption: Rp = (−1)2S+3B+L → Bonus: stability of LSP.

Most effective RPV channel: baryonic RPV: H → uidjdkHidden Valley / Stealth SUSY: many possibilities, but in general asinglet superfield S, e.g.

W = SHuHd + SGaµνGµνa =⇒ H → SS → ggS

If mass spectrum compressed, mH ∼ mS +mS , the singlino is soft(little MET)

g

t, b, q1,2

H

S

S8/21

Page 13: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Additional models considered:

Bottom-up approach (no top-down model-building), what are the modelsmost likely to hide SUSY?

1 Effective SUSY: decouple 1st/2nd generations to 5 TeV.Light squarks: tL, bL, tR – greatly reduced cross sections.

2 RPV SUSY: unstable higgsino with baryonic decays, H → uds.No MET, enhanced hadronic activity.

3 Stealth/Hidden Valley SUSY: unstable higgsino to nearly massdegenerate hidden sector: H → SS → Sgg, with mH ∼ mS +mS .Reduced MET.

4 Effective RPV: decouple 1st/2nd generations, with unstableneutralino, H → uds.

For each model, we take higgsino LSP at either 100 GeV (just aboveLEP) or 300 GeV (naturalness bound). We generate all possiblecombinations of squark/gluino pairs, and exclude a mass point if it isexcluded by (at least) one signal region of the searches considered.

9/21

Page 14: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Results: RPV SUSY

LSP decays remove the MET signature: H → uds��� ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

����������[���

]

����� ���/������� ���

����� ��+�������������� �-������� ������

��� ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

����������[���

]

����� ���/������� ���

����� ��+�������������� �-������� ������

Decays with heavier higgsinos more effectively captured: lighter higgsi-nos decays are more boosted, resulting in merged jets.

Some fully-natural parameter space survives, but only at lowmessenger scales. 10/21

Page 15: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Results: Stealth SUSY / Hidden Valley

H → Sgg������ ������ ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

����������[���

]

����� ���/������� ���

����� ��+�������������� �-������� ������

������ ������ ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

����������[���

]

����� ���/������� ���

����� ��+�������������� �-������� ������

Very similar to RPV exclusions – great power of multijet searches.

11/21

Page 16: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Results: Effective SUSY

Set 1st/2nd generation squarks at 5 TeV: x sec lowered by O(10-100)��������� ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

��������[���

]

��� ����+�������� �-��+�������� ���+������� ������

��������� ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

��������[���

]

��� ����+�������� �-��+�������� ���+������� ������

Limits greatly relaxed. Our stop limits comparable to dedicated stopsearches.Even with lower cross sections, most of 10% natural parameter space isexcluded (only extremely low messenger scales allowed)

12/21

Page 17: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Results: Effective SUSY with RPV

Each strategy partially successful, but implying (uncomfortably?) lowmessenger scales. Combining them helps:

��� ��������� ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

��������[���

]

��� ����+�������� ���/��

����� ��+�������������� �-������� ������

��� ��������� ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

��������[���

]

��� ����+�������� ���/������� ���

����� ��+�������������� �-������� ������

Now, a fairly standard 100 TeV messenger scale can be fully natural.

13/21

Page 18: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Naturalness: Tuning vs. Messenger Scale Λ

Maybe requiring 10% tuning is too optimistic.Given the experimental limits, what is the minimum amount of fine-tuning for SUSY?

4 6 8 10 12 14 16

5

10

50

100

Log10Λ/GeV

Δ

Minimum Allowed Δ, μ=100 GeV

�������������������

��������� �����/�������

4 6 8 10 12 14 16

5

10

50

100

Log10Λ/GeV

Δ

Minimum Allowed Δ, μ=300 GeV

�������������������

��������� �����/�������

Λ = Messenger scale14/21

Page 19: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Future LHC reach

Our analysis based on ∼ 15 fb−1. ATLAS and CMS now have ∼ 40 fb−1,and will collect much more in the next years. [Salam,Weiler]

0 50 100 150 200 250 300 1000 3000

0

200

400

600

800

1000

12000 50 100 150 200 250 300 1000 3000

Lint [fb-1]

ΔM

[GeV

]

Projected ΔM Improvement (13 TeV)

M = 100 GeV

M = 1-3 TeV

M = 200 GeV

M = 500 GeV

0 50 100 150 200 250 300 1000 3000

0

200

400

600

800

1000

12000 50 100 150 200 250 300 1000 3000

Lint [fb-1]

ΔM

[GeV

]

Projected ΔM Improvement (14 TeV)

M = 100 GeV

M = 1-3 TeV

M = 200 GeV

M = 500 GeV

All the 10% natural regions can be fully probed by the end of HL-LHC.Possible to probe electroweak higgsino production up to ∼ 300 GeV.

15/21

Page 20: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Enough with limits!

In the searches and for the spectra/models we studied, there are nosignificant excesses (or if there are in one search, they are excluded by adifferent search - what you would expect from statistical fluctuations).

Is there any interesting (correlated) excess?

[work in progress w/ B.Allanach,M.Buckley,A.Di Franzo,D.Shih]

16/21

Page 21: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Greener pastures: excesses in stop searches?

Several excesses in top-specific searches: pp→ tt+ /ET

1 Introduction

Supersymmetry (SUSY) [1–6] is a well motivated extension of the Standard Model (SM) that introducessupersymmetric partner (superpartner) particles to each of the SM particles and that provides a naturalsolution [7, 8] to the hierarchy problem [9–12]. The top squark or stop (t), which is the superpartnerof the top quark, is expected to be relatively light due to its large contribution to the Higgs boson massradiative corrections [13, 14]. A common theoretical strategy for avoiding strong constraints from thenon-observation of proton decay [15] is to introduce a multiplicative quantum number called R-parity. IfR-parity is conserved [16], SUSY particles are produced in pairs and the lightest supersymmetric particle(LSP) is stable. This analysis follows the typical assumption that the lightest neutralino1 ( �0

1) is the LSP.Since the �0

1 interacts only weakly, it can serve as a candidate for dark matter [17, 18].

The analysis described in this note closely follows and extends the previous search for stop productionusing 2015 data [19]. This note presents a search targeting the direct production of the lighter stop2 (t1),illustrated by the diagrams in Figure 1. The stop can decay into a variety of final states, depending amongstother things on the SUSY particle mass spectrum, in particular on the masses of the stop, chargino andlightest neutralino. When the decay into b �±1 is kinematically allowed, the t1 decay branching ratio (BR)is determined by the stop mixing matrix and the field content of the neutralino/chargino sector.

In addition to the direct stop search, a dark matter (DM) scenario [20–22] is also studied. Figure 2illustrates a Feynman diagram where the DM particles (represented by �) are pair-produced via a spin-0mediator (either scalar or pseudo-scalar). The mediator couples to the SM particles by mixing with theHiggs sector.

t1

t1p

p

�01

t

�01

t

t1

t1

�±1

�⌥1

p

p

b

�01

b

�01

W⌥

Figure 1: Diagrams illustrating the direct pair production of t1 particles and their decays, which are referred to ast1 ! t + �0

1 (left) and t1 ! b + �±1 (right). Furthermore, a mixed decay scenario where each t1 decays via eithert1 ! t + �0

1 and t1 ! b + �±1 for various BR is considered (not shown). For simplicity, no distinction is madebetween particles and antiparticles.

The analysis presented here targets final states with one lepton, where the W boson from one of the topquarks decays to an electron or muon (either directly or via a ⌧ lepton) and the W boson from the other

1 The charginos �±1,2 and neutralinos �01,2,3,4 are the mass eigenstates formed from the linear superposition of the charged and

neutral superpartners of the Higgs and electroweak gauge bosons (higgsinos, winos and binos).2 The superpartners of the left- and right-handed top quarks, tL and tR, mix to form the two mass eigenstates t1 and t2, where

t1 is the lighter one.

2

[GeV]1t

~m

200 300 400 500 600 700 800 900

[GeV

]10 χ∼

m

0

100

200

300

400

500

600

1

0χ∼ W b →1t~

/ 1

0χ∼ t →1t~

1

0χ∼ t →1t~

1

0χ∼ W b →1t~

1

0χ∼ c →1t~

-1=8 TeV, 20 fbs

t

) < m

10

χ∼,1t~

m(

∆W

+ m

b

) < m

1

0χ∼,

1t~ m

(∆

) < 0

1

0χ∼,

1t~ m

(∆

1

0χ∼ t →1t~

/ 1

0χ∼ W b →1t~

/ 1

0χ∼ c →1t~

/ 1

0χ∼ b f f' →1t~

production, 1t~1t

~ Status: ICHEP 2016

ATLAS Preliminary

1

0χ∼W b

1

0χ∼c

1

0χ∼b f f'

Observed limits Expected limits All limits at 95% CL

=13 TeVs

[CONF-2016-077]-1t0L 13.2 fb

[CONF-2016-050]-1t1L 13.2 fb

[CONF-2016-076]-1t2L 13.3 fb

[1604.07773]-1MJ 3.2 fb

Run 1 [1506.08616]

[GeV]t~m

200 400 600 800 1000 1200

[GeV

]10 χ∼

m

0

100

200

300

400

500

600

700

800

900

CMS Preliminary

10χ∼ t→ t~, t

~t~ →pp ICHEP 2016

13 TeVExpectedObserved

-1), 12.9 fbmissTSUS-16-014, 0-lep (H

-1), 12.9 fbT2SUS-16-015, 0-lep (M-1), 12.9 fbTαSUS-16-016, 0-lep (-1SUS-16-029, 0-lep stop, 12.9 fb

-1SUS-16-030, 0-lep (top tag), 12.9 fb-1SUS-16-028, 1-lep stop, 12.9 fb

-1Combination 0-lep and 1-lep stop, 12.9 fb

01χ∼

+ mt

= mt~m

Correlated excesses would be expected if real signal. . .

stop 0L 17/21

Page 22: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Greener pastures: excesses in stop searches?

Several excesses in top-specific searches: pp→ tt+ /ET

1 Introduction

Supersymmetry (SUSY) [1–6] is a well motivated extension of the Standard Model (SM) that introducessupersymmetric partner (superpartner) particles to each of the SM particles and that provides a naturalsolution [7, 8] to the hierarchy problem [9–12]. The top squark or stop (t), which is the superpartnerof the top quark, is expected to be relatively light due to its large contribution to the Higgs boson massradiative corrections [13, 14]. A common theoretical strategy for avoiding strong constraints from thenon-observation of proton decay [15] is to introduce a multiplicative quantum number called R-parity. IfR-parity is conserved [16], SUSY particles are produced in pairs and the lightest supersymmetric particle(LSP) is stable. This analysis follows the typical assumption that the lightest neutralino1 ( �0

1) is the LSP.Since the �0

1 interacts only weakly, it can serve as a candidate for dark matter [17, 18].

The analysis described in this note closely follows and extends the previous search for stop productionusing 2015 data [19]. This note presents a search targeting the direct production of the lighter stop2 (t1),illustrated by the diagrams in Figure 1. The stop can decay into a variety of final states, depending amongstother things on the SUSY particle mass spectrum, in particular on the masses of the stop, chargino andlightest neutralino. When the decay into b �±1 is kinematically allowed, the t1 decay branching ratio (BR)is determined by the stop mixing matrix and the field content of the neutralino/chargino sector.

In addition to the direct stop search, a dark matter (DM) scenario [20–22] is also studied. Figure 2illustrates a Feynman diagram where the DM particles (represented by �) are pair-produced via a spin-0mediator (either scalar or pseudo-scalar). The mediator couples to the SM particles by mixing with theHiggs sector.

t1

t1p

p

�01

t

�01

t

t1

t1

�±1

�⌥1

p

p

b

�01

b

�01

W⌥

Figure 1: Diagrams illustrating the direct pair production of t1 particles and their decays, which are referred to ast1 ! t + �0

1 (left) and t1 ! b + �±1 (right). Furthermore, a mixed decay scenario where each t1 decays via eithert1 ! t + �0

1 and t1 ! b + �±1 for various BR is considered (not shown). For simplicity, no distinction is madebetween particles and antiparticles.

The analysis presented here targets final states with one lepton, where the W boson from one of the topquarks decays to an electron or muon (either directly or via a ⌧ lepton) and the W boson from the other

1 The charginos �±1,2 and neutralinos �01,2,3,4 are the mass eigenstates formed from the linear superposition of the charged and

neutral superpartners of the Higgs and electroweak gauge bosons (higgsinos, winos and binos).2 The superpartners of the left- and right-handed top quarks, tL and tR, mix to form the two mass eigenstates t1 and t2, where

t1 is the lighter one.

2

[GeV]1t

~m

200 300 400 500 600 700 800 900

[GeV

]10 χ∼

m

0

100

200

300

400

500

600

1

0χ∼ W b →1t~

/ 1

0χ∼ t →1t~

1

0χ∼ t →1t~

1

0χ∼ W b →1t~

1

0χ∼ c →1t~

-1=8 TeV, 20 fbs

t

) < m

10

χ∼,1t~

m(

∆W

+ m

b

) < m

1

0χ∼,

1t~ m

(∆

) < 0

1

0χ∼,

1t~ m

(∆

1

0χ∼ t →1t~

/ 1

0χ∼ W b →1t~

/ 1

0χ∼ c →1t~

/ 1

0χ∼ b f f' →1t~

production, 1t~1t

~ Status: ICHEP 2016

ATLAS Preliminary

1

0χ∼W b

1

0χ∼c

1

0χ∼b f f'

Observed limits Expected limits All limits at 95% CL

=13 TeVs

[CONF-2016-077]-1t0L 13.2 fb

[CONF-2016-050]-1t1L 13.2 fb

[CONF-2016-076]-1t2L 13.3 fb

[1604.07773]-1MJ 3.2 fb

Run 1 [1506.08616]

[GeV]t~m

200 400 600 800 1000 1200

[GeV

]10 χ∼

m

0

100

200

300

400

500

600

700

800

900

CMS Preliminary

10χ∼ t→ t~, t

~t~ →pp ICHEP 2016

13 TeVExpectedObserved

-1), 12.9 fbmissTSUS-16-014, 0-lep (H

-1), 12.9 fbT2SUS-16-015, 0-lep (M-1), 12.9 fbTαSUS-16-016, 0-lep (-1SUS-16-029, 0-lep stop, 12.9 fb

-1SUS-16-030, 0-lep (top tag), 12.9 fb-1SUS-16-028, 1-lep stop, 12.9 fb

-1Combination 0-lep and 1-lep stop, 12.9 fb

01χ∼

+ mt

= mt~m

Correlated excesses would be expected if real signal. . .

stop 1L 17/21

Page 23: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Bumps → interpretation?

Interpreting these excesses and combining different searches (bumps vs.signals) is a non-trivial step:

Limits shown earlier are shown by “best observed SR”: out of allO(100) signal region, pick the one with best exclusion power.

Naive expectation: if N searches →√N stronger limits.

In a perfect world, diluting the signal into N final statesdiminishes the power of each search, but the N small deviationscan be combined

[e.g. CMS, w/ 100-1000 SRs]

.In the real world, this is harder: the backgrounds are correlated -one cannot add up the likelihoods for the similar SRs as if theywere independent (e.g. cannot do it for overlapping SRs). To beprecise, we need correlation matrices from experiments.

As theorists, we can still try. Obviously the LHC always has the finalword.

18/21

Page 24: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Excesses in stop searches? Interpretation

Which model explains the excess? Is it excluded by other searches? Depends

on the spectrum.[Han,Nojiri,Takeuchi,Yanagida, 1609.09303]

tR

B

tR

H

Shaded blue = explain excess. Red/Green lines: exclusions by stop searches.

Solid (dashed) Brown: our (non) conservative exclusions from CMS jets + MET19/21

Page 25: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Excesses in stop searches? Interpretation

Which model explains the excess? Is it excluded by other searches? Depends

on the spectrum.[Han,Nojiri,Takeuchi,Yanagida, 1609.09303]

tR

H

B

Shaded blue = explain excess. Red/Green lines: exclusions by stop searches.

Solid (dashed) Brown: our (non) conservative exclusions from CMS jets + MET

19/21

Page 26: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Any blind spot?

For collider signatures, we have assumed the standard lore:

vanilla SUSY production modes (mostly QCD production).vanilla cascade decays ending in higgsino LSP (g → q q → qqχ0

1)

With this we find:∆ ≥ 10 =⇒ Λ . 100 TeV,

mg & 1.4− 1.8 TeV, mq & 0.7− 1.9 TeV, mt & 600− 900 GeV

Other possibilities?

other neutralinos? Longer decay chains, limits should be stronger(checked for specific mass points, should be general)light gravitino? Again, longer decay chains, H → ψ3/2h/γ/ZDisplaced decays? Usually more constrained than prompt decays

[Csaki,Kuflik,Lombardo,Slone,Volansky ’15] [Liu,Tweedie ’15]

only possiblity: direct decays into RPV or hidden valleys ifadditional O(1) couplings: e.g. g → tbs or t→ bs.Large couplings → new SUSY production modes

Resonant RPV production! [AM, 1601.03737]

di

dj

t⇤1

�003ij

20/21

Page 27: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Conclusions

I have shown recasted limits on a representative set of natural SUSYmodels, and some new signatures.SUSY with 10% fine-tuning endures. All models can be completely cov-ered by end of HL-LHC. (no need to wait 100 TeV collider!)

Very low messenger / SUSY breaking scale. Will require careful model-building, especially if tied to flavor.

e.g. [Aharony, Hochberg et al., 1001.0637] [Craig et al, 1103.3708]

Open questions: Light gravitino cosmology? Weaken experimental boundsand raise Higgs mass at same time? Also get dark matter?

Amusing to compare to other similarly-untuned solutions of the hierar-chy problem (e.g. Twin Higgs), which also have UV-completion scalesin the multi-TeV range.

Thanks for listening!

21/21

Page 28: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Conclusions

I have shown recasted limits on a representative set of natural SUSYmodels, and some new signatures.SUSY with 10% fine-tuning endures. All models can be completely cov-ered by end of HL-LHC. (no need to wait 100 TeV collider!)

Very low messenger / SUSY breaking scale. Will require careful model-building, especially if tied to flavor.

e.g. [Aharony, Hochberg et al., 1001.0637] [Craig et al, 1103.3708]

Open questions: Light gravitino cosmology? Weaken experimental boundsand raise Higgs mass at same time? Also get dark matter?

Amusing to compare to other similarly-untuned solutions of the hierar-chy problem (e.g. Twin Higgs), which also have UV-completion scalesin the multi-TeV range.

Thanks for listening!

21/21

Page 29: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Extra slides

22/21

Page 30: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Arbitrary tuning plotsΛ=�� ��� Λ=��� ���

Λ=��� ��� Λ=���� ���

23/21

Page 31: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Resonant Stop production

Focus on stop couplings, (will take tR only)L ⊃ λ′′3ij t∗didj + h.c., ij = 12,13,23

di

dj

t⇤1

�003ij

σ =8π

3

|λ′′ijk|2

m2t

sin2 θt δ(s−m2t)

For λ′′ & 10−2 − 10−3, crosssection can be larger thanstop pair-production (evenfrom non-valence quarks bs).

NLO cross sections [Plehn,hep-ph/0006182]

s =13 TeV

t˜1, λ312' ' =1

t˜1, λ313' ' =1

t˜1, λ323' ' =1

t˜1 t˜1

*

500 1000 1500 2000 2500 3000

0.01

0.10

1

10

100

1000

Stop mass [GeV]

Crosssection[pb]

dsdb

sb

QCD

Disclaimer: somewhat old idea.[Dreiner,Ross,1991] Tevatron [Berger,Harris,Sullivan,1999],

pre-LHC [Choudhury,Datta,Maity,2011], CMS and ATLAS: resonant ν search (LRPV).24/21

Page 32: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Signatures:

dijet resonances:di

dj

t⇤1

di

dj

same-sign tops + jetsdi

dj

t⇤1

t

�01

t

t1

di

dj[CMS (SS`), 1311.6736]

[ATLAS-CONF-2016-037, 13.2fb−1@13TeV]

four-jet resonancesdi

dj

t⇤1

b

��1

b

t⇤1

di

dj

(dominates over SStops b/c phase space)

25/21

Page 33: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Resonant Results - higgsino LSP

In this case limits from available 8&13 TeV searches are much weaker:

(here mχ01

= 200 GeV)

Chargino decay mode dominates (t→ 4j) → no limits at 8 TeVIn brown, our 13 TeV limits for pair-produced stops → 8j

[ATLAS-CONF-2016-095]

In dashed gray, reach for single four-jet resonance. t⇤1

b

��1

b

t⇤1

di

dj26/21

Page 34: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Resonant Results - higgsino LSP

In this case limits from available 8&13 TeV searches are much weaker:

200 400 600 800 1000

10-3

10-2

10-1

100

Stop mass [GeV]

λ312

''

DIJET

SSTOP

PAIRED

DIJETS

8jets4TOP

DVjjj

(here mχ01

= 200 GeV)

Chargino decay mode dominates (t→ 4j) → no limits at 8 TeVIn brown, our 13 TeV limits for pair-produced stops → 8j

[ATLAS-CONF-2016-095]

In dashed gray, reach for single four-jet resonance. t⇤1

b

��1

b

t⇤1

di

dj26/21

Page 35: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Resonant Results - higgsino LSP

In this case limits from available 8&13 TeV searches are much weaker:

200 400 600 800 1000

10-3

10-2

10-1

100

Stop mass [GeV]

λ312

''

(here mχ01

= 200 GeV)

Chargino decay mode dominates (t→ 4j) → no limits at 8 TeVIn brown, our 13 TeV limits for pair-produced stops → 8j

[ATLAS-CONF-2016-095]

In dashed gray, reach for single four-jet resonance. t⇤1

b

��1

b

t⇤1

di

dj26/21

Page 36: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Resonant Signatures I: stop LSP[ATLAS-1407.1376, 20.3fb−1@8TeV]

[CMS-1501.04198, 19.7fb−1@8TeV][CMS-PAS-EXO-14-005, 19.7fb−1@8TeV]

[ATLAS-CONF-2016-069, 15.7fb−1@13TeV][CMS-PAS-EXO-16-032, 12.9fb−1@13TeV]

λ312' '

λ313' '

λ323' '

500 1000 1500 2000 2500 3000 3500 40000.0

0.2

0.4

0.6

0.8

1.0

1.2

Stop mass [GeV]

Upperlimiton

λ3jk''

8 TeV limits

tds

tdb

tbs

Below 1 TeV, best limits from scouting / trigger level analysis.New techniques: recoil off of hard ISR γ/jet

[Shimmin,Whiteson, 1602.07727][ATLAS-CONF-2016-070, 15.7fb−1@13TeV]

27/21

Page 37: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Resonant Signatures I: stop LSP[ATLAS-1407.1376, 20.3fb−1@8TeV]

[CMS-1501.04198, 19.7fb−1@8TeV][CMS-PAS-EXO-14-005, 19.7fb−1@8TeV]

[ATLAS-CONF-2016-069, 15.7fb−1@13TeV][CMS-PAS-EXO-16-032, 12.9fb−1@13TeV]

λ312' '

λ313' '

λ323' '

500 1000 1500 2000 2500 3000 3500 40000.0

0.2

0.4

0.6

0.8

1.0

1.2

Stop mass [GeV]

Upperlimiton

λ3jk''

New ICHEP limits

tds

tdb

tbs

Below 1 TeV, best limits from scouting / trigger level analysis.New techniques: recoil off of hard ISR γ/jet

[Shimmin,Whiteson, 1602.07727][ATLAS-CONF-2016-070, 15.7fb−1@13TeV]

27/21

Page 38: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Aside: hierarchical RPV

If RPV couplings are hierarchical, e.g. set by flavor symmetries, thehiggsino dominantly decays to final states with tops: H → tbs

[Csaki,Grossman,Heidenreich ’11]

→ SS leptons, re-introduce some MET.���(���) ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

����������[���

]

��� ����+�������� ���/������� ���+�������� ��+�������������� �-���

���(���) ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

����������[���

]

��� ����+�������� ���/������� ���+�������� ��+�������������� �-���

Limits significantly stronger with respect to decays to light quarks. 28/21

Page 39: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Aside: hierarchical RPV

If RPV couplings are hierarchical, e.g. set by flavor symmetries, thehiggsino dominantly decays to final states with tops: H → tbs

[Csaki,Grossman,Heidenreich ’11]

→ SS leptons, re-introduce some MET.��������� ���(���) ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

��������[���

]

��� ����+�������� ���/������� ���+�������� ��+�������������� �-���

��������� ���(���) ���� - μ=��� ���

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

��� ���� ���� ���� ���� �������

����

����

����

����

����

������ ���� [���]

��������[���

]

��� ����+�������� ���/������� ���+�������� ��+�������������� �-���

Limits significantly stronger with respect to decays to light quarks. 28/21

Page 40: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Flavor and RPV

Flavor physics constraints (K − K, ∆B = 2 transitions, e.g. n− n):

n− n : |λ′′11k| . 10−7(

m

100 GeV

)5/2

, |λ′′312,313| . 10−2(

m

200 GeV

)5/2

K − K : |λ′′∗323λ′′313| . 10−3( mui

100 GeV

)[Barbier et al., hep-ph/0406039]

[Calibbi,Ferretti,Milstead,Petersson, 1602.04821]

Flavor models also favor hierarchies with large 3rd generation couplings.(λ′′112 λ′′212 λ′′312λ′′113 λ′′213 λ′′313λ′′123 λ′′223 λ′′323

)horiz.U(1)

= λ′′323

(3× 10−5 3× 10−3 0.05

10−4 10−2 0.26× 10−4 0.05 1

)(

λ′′112 λ′′212 λ′′312λ′′113 λ′′213 λ′′313λ′′123 λ′′223 λ′′323

)MFV

=1

2

(tanβ

50

)2(

10−8 10−4 0.23× 10−5 5× 10−2 0.32× 10−3 0.2 1

).

RPV involving the stop is much less constrained, and also morerelevant in terms of naturalness. Large couplings are still possible.

29/21

Page 41: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Flavor and RPV

Flavor physics constraints (K − K, ∆B = 2 transitions, e.g. n− n):

n− n : |λ′′11k| . 10−7(

m

100 GeV

)5/2

, |λ′′312,313| . 10−2(

m

200 GeV

)5/2

K − K : |λ′′∗323λ′′313| . 10−3( mui

100 GeV

)[Barbier et al., hep-ph/0406039]

[Calibbi,Ferretti,Milstead,Petersson, 1602.04821]

Flavor models also favor hierarchies with large 3rd generation couplings.(λ′′112 λ′′212 λ′′312λ′′113 λ′′213 λ′′313λ′′123 λ′′223 λ′′323

)horiz.U(1)

= λ′′323

(3× 10−5 3× 10−3 0.05

10−4 10−2 0.26× 10−4 0.05 1

)(

λ′′112 λ′′212 λ′′312λ′′113 λ′′213 λ′′313λ′′123 λ′′223 λ′′323

)MFV

=1

2

(tanβ

50

)2(

10−8 10−4 0.23× 10−5 5× 10−2 0.32× 10−3 0.2 1

).

RPV involving the stop is much less constrained, and also morerelevant in terms of naturalness. Large couplings are still possible.

29/21

Page 42: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

But those are only leading-log expressions, and don’t differentiate be-tween IR and UV parameters, or runnning of couplings.

Series of corrections, from UV to IR:

UV masses set by SUSY breaking dynamics, RGE’d to IR masses.Large corrections, give rise to non-trivial correlations.

threshold corrections to IR masses: running IR mass to pole mass,which are the experimentally accessible quantitites.

[Pierce,Bagger,Matchev,Zhang ’96] [Agashe,Graesser ’98]

threshold corrections to m2Hu

: Higgs effective potential[Martin ’02]

All of those tend to weaken the naturalness bounds, i.e. allow heaviernatural sparticles than LL considerations.

30/21

Page 43: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

RGEs : M3(QIR) = CM3

M3M3(Λ) + . . .

m2Q3

(QIR) = Am2

Q3

m2Q3

m2Q3

(Λ) +Am2

q1,2

m2Q3

m2q1,2(Λ) +BM3M3

m2Q3

|M3(Λ)|2 + . . .

m2Hu

(QIR) = Am2

Q3

m2Hu

m2Q3

(Λ) +Am2

U3

m2Hu

m2U3

(Λ) +BM3M3

m2Hu

|M3(Λ)|2 + . . .

�������������������������

���

���

CM3M3

BmQ32M3M3

AmQ32mQ32

��� ��� ��� ���� ���� ���� ����

-����

-���

-��

Λ [���]

AmQ32mq∼1,22

BmHu2M3M3

AmHu2mQ32 AmHu2

mU32

31/21

Page 44: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

RGEs : M3(QIR) = CM3

M3M3(Λ) + . . .

m2Q3

(QIR) = Am2

Q3

m2Q3

m2Q3

(Λ) +Am2

q1,2

m2Q3

m2q1,2(Λ) +BM3M3

m2Q3

|M3(Λ)|2 + . . .

m2Hu

(QIR) = Am2

Q3

m2Hu

m2Q3

(Λ) +Am2

U3

m2Hu

m2U3

(Λ) +BM3M3

m2Hu

|M3(Λ)|2 + . . .

�������������������������

���

���

CM3M3

BmQ32M3M3

AmQ32mQ32

��� ��� ��� ���� ���� ���� ����

-����

-���

-��

Λ [���]

AmQ32mq∼1,22

BmHu2M3M3

AmHu2mQ32 AmHu2

mU32

31/21

Page 45: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Series of corrections, from UV to IR:

UV masses set by SUSY breaking dynamics, RGE’d to IR masses

threshold corrections to IR masses: running IR mass to pole mass,which are the experimentally accessible quantitites.

[Pierce,Bagger,Matchev,Zhang ’96] [Agashe,Graesser ’98]

threshold corrections to m2Hu

: Higgs effective potential[Martin ’02]

All of those tend to relax the naturalness bounds, i.e. allow heaviernatural sparticles than LL considerations.

On the other hand, decoupled 1st/2nd gen squarks push IR stops tachy-onic - does not come without a cost

[Arkani-Hamed,Murayama ’97] [Agashe,Graesser ’98]

Some of these effect were taken into account previously, but not as com-prehensively, and not focused on LHC reach.

[Casas,Moreno,Robles,Rolbiecki,Zaldivar ’14]

32/21

Page 46: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Aside: SS leptons excesses

Some excesses in 8 TeV SS lepton searches (2σ level): 2t+ 2b+ /ETAlso, the ttH cross section is slightly high (does not need to be a H):

ttH : µ = 5.3+2.1−1.8 (ATLAS), 2.8+2.1

−1.9 (CMS)

[Huang,Ismail,Low,Wagner, 1507.01601]

Can be interpreted as

tR → t+ B → t+W + W → t+W + χ01 + soft

with mt = 550 GeV, mB = 340 GeV, mW = 260 GeV.

Other option: t2 → b1+W → t1+W+W → χ01+t+W+W

with mt2= 750 GeV,mb1

= 525 GeV,mt1= 410 GeV.

[Cheng,Li,Qin, 1607.06547]33/21

Page 47: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Aside: SS leptons excesses

Same 13 TeV searches are getting close to excluding those benchmarkpoints, but not yet:

slide from Ian Low, @ICTP

If real, it would show up elsewhere: t,W ′s→ jets

We find: CMS jets + MET excludes all benchmark points explainingthe excesses (SLHA files provided by Ian Low, Hsin-Chia Cheng).

34/21

Page 48: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Natural SUSY redux

With light higgsino, the natural (10% fine-tuned or less) regions in thestop-gluino mass plane look like this (for Λ = 20, 100 TeV):

Stop and gluino masses correlated. When multiple sources of tuning, wetake the max → intersection wedge.

Looser definitions of “acceptable fine-tuning” (1%?): larger natural range

Instead of going down that rabbit hole: back to the LHC35/21

Page 49: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Natural SUSY redux

With light higgsino, the natural (10% fine-tuned or less) regions in thestop-gluino mass plane look like this (for Λ = 20, 100 TeV):

Stop and gluino masses correlated. When multiple sources of tuning, wetake the max → intersection wedge.

Looser definitions of “acceptable fine-tuning” (1%?): larger natural range

Instead of going down that rabbit hole: back to the LHC35/21

Page 50: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Natural SUSY redux

With light higgsino, the natural (10% fine-tuned or less) regions in thestop-gluino mass plane look like this (for Λ = 20, 100 TeV):

Stop and gluino masses correlated. When multiple sources of tuning, wetake the max → intersection wedge.

Looser definitions of “acceptable fine-tuning” (1%?): larger natural range

Instead of going down that rabbit hole: back to the LHC35/21

Page 51: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Natural SUSY redux

With light higgsino, the natural (10% fine-tuned or less) regions in thestop-gluino mass plane look like this (for Λ = 20, 100 TeV):

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

500 1000 1500 2000 2500 3000

600

800

1000

1200

1400

1600

1800

2000

Gluino Mass [GeV]

Stopmass[GeV

]

Tuning: degenerate squarks

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

500 1000 1500 2000 2500 3000

600

800

1000

1200

1400

1600

1800

2000

Gluino Mass [GeV]

Stopmass[GeV

]

Tuning: 5 TeV 1st/2nd gen squarks

Stop and gluino masses correlated. When multiple sources of tuning, wetake the max → intersection wedge.

Looser definitions of “acceptable fine-tuning” (1%?): larger natural range

Instead of going down that rabbit hole: back to the LHC 35/21

Page 52: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Natural SUSY redux

With light higgsino, the natural (10% fine-tuned or less) regions in thestop-gluino mass plane look like this (for Λ = 20, 100 TeV):

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

500 1000 1500 2000 2500 3000

600

800

1000

1200

1400

1600

1800

2000

Gluino Mass [GeV]

Stopmass[GeV

]

Tuning: degenerate squarks

Δ≤10

(Λ=100TeV)

Δ≤10

(Λ=20TeV)

500 1000 1500 2000 2500 3000

600

800

1000

1200

1400

1600

1800

2000

Gluino Mass [GeV]

Stopmass[GeV

]

Tuning: 5 TeV 1st/2nd gen squarks

Stop and gluino masses correlated. When multiple sources of tuning, wetake the max → intersection wedge.

Looser definitions of “acceptable fine-tuning” (1%?): larger natural range

Instead of going down that rabbit hole: back to the LHC 35/21

Page 53: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Resonant Signatures II: Bino LSP @8 TeV

Putting together all the signatures, limits from available 8 TeV searches:

200 300 400 500 600 700 800 900100

200

300

400

500

600

700

Stop mass [GeV]

Neutralinomass[GeV

]

Upper limits on λ312' ' (Bino-like LSP)

0.07 0.1

0.2

0.5

0.5

0.2

[mχ01

= 200 GeV]

Reach stops up to 500 GeV: comparable to RPC searches!

Similar results for λ′′313, λ′′323 (weaker: resonant production penalized by

non-valence quarks) (backup slides)

mq1,2= 1 TeV

mq1,2�TeV

Excluded

36/21

Page 54: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

Resonant Signatures II: Bino LSP @13 TeV

Recasting searches presented at ICHEP, we find significant improve-ments over Run I:

200 400 600 800 1000

10-3

10-2

10-1

100

Stop mass [GeV]

λ312

''

[mχ01

= 200 GeV]

dashed = 8 TeV limitssolid = 13 TeV limits

DIJET

SStop

PAIRED DIJET

4TOP

DVjjj

We can already reach up to 800 GeV!Most important searches are the multi-top searches, not currently opti-mized for these signatures. Extra jets (possibly b’s) in final state.Resonant → 2 SS tops + 2 jets. Pair-produced → 4 tops + 4 jets.

37/21

Page 55: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

resonant RPV 313

200 400 600 800 1000

10-3

10-2

10-1

100

Stop mass [GeV]

λ313

''

38/21

Page 56: Natural SUSY at the 13 TeV LHC: limits, naturalness and ... · SUS-16-014, 0-lep (H T SUS-16-015, 0-lep (M T2) SUS-16-016, 0-lep ( a T) SUS-16-019, 1-lep ( 2-lep (SS) D f) SUS-16-020,

resonant RPV 323

200 400 600 800 1000

10-3

10-2

10-1

100

Stop mass [GeV]

λ323

''

39/21