networked aquatic sampling system

1
Problem Description: To develop an autonomous network for Problem Description: To develop an autonomous network for monitoring aquatic environment monitoring aquatic environment Proposed Solution: The Autonomous Networked Aquatic Sampling Proposed Solution: The Autonomous Networked Aquatic Sampling System System Networked Aquatic Sampling Networked Aquatic Sampling System System Amit Dhariwal, Bin Zhang, Eric Shieh, Beth Stauffer, Carl Oberg, David Caron, Aristides Requicha, Gaurav Sukhatme Robotic Embedded Systems Lab, USC – http://www.cens.ucla.edu/portal/marine_microorganisms/ Introduction: Development of an Autonomous Networked Aquatic Introduction: Development of an Autonomous Networked Aquatic Sampling System Sampling System Center for Embedded Networked Sensing Center for Embedded Networked Sensing UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced The static network regularly monitors the environment at low resolution and directs the mobile node (robotic boat) for fine-grained sampling. The robotic boat moves to the location of interest, collects data and samples for lab analysis. Typical sensor suite: Thermistors (temperature), Fluorometer (chlorophyll) , Light intensity, pH, Opacity, Salinity (conductivity) Robotic Boat Architecture Development of an autonomous network of heterogeneous sensors to sample and track changes in aquatic environments using a combination of static and mobile platforms for sensor mounting. The network should be able to adapt itself directing the mobile entities (robotic boat) to areas of interest (as described by marine biologists). The network should be able to locate, track and study the growth and migration patterns of harmful algal blooms like those caused by brown tide algae at scales relevant to the organisms. Buoy Design Research Goals Autonomous sensor guided and/or network guided near-surface sampling system for field operation Wireless 802.11b based network communication Outfitted with basic sensor suite for pertinent environmental parameters - thermistor, fluorometer and water sampler Autonomous navigation to GPS waypoints using on-board GPS and compass (PID based control) Network guided and sensor directed navigation and sampling Robotic Boat Operation Continuous real time data acquisition and logging of pertinent environmental parameters Wireless 802.11b based communication Sensor suite: Array of thermistors (for temperature vs. depth profiling) and fluorometer (chlorophyll) Data transmission to the shore Buoy Operation Network of 10 static nodes and 1 robotic boat AODV based ad-hoc 802.11b wireless network for communication between all the mobile and static nodes Transmission of data to base station In-network data processing and network guided direction for robotic-boat Sensor directed boat navigation and sampling Network (Robotic Boat + Buoy) Operation Field Deployment at James Reserve Algorithm

Upload: oksana

Post on 10-Feb-2016

44 views

Category:

Documents


0 download

DESCRIPTION

Center for Embedded Networked Sensing. Networked Aquatic Sampling System. Amit Dhariwal, Bin Zhang, Eric Shieh, Beth Stauffer, Carl Oberg, David Caron, Aristides Requicha, Gaurav Sukhatme Robotic Embedded Systems Lab, USC – http://www.cens.ucla.edu/portal/marine_microorganisms/. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Networked Aquatic Sampling System

Problem Description: To develop an autonomous network for monitoring aquatic Problem Description: To develop an autonomous network for monitoring aquatic environmentenvironment

Proposed Solution: The Autonomous Networked Aquatic Sampling SystemProposed Solution: The Autonomous Networked Aquatic Sampling System

Networked Aquatic Sampling SystemNetworked Aquatic Sampling SystemAmit Dhariwal, Bin Zhang, Eric Shieh, Beth Stauffer, Carl Oberg,

David Caron, Aristides Requicha, Gaurav SukhatmeRobotic Embedded Systems Lab, USC – http://www.cens.ucla.edu/portal/marine_microorganisms/

Introduction: Development of an Autonomous Networked Aquatic Sampling SystemIntroduction: Development of an Autonomous Networked Aquatic Sampling System

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

UCLA – UCR – Caltech – USC – CSU – JPL – UC MercedUCLA – UCR – Caltech – USC – CSU – JPL – UC Merced

• The static network regularly monitors the environment at low resolution and directs the mobile node (robotic boat) for fine-grained sampling.

• The robotic boat moves to the location of interest, collects data and samples for lab analysis.

• Typical sensor suite: Thermistors (temperature), Fluorometer (chlorophyll) , Light intensity, pH, Opacity, Salinity (conductivity)

Robotic Boat Architecture

• Development of an autonomous network of heterogeneous sensors to sample and track changes in aquatic environments using a combination of static and mobile platforms for sensor mounting.

• The network should be able to adapt itself directing the mobile entities (robotic boat) to areas of interest (as described by marine biologists).

• The network should be able to locate, track and study the growth and migration patterns of harmful algal blooms like those caused by brown tide algae at scales relevant to the organisms.

Buoy Design

Research Goals

• Autonomous sensor guided and/or network guided near-surface sampling system for field operation

• Wireless 802.11b based network communication• Outfitted with basic sensor suite for pertinent

environmental parameters - thermistor, fluorometer and water sampler

• Autonomous navigation to GPS waypoints using on-board GPS and compass (PID based control)

• Network guided and sensor directed navigation and sampling

Robotic Boat Operation

• Continuous real time data acquisition and logging of pertinent environmental parameters

• Wireless 802.11b based communication• Sensor suite: Array of thermistors (for

temperature vs. depth profiling) and fluorometer (chlorophyll)

• Data transmission to the shore

Buoy Operation

• Network of 10 static nodes and 1 robotic boat• AODV based ad-hoc 802.11b wireless network for

communication between all the mobile and static nodes• Transmission of data to base station• In-network data processing and network guided direction

for robotic-boat• Sensor directed boat navigation and sampling

Network (Robotic Boat + Buoy) Operation

Field Deployment at James Reserve

Algorithm