neuron models

16
Neuron Models Math 451 Final Project April 29, 2002 Randy Voland

Upload: zeke

Post on 29-Jan-2016

80 views

Category:

Documents


4 download

DESCRIPTION

Neuron Models. Math 451 Final Project April 29, 2002 Randy Voland. Neuron Structure. Cell Body Dendrites Synapses on Cell Body and Dendrites (Input) Axon and Axon Branches (Output). Source: www.millennium.berkeley.edu/ ganglia/images/neuron.gif. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Neuron Models

Neuron Models

Math 451 Final ProjectApril 29, 2002

Randy Voland

Page 2: Neuron Models

Neuron Structure

• Cell Body • Dendrites • Synapses on Cell Body and Dendrites (Input) • Axon and Axon Branches (Output)

Source: www.millennium.berkeley.edu/ ganglia/images/neuron.gif Source: www.gsu.edu/~wwwbgs/bgsa/ neuro/40x%20neuron.JPG

Page 3: Neuron Models

Nerve Impulse Generation

Source:www.biology.eku.edu/RITCHISO/ nervous_depolarization.gif Source:www.biology.eku.edu/RITCHISO/ nervous_repolarization.gif

Source: http://faculty.washington.edu/chudler/ap3.gif

Page 4: Neuron Models

Hodgkin-Huxley Neuron Model

• Studied giant squid axons– Electrical stimulation

– Measurements of ion currents

• Mathematical model of action potential– Equivalent electric circuit of transmembrane processes

– Four first order differential equations• Voltage rate of change

• Rate of change of Na and K ion conductance

Page 5: Neuron Models

Hodgkin-Huxley Neuron Model

dv/dt = (-1/c)*[gNa*m3*h*(v-vNa)+gK*n4*(v-vK)+gL*(v-vL)]

dn/dt = αn(v)*(1-n)- βn(v)*n

dm/dt = αm(v)*(1-m)- βm(v)*m

dh/dt = αh(v)*(1-h)- βh(v)*h

Sodium (Na+) Ion Conductance

Potassium (K+) Ion Conductance

Page 6: Neuron Models

Hodgkin-Huxley Neuron Model

c=1.0 gNa=120.0 gK=36.0 gL=0.3

vNa=-115.0 vK=12.0 vL=-10.5989

αn = 0.01*(v+10)/(exp((v+10)/10)-1)

αm = 0.1*(v+25)/(exp((v+25)/10)-1)

αh = 0.07*exp(v/20)

βn = 0.125*exp(v/80)

βm = 4*exp(v/18)

βh = 1/(exp((v+30)/10)+1)

Page 7: Neuron Models

Variation in Ion ConductanceH-H Model vs. Nerve

Source: http://courses.washington.edu/biophys/homework/hw6_files/image003.jpg

Page 8: Neuron Models

Action PotentialH-H Model vs. Nerve

Source: http://courses.washington.edu/biophys/homework/hw6_files/image003.jpg

Page 9: Neuron Models

H-H Model in the v, m Phase Plane

1

1

2

23

3

3

4

4

4

0

0

0

Page 10: Neuron Models

Fitzhugh’s Reduced H-H Model in the v, m Phase Plane

Page 11: Neuron Models

Fitzhugh-Nagumo Neuron ModelLow Stimulation

Page 12: Neuron Models

Fitzhugh-Nagumo Neuron ModelModerate Stimulation – Limit Cycle

Page 13: Neuron Models

Fitzhugh-Nagumo Neuron ModelModerate Stimulation - Bursting

Page 14: Neuron Models

Fitzhugh-Nagumo Neuron ModelHigh Stimulation – No Recovery

Page 15: Neuron Models

Summary

• Hodgkin-Huxley Model– Models physical processes– Complex

• Fitzhugh-Nagumo Model– Simpler/less physical– Models neuron bursting

• Many other models in literature many based on Hodgkin-Huxley or Fitzhugh-Nagumo

Page 16: Neuron Models

Further Reading

• Edelstein-Keshet, E. (1988) Mathematical Models in Biology, McGraw-Hill, 311-341.

• Hodgkin, A.L. and Huxley, A.F. (1952) J. Physiol., 117, 500 – 544.

• Fitzhugh, R. (1960) J. Gen. Physiol., 43, 867-896.

• Fitzhugh, R. (1961) Biophys. J., 1, 445-466.

• Feng, J. (2001) Neural Networks, 14, 955-975.