new 24 polymorphic dna microsatellite loci for the major malaria vector anopheles darlingi and...

5
TECHNICAL NOTE New 24 polymorphic DNA microsatellite loci for the major malaria vector Anopheles darlingi and transpecies amplification with another anophelines G. N. Lima J. S. Batista K. M. Formiga F. W. Cidade M. S. Rafael W. P. Tadei J. M. M. Santos Received: 13 April 2010 / Accepted: 17 April 2010 / Published online: 19 May 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Anopheles darlingi is a major human malaria vector in the Neotropics. Twenty-four polymorphic microsatellite loci were isolated and characterized in 21–32 individuals collected in Coari (Amazonas, Brazil). The number of alleles per locus ranged from 4 to 11 (average of 7.667). The observed heterozygosity (H O ) varied between 0.037 and 0.833 (average of 0.500), while the expected heterozygosity (H E ) ranged from 0.177 to 0.871 (average of 0.723). Thirteen loci showed a significant deviation from HWE. No linkage disequilibrium was found between the loci. Keywords Anopheles darlingi Microsatellites Malaria vector Amazon Basin Anopheles (Nyssorhynchus) darlingi is the major and the most anthropophilic and endophagic malaria vector in the Brazilian Amazon Basin (Tadei et al. 1998). It is also a significant vector in other countries in South America such as Peru, Colombia and Suriname (Vittor et al. 2006). Although morphology and genetics variation had been described suggesting that A. darlingi is a species complex (Freitas-Sibajev et al. 1995), morphometric and genetic analyses using isozymes, RAPD and ITS2 demonstrated the existence of a single species (Manguin et al. 1999). Studies using mitochondrial and nuclear DNA markers provide support for moderate level of population genetic structure (Mirabello and Conn 2006; Scarpassa and Conn 2007; Mirabello et al. 2008). Eight microsatellite loci were characterized (Conn et al. 2001) but the development of new markers would improve genetic population studies, gene mapping and QTL anal- ysis in this vector. This study reports the isolation and characterization of new 24 microsatellite markers for A. darlingi and cross-amplification in three con-generic species. A genomic library enriched with microsatellite DNA of A. darlingi was constructed (Billotte et al. 1999) from the Genomic DNA extracted (Wilkerson et al. 1995) using a pool of 10 A. darlingi adult specimens newly hatched and unfed collected in Coari, Amazonas, Brazil. The DNA was digested with RsaI restriction enzyme (Invitrogen), and linked to RSA21 and RSA25 adapters. Microsatellite DNA fragments were selected by hybridization with (CT) 8 and (GT) 8 repeats biotin-linked probes and recovered with streptavidin-linked particles (Promega). Selected fragments were linked into a pGEM-T vector (Promega), transformed into Escherichia coli XL1-blue competent cells and inoc- ulated into plates with X-Gal/IPTG/LB agar. After the growth at 37°C the white colonies were transferred onto G. N. Lima M. S. Rafael W. P. Tadei J. M. M. Santos (&) Laborato ´rio de Vetores Mala ´ria e Dengue, Instituto Nacional de Pesquisas da Amazo ˆnia, Coordenac ¸a ˜o de Pesquisas em Cie ˆncias da Sau ´de (CPCS), Avenida Andre ´ Arau ´jo, No. 2936, Petro ´polis, Manaus, AM CEP 69060-001, Brazil e-mail: [email protected] J. S. Batista K. M. Formiga Instituto Nacional de Pesquisas da Amazo ˆnia, Coordenac ¸a ˜o de Pesquisas em Biologia Aqua ´tica (CPBA), Avenida Andre ´ Arau ´jo, No. 2936, Petro ´polis, Manaus, AM CEP 69060-001, Brazil J. S. Batista K. M. Formiga Laborato ´rio Tema ´tico de Biologia Molecular (LTBM), Instituto Nacional de Pesquisas da Amazo ˆnia, Coordenac ¸a ˜o de Pesquisas (COPE), Avendia Andre ´ Arau ´jo, No. 2936, Petro ´polis, Manaus, AM CEP 69060-001, Brazil F. W. Cidade Departamento de Gene ´tica e Evoluc ¸a ˜o, Centro de Biologia Molecular e Engenharia Gene ´tica, Universidade Estadual de Campinas, CP 6010, Bara ˜o Geraldo, Campinas, SP CEP 13083-970, Brazil 123 Conservation Genet Resour (2010) 2:205–209 DOI 10.1007/s12686-010-9237-y

Upload: g-n-lima

Post on 15-Jul-2016

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: New 24 polymorphic DNA microsatellite loci for the major malaria vector Anopheles darlingi and transpecies amplification with another anophelines

TECHNICAL NOTE

New 24 polymorphic DNA microsatellite loci for the majormalaria vector Anopheles darlingi and transpecies amplificationwith another anophelines

G. N. Lima • J. S. Batista • K. M. Formiga •

F. W. Cidade • M. S. Rafael • W. P. Tadei •

J. M. M. Santos

Received: 13 April 2010 / Accepted: 17 April 2010 / Published online: 19 May 2010

� Springer Science+Business Media B.V. 2010

Abstract Anopheles darlingi is a major human malaria

vector in the Neotropics. Twenty-four polymorphic

microsatellite loci were isolated and characterized in 21–32

individuals collected in Coari (Amazonas, Brazil). The

number of alleles per locus ranged from 4 to 11 (average of

7.667). The observed heterozygosity (HO) varied between

0.037 and 0.833 (average of 0.500), while the expected

heterozygosity (HE) ranged from 0.177 to 0.871 (average

of 0.723). Thirteen loci showed a significant deviation from

HWE. No linkage disequilibrium was found between the

loci.

Keywords Anopheles darlingi � Microsatellites �Malaria vector � Amazon Basin

Anopheles (Nyssorhynchus) darlingi is the major and the

most anthropophilic and endophagic malaria vector in the

Brazilian Amazon Basin (Tadei et al. 1998). It is also a

significant vector in other countries in South America such

as Peru, Colombia and Suriname (Vittor et al. 2006).

Although morphology and genetics variation had been

described suggesting that A. darlingi is a species complex

(Freitas-Sibajev et al. 1995), morphometric and genetic

analyses using isozymes, RAPD and ITS2 demonstrated

the existence of a single species (Manguin et al. 1999).

Studies using mitochondrial and nuclear DNA markers

provide support for moderate level of population genetic

structure (Mirabello and Conn 2006; Scarpassa and Conn

2007; Mirabello et al. 2008).

Eight microsatellite loci were characterized (Conn et al.

2001) but the development of new markers would improve

genetic population studies, gene mapping and QTL anal-

ysis in this vector. This study reports the isolation and

characterization of new 24 microsatellite markers for A.

darlingi and cross-amplification in three con-generic

species.

A genomic library enriched with microsatellite DNA of

A. darlingi was constructed (Billotte et al. 1999) from the

Genomic DNA extracted (Wilkerson et al. 1995) using a

pool of 10 A. darlingi adult specimens newly hatched and

unfed collected in Coari, Amazonas, Brazil. The DNA was

digested with RsaI restriction enzyme (Invitrogen), and

linked to RSA21 and RSA25 adapters. Microsatellite DNA

fragments were selected by hybridization with (CT)8 and

(GT)8 repeats biotin-linked probes and recovered with

streptavidin-linked particles (Promega). Selected fragments

were linked into a pGEM-T vector (Promega), transformed

into Escherichia coli XL1-blue competent cells and inoc-

ulated into plates with X-Gal/IPTG/LB agar. After the

growth at 37�C the white colonies were transferred onto

G. N. Lima � M. S. Rafael � W. P. Tadei � J. M. M. Santos (&)

Laboratorio de Vetores Malaria e Dengue, Instituto Nacional de

Pesquisas da Amazonia, Coordenacao de Pesquisas em Ciencias

da Saude (CPCS), Avenida Andre Araujo, No. 2936, Petropolis,

Manaus, AM CEP 69060-001, Brazil

e-mail: [email protected]

J. S. Batista � K. M. Formiga

Instituto Nacional de Pesquisas da Amazonia, Coordenacao

de Pesquisas em Biologia Aquatica (CPBA), Avenida Andre

Araujo, No. 2936, Petropolis, Manaus, AM CEP 69060-001,

Brazil

J. S. Batista � K. M. Formiga

Laboratorio Tematico de Biologia Molecular (LTBM), Instituto

Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas

(COPE), Avendia Andre Araujo, No. 2936, Petropolis, Manaus,

AM CEP 69060-001, Brazil

F. W. Cidade

Departamento de Genetica e Evolucao, Centro de Biologia

Molecular e Engenharia Genetica, Universidade Estadual de

Campinas, CP 6010, Barao Geraldo, Campinas, SP CEP

13083-970, Brazil

123

Conservation Genet Resour (2010) 2:205–209

DOI 10.1007/s12686-010-9237-y

Page 2: New 24 polymorphic DNA microsatellite loci for the major malaria vector Anopheles darlingi and transpecies amplification with another anophelines

Ta

ble

1C

har

acte

riza

tio

no

f2

4p

oly

mo

rph

icm

icro

sate

llit

eslo

ciin

An

op

hel

esd

arl

ing

ifr

om

Co

ari

(Am

azo

nas

-Bra

zil)

SS

Rlo

cus

Gen

ban

kac

cess

ion

no

.R

epea

tm

oti

fP

rim

erse

qu

ence

s(50 -

30 )

NA

Siz

era

ng

e(b

p)

PIC

DH

OH

EP

-HW

EF

IS(f

)

Ad

a03

GU

05

98

66

(AC

) 12

FF

AM

:AG

AG

AG

CT

AA

TG

CG

GT

TG

GT

C2

89

25

3–

28

30

.58

80

.83

90

.42

90

.61

80

.02

10

.31

1

R:A

CG

TT

CC

TC

TA

CT

CC

GA

AA

GC

Ad

a06

GU

05

98

68

(CA

) 8F

FA

M:T

TA

AT

CA

CT

TG

CG

AC

AG

AC

C3

07

96

–1

18

0.5

91

0.8

65

0.5

67

0.6

66

0.1

01

0.1

51

R:G

AC

TC

CA

TT

CC

TT

GA

AC

CA

Ad

a09

GU

05

98

69

(GT

) 9F

FA

M:G

TC

AT

CA

TC

GT

CG

TC

GG

AA

T3

07

14

2–

15

40

.71

50

.92

30

.83

30

.76

00

.71

9-

0.0

98

R:C

TG

CA

AC

CA

GC

GA

GT

TC

TT

AC

Ad

a10

GU

06

53

63

(AC

) 10

FF

AM

:GC

AA

CA

GA

CC

AG

AC

CA

GA

CA

T2

74

a1

42

–1

86

0.1

68

0.3

95

0.0

37

0.1

77

0.0

00

*1

.00

0

R:C

CT

GG

AC

GC

TC

TG

TG

CG

C

Ad

a17

GU

06

53

64

(CA

) 10

CG

(CA

) 8F

HE

X:G

GG

TA

GT

AA

AG

CA

AC

TG

AA

GC

C2

91

0a

16

6–

20

80

.84

00

.96

60

.65

50

.87

10

.00

0*

0.2

51

R:C

TA

CA

GC

AA

GC

GA

AG

GG

AA

G

Ad

a18

GU

06

53

65

(AC

) 9T

(CA

) 5F

HE

X:G

AC

AC

TC

CG

CA

CT

CT

CT

TC

AC

24

8a

24

0–

27

20

.78

40

.95

20

.41

70

.82

60

.00

0*

0.5

01

R:G

CT

TG

CC

CA

TA

AC

TC

TC

AC

C

Ad

a20

GU

06

53

66

(GT

) 10

FF

AM

:AG

CA

AT

AT

GT

TC

CC

GA

CA

GC

27

93

02

–3

32

0.7

98

0.9

62

0.7

41

0.8

33

0.0

29

0.1

13

R:C

GG

CT

TC

TA

AA

TG

AC

TC

CT

AG

C

Ad

a21

GU

06

53

67

(TG

) 8F

FA

M:G

GT

AG

TC

CG

AG

AG

GA

GA

GG

TG

31

7a

28

0–

31

00

.81

10

.94

60

.54

80

.84

60

.00

0*

0.3

56

R:G

CA

GG

AC

AA

AA

CC

AA

TC

TG

C

Ad

a22

GU

06

53

68

(CA

) 8F

FA

M:G

GC

TT

CC

GT

CT

TC

TT

CT

AT

TC

C2

48

a1

58

–1

86

0.7

03

0.9

31

0.2

92

0.7

50

0.0

00

*0

.61

6

R:G

TC

CT

TA

CG

CA

CG

GT

TT

CT

C

Ad

a23

GU

06

53

69

(AC

) 7F

HE

X:A

CT

CG

TT

CG

TG

CT

CT

GT

CA

CT

31

81

24

–1

68

0.6

69

0.9

03

0.6

13

0.7

09

0.3

69

0.1

37

R:T

GC

AG

TG

TG

TT

GT

GT

CC

TC

A

Ad

a24

GU

06

53

70

(AC

) 9F

FA

M:G

TG

AG

CA

CA

TG

GA

AG

CG

TA

G2

85

21

5–

22

50

.60

60

.84

50

.64

30

.67

30

.01

00

.04

5

R:G

AC

TG

CT

GT

GG

AT

GG

AA

GA

AG

Ad

a25

GU

06

53

71

(CA

) 9F

FA

M:C

TC

TC

TG

TG

TT

CT

GC

CT

CA

CC

26

9a

30

4–

33

20

.80

60

.95

00

.26

90

.84

50

.00

0*

0.6

86

R:G

CA

AC

TG

GT

TC

TG

GT

TC

GA

G

Ad

a27

GU

06

53

72

(CA

) 8F

FA

M:A

GC

GG

AT

CT

AC

CT

AC

GG

GT

TA

32

10

11

9–

16

30

.78

90

.95

60

.78

10

.82

40

.62

50

.05

3

R:C

GC

TA

TC

AG

CA

TC

AT

CA

TC

G

Ad

a29

GU

12

00

62

(CG

T) 1

5F

FA

M:G

AA

GG

AG

GC

AG

CA

CT

AG

CA

C2

77

66

–8

40

.70

60

.90

10

.59

30

.76

20

.00

0*

0.2

26

R:G

GA

CA

AC

CG

AA

GC

AA

TC

AA

G

Ad

a30

GU

12

00

63

(GT

) 7F

HE

X:A

AG

TC

CC

AC

GA

AG

GT

CT

CA

C3

07

31

8–

33

10

.60

00

.82

70

.63

30

.65

40

.00

0*

0.0

32

R:G

AT

GC

AG

TG

AC

GA

TG

AC

AC

AC

Ad

a32

GU

12

00

64

(CA

C) 6

FH

EX

:TC

AC

TA

GC

GT

AT

GT

GC

GA

GG

31

71

80

–1

98

0.6

91

0.9

07

0.8

06

0.7

48

0.8

31

-0

.08

0

R:T

CG

AA

TG

AC

CT

TT

GG

GA

GA

C

Ad

a33

GU

12

00

65

(GT

) 11

FH

EX

:CT

GC

GT

TC

CC

AC

TA

TG

CT

TT

31

9a

14

0–

15

60

.79

40

.95

40

.51

60

.83

00

.00

0*

0.3

82

R:C

TC

CG

TC

TC

TC

CG

TC

TC

TC

TT

Ad

a37

GU

12

00

66

(AC

) 3A

T(A

C) 6

FF

AM

:AC

CA

TC

AC

TG

CT

TA

CC

GA

CA

C3

04

a2

31

–2

65

0.6

78

0.8

81

0.3

33

0.7

41

0.0

00

*0

.55

4

R:A

AC

GA

CA

CA

CC

AG

GA

AA

AG

G

206 Conservation Genet Resour (2010) 2:205–209

123

Page 3: New 24 polymorphic DNA microsatellite loci for the major malaria vector Anopheles darlingi and transpecies amplification with another anophelines

microplates with a HM/FM medium to grow overnight.

Plasmid DNA was extract (Sambrook et al. 1989) from 96

insert and bi-directionally sequenced on an ABI 3130

(Applied Biosystems) using T7 and SP6 primers and the

v3.1 Big Dye terminator 3.1 kit (Applied Biosystems).

The assemble were performed with 77 clones sequences

and edited using STADEN package (Staden 1996). The

124 microsatellite were identified in 73 non-redundant

clone sequences and the 69 primers’ pairs were designed

with the WEBSAT program (Martins et al. 2009). A M13

sequence tail was added in the 50 end of each forward

primer following a labeling protocol (Schuelke 2000).

The microsatellite fragments were amplified in 10 ll

containing 10–50 ng of genomic DNA, each forward and

M13 Label primer (FAM or HEX) at 0.4 lM, reverse

primer (0.8 lM), each dNTP (200 lM), MgCl2 (1.5 mM),

1X PCR buffer and 0.5U of goTaq DNA Polymerase

(Promega). PCR was carried out with two main steps: the

denaturation (68�C, 1 min; 94�C, 30 s) followed by 30

cycles of 30 s at 93�C, 35 s at 60�C, 40 s at 68�C; the

second step consisted of 15 cycles following: 25 s at 93�C,

35 s at 53�C, 30 s at 72�C, and a final extension at 72�C for

30 min. PCR products were visualized on a MegaBACE

1000 (GE Healthcare) and allele sizes were scored using

ET-550 ROX (GE Healthcare) analyzed on FRAGMENT

PROFILER v1.2 (GE Healthcare) program.

Polymorphisms in 24 microsatellite loci were evaluated

in 21–32 individuals of A. darlingi collected in Coari. The

descriptive statistics and linkage disequilibrium (LD) were

inferred using FSTAT v2.9.3.2 (Goudet 2002), Polymor-

phism Information Content-PIC (Botstein et al. 1980) was

estimated with MSTOOLS v3 (Park 2001) and the test for

Hardy–Weinberg Equilibrium (HWE) was perform using

GENEPOP v4 (Raymond and Rousset 1995). The number

of alleles per locus ranged from 4 (Ada10, Ada37 e Ada39)

to 11 (Ada63), with an average of 7.667. The observed

heterozygosity (HO) ranged between 0.037 and 0.833

(Ada10–Ada09, respectively) with a mean of 0.500, while

the expected heterozygosity (HE) ranged from 0.177 to

0.871 (Ada10 and Ada17, respectively) with an average of

0.723. The PIC ranged between 0.168 (Ada10) and 0.840

(Ada17), with a mean of 0.679. Thirteen loci showed a

significant deviation from HWE after the Bonferroni

Correction (Rice 1989). This deviation may be due to

sampling effect or the presence of null alleles as suggested

by Microchecker v2.2.3 program (Van Oosterhout et al.

2004) (Table 1). LD was not detected between all pairs of

loci following sequential Bonferroni Correction. The Dis-

criminating Power (D) (Jones 1972) was estimated for

each loci and ranged from 0.395 (Ada10) to 0.966

(Ada17), with an average of 0.888. The value of FIS ranged

from -0.098 (Ada9) to 1.000 (Ada10) with a mean of

0.328.Ta

ble

1co

nti

nu

ed

SS

Rlo

cus

Gen

ban

kac

cess

ion

no

.R

epea

tm

oti

fP

rim

erse

qu

ence

s(50 -

30 )

NA

Siz

era

ng

e(b

p)

PIC

DH

OH

EP

-HW

EF

IS(f

)

Ad

a39

GU

12

00

67

(GT

) 13

FH

EX

:GA

TC

GC

AG

TA

GC

TG

AA

AG

TC

G2

34

27

1–

28

70

.47

40

.85

50

.30

40

.53

20

.02

80

.43

4

R:G

AA

TA

TC

GC

GG

TG

GA

TC

AG

Ad

a40

GU

12

00

68

(TC

) 19

FF

AM

:TA

CT

AC

TG

AT

TG

GC

GC

TC

CT

G2

59

20

1–

23

50

.56

40

.88

30

.56

00

.59

80

.11

70

.06

5

R:A

CT

AC

GG

GT

CC

TC

TC

GT

GT

TC

Ad

a41

GU

12

00

69

(TG

) 10

FF

AM

:CG

CT

GA

GA

AC

AT

TG

GG

TA

GT

C3

11

02

75

–3

01

0.6

94

0.9

13

0.5

81

0.7

37

0.1

37

0.2

15

R:G

TG

GT

AC

TG

CG

AG

GA

TC

AA

AG

Ad

a48

GU

12

00

70

(GG

T) 4

FH

EX

:CG

AC

GG

TG

AA

CT

GA

AC

TC

G2

97

a2

65

–2

83

0.6

76

0.8

65

0.3

45

0.7

27

0.0

00

*0

.53

0

R:C

AC

TC

GT

GG

GA

AC

TG

CT

TT

C

Ad

a60

GU

90

84

93

(AA

G) 9

FF

AM

:GC

AT

AT

AG

CC

CC

TT

TT

CC

TC

C2

18

a2

33

–2

54

0.7

78

0.9

60

0.2

86

0.8

22

0.0

00

*0

.65

8

R:C

TG

CC

GT

CT

CG

TG

TT

TA

GT

GT

Ad

a63

GU

12

00

71

(GT

) 9F

HE

X:T

GT

TG

CC

TT

GA

CT

AT

CC

TT

TT

G2

21

11

77

–2

13

0.7

78

0.9

33

0.2

27

0.8

15

0.0

00

*0

.72

6

R:T

AT

TC

GT

TG

TG

TT

GT

GT

TC

GC

Th

ean

nea

lin

gte

mp

erat

ure

inal

llo

ciw

as6

0�C

.N

:n

um

ber

of

ind

ivid

ual

ssc

reen

ed;

A:

nu

mb

ero

fal

lele

s;a:

pre

sen

ceo

fa

nu

llal

lele

;b

p:

bas

ep

airs

;P

IC:

po

lym

orp

his

min

form

atio

nco

nte

nt;

D:

dis

crim

inat

ing

po

wer

;H

O:

ob

serv

edh

eter

ozy

go

sity

;H

E:

exp

ecte

dh

eter

ozy

go

sity

;P

-HW

E*

:d

epar

tssi

gn

ifica

ntl

yfr

om

HW

Eaf

ter

Bo

nfe

rro

ni

corr

ecti

on

and

FIS

:in

bre

edin

gco

effi

cien

t

Conservation Genet Resour (2010) 2:205–209 207

123

Page 4: New 24 polymorphic DNA microsatellite loci for the major malaria vector Anopheles darlingi and transpecies amplification with another anophelines

All the 24 polymorphic markers were tested for cross-

amplification in three Anopheles species (Table 2). Eight

loci were amplified in all three species and 17 loci

amplified in at least one species. The number of markers

amplified ranged from 10 (A. rangeli) to 15 (A. benarro-

chi). Fourteen loci are polymorphic in at least one species

and ranged between eight (A. rangeli) to 13 loci (A.

triannulatus).

The 24 polymorphic microsatellites developed can be

used as efficient markers for investigating population

genetic and genome mapping of A. darlingi and others

Anopheles species.

Acknowledgments This work was supported by FAPEAM/PIPT,

CTPetro-Rede malaria/CNPq and PROCAD-Amazonia-INPA/UNI-

CAMP/UFRGS/CAPES (023/2006). The authors thank Anete Souza,

Adna Souza and Tatiana Campos (CBMEG/UNICAMP) for help in

genomic microsatellites library construction, Vera Val (LEEM/INPA)

for help sequencing on the ABI 3130, the technicians in malaria and

dengue/INPA laboratory for help in capture and identification of

mosquitoes and the LTBM/INPA where a great amount of this work

was perform. GNL was supported by PosGrad/FAPEAM masters

fellowship.

References

Billotte N, Lagoda P, Risterucci A, Baurens F (1999) Microsatellite-

enriched libraries: applied methodology for the development of

SSR markers in tropical crops. Fruits 54:277–288

Botstein D, White R, Skolnick M, Davis R (1980) Construction of a

genetic linkage map in man using restriction fragment length

polymorphisms. Am J Hum Genet 32:314–331

Conn JE, Bollback JP, Onyabe DY, Robinson TN, Wilkerson RC,

Povoa MM (2001) Isolation of polymorphic microsatellite

markers from the malaria vector Anopheles darlingi. Mol Ecol

Notes 1:223–225

Freitas-Sibajev M, Conn J, Mitchell S, Cockburn A, Seawright J,

Momen H (1995) Mitochondrial DNA and morphological

analyses of Anopheles darlingi populations from Brazil. Mosq

Syst 27:78–99

Goudet J (2002) FSTAT, a program to estimate and test gene

diversities and fixation indices (version 2.9.3.2). Available from

http://www.unil.ch/izea/softwares/fstat.html. Updated from

Goudet (1995)

Jones DA (1972) Blood samples: probability of discrimination. J

Forensic Sci Soc 12:355–359

Manguin S, Wilkerson R, Conn J, Rubio-Palis Y, Danoff-Burg J,

Roberts D (1999) Population structure of the primary malaria

vector in South America, Anopheles darlingi, using isozyme,

random amplified polymorphic DNA, internal transcribed spacer

2, and morphologic markers. Am J Trop Med Hyg 60:364–376

Martins WS, Lucas DCS, KFdS Neves, Bertioli DJ (2009) WebSat –

A web software for microsatellite marker development. Bioin-

formation 3:282–283

Mirabello L, Conn JE (2006) Molecular population genetics of the

malaria vector Anopheles darlingi in Central and South America.

Nature Publishing, Basingstoke, ROYAUME-UNI

Mirabello L, Vineis J, Yanoviak S, Scarpassa V, Povoa M, Padilla N,

Achee N, Conn J (2008) Microsatellite data suggest significant

population structure and differentiation within the malaria vector

Anopheles darlingi in Central and South America. BMC Ecol 8:3

Park SDE (2001) Trypanotolerance in West African cattle and the

population genetic effects of selection. University of Dublin,

Dublin

Raymond M, Rousset F (1995) GENEPOP (version 1.2): population

genetics software for exact tests and ecumenicism. J Hered

86:248–249

Rice WR (1989) Analyzing tables of statistical tests. Evolution

43:223–225

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a

laboratory manual, 2nd edn. Cold Springs Harbor Laboratory

Press, Cold Springs Harbor, NY

Scarpassa VM, Conn JE (2007) Population genetic structure of the

major malaria vector Anopheles darlingi (Diptera: Culicidae)

from the Brazilian Amazon, using microsatellite markers. Mem

Inst Oswaldo Cruz 102:319–328

Schuelke M (2000) An economic method for the fluorescent labeling

of PCR fragments. Nat Biotechnol 18:233–234

Staden R (1996) The Staden sequence analysis package. Mol

Biotechnol 5:233–241

Tadei W, Thatcher B, Santos J, Scarpassa V, Rodrigues I, Rafael M

(1998) Ecologic observations on anopheline vectors of malaria

in the Brazilian Amazon. Am J Trop Med Hyg 59:325–335

Table 2 Cross-species amplification of 24 Anopheles darlingimicrosatellite markers loci

SSR locus A. triannulatus* A. rangeli* A. benarrochi*

Size range

(bp)

A Size range

(bp)

A Size range

(bp)

A

Ada03 9 9 9

Ada06 85–103 3 103 1 83–103 3

Ada09 151–153 2 9 143–153 2

Ada10 9 9 9

Ada17 9 9 9

Ada18 9 9 9

Ada20 300–332 3 320–332 2 310–332 2

Ada21 9 9 9

Ada22 176–182 2 176–182 2 176–182 2

Ada23 124–126 2 124–126 2 120–124 2

Ada24 243–253 5 237–247 2 237–247 2

Ada25 275–295 2 295–307 2 9

Ada27 124–154 2 134–158 2 126–130 2

Ada29 9 9 82–100 2

Ada30 9 9 335 1

Ada32 9 9 199 1

Ada33 88–138 2 114–144 2 88–98 3

Ada37 192–234 4 182–212 3 192–212 2

Ada39 9 9 9

Ada40 204–216 3 212 1 9

Ada41 262–284 5 9 264–300 2

Ada48 9 9 9

Ada60 9 9 233 1

Ada63 143–189 2 9 187 1

* PCR annealing temperature as in Table 1. N: 5 for all species, A:

estimated number of alleles and 9: no amplification

208 Conservation Genet Resour (2010) 2:205–209

123

Page 5: New 24 polymorphic DNA microsatellite loci for the major malaria vector Anopheles darlingi and transpecies amplification with another anophelines

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004)

Micro-checker: software for identifying and correcting genotyp-

ing errors in microsatellite data. Mol Ecol Notes 4:535–538

Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS,

Pinedo-Cancino V, Patz JA (2006) The effect of deforestation on

the human-biting rate of Anopheles darlingi, the primary vector

of falciparum malaria in the peruvian amazon. Am J Trop Med

Hyg 74:3–11

Wilkerson R, Parson T, Klein T, Gaffgan T, Bergo E, Consolim J

(1995) Diagnosis by random amplified polymorphic DNA

polymerase chain reaction of four cryptic species related to

Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) from

Paraguay, Argentina and Brazil. J Med Entomol 32:697–704

Conservation Genet Resour (2010) 2:205–209 209

123