new chm 151 unit 9 power points 140227172226 phpapp01

83
8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01 http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 1/83 6-1 THERMOCHEMISTRY TERMINOLOGY ENTHALPY CHANGES BOND ENERGIES Chapter 6.1-6.6 & 9.4 Silberberg

Upload: goodmushroomsoup

Post on 03-Jun-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 1/83

6-1

THERMOCHEMISTRY

• TERMINOLOGY

• ENTHALPY CHANGES

• BOND ENERGIES

• Chapter 6.1-6.6 & 9.4 Silberberg

Page 2: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 2/83

6-2

Chapter 6

Thermochemistry:

Energy Flow and Chemical Change

Page 3: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 3/83

6-3

Thermochemistry: Energy Flow and Chemical Change

6.1 Forms of Energy and Their Interconversion

6.2 Enthalpy: Chemical Change at Constant Pressure

6.3 Calorimetry: Measuring the Heat of a Chemical or PhysicalChange

6.4 Stoichiometry of Thermochemical Equations

6.5 Hess’s Law: Finding D

H  of Any Reaction

6.6 Standard Enthalpies of Reaction (DH ° rxn)

Page 4: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 4/83

6-4

Models of Chemical Bonding

9.4 Bond Energy and Chemical Change

Page 5: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 5/83

6-5

Goals & Objectives

• See the following Learning Objectives on pages 253 and 356.

• Understand these Concepts:

• 6.1-4, 6-12; 9.11-12

• Master these Skills:

• 6.1, 3-6; 9.5

Page 6: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 6/83

6-6

Thermochemistry

• Thermochemistry is a branch of

thermodynamics that deals with

• the heat involved with chemical and physical changes.

• When energy is transferred from oneobject to another it appears as work

and/or heat.

Page 7: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 7/83

Page 8: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 8/836-8

Thermodynamics

• First Law of Thermodynamics

 – Energy is neither created nor destroyed; it is

transformed and/or transferred.

 – DEuniverse  = 0

• Thermochemical equation

 – includes heat changes which accompany a

chemical reaction

 – CH4( g ) + 3 Cl2( g )  CHCl3( g ) + 3HCl( g )

+ 327 kJ heat given off

Page 9: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 9/836-9

Figure 6.1

The system in this case is the contents  of the reaction flask.

The surroundings comprise everything else, including the

flask itself.

A chemical system and its surroundings.

Page 10: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 10/836-10

The System and Its Surroundings

 A meaningful study of any transfer of energy requires thatwe first clearly define both the system  and its

sur round ings .

System + Surroundings = Universe

The internal energy , E , of a system is the sum of the

potential and kinetic energies of all the particles present.

The total energy of the universe remains constant .

 A change in the energy of the system must beaccompanied by an equal  and oppos i te  change in the

energy of the surroundings.

Page 11: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 11/836-11

DE  = E final - E initial = E products - E reactants 

Figure 6.2 Energy diagrams for the transfer of internal energy (E )

between a system and its surroundings.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 12: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 12/836-12

Figure 6.3  The two cases where energy is transferred

as heat only.

The system releases heat

The system absorbs heat

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 13: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 13/836-13

Figure 6.4A The two cases where energy is transferred

as work only.

The system does work on  the surroundings.

H2(g ) + Zn2+(aq ) + 2Cl-(aq ) 

Zn(s ) + 2H+(aq ) + 2Cl-(aq )

Page 14: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 14/836-14

Figure 6.4B The two cases where energy is transferred

as work only.

The system has work done on it by  the surroundings.

Page 15: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 15/836-15

Table 6.1 The Sign Conventions* for q , w, andD

E

q w+  

=  

D

E  

+  

+  

-  

-  

-  

-  

+  

+  

+  

-  

depends on sizes of q  and w

depends on sizes of q  and w

* For q : + means system gains  heat; - means system releases  heat.

* For w : + means word done on  system; - means work done by  system.

Page 16: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 16/836-16

D

E universe = D

E system + D

E surroundings = 0

The Law of Energy Conservation

The first law of Thermodynamics states that the total

energy of the universe is constant .

Energy is conserved, and is neither created nor destroyed.Energy is transferred in the form of heat and/or work. 

Page 17: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 17/836-17

The SI unit of energy is the joule (J).

1 J = 1 kg∙m2/s2 

The British Thermal Unit (Btu) is often used to rateappliances.

1 Btu is equivalent to 1055 J.

The calorie was once defined as the quantity of energy

needed to raise the temperature of 1 g of water by 1°C.

1 cal = 4.184 J

Units of Energy

Page 18: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 18/83

6-18

Units of Energy

• Joule = 1 kg•m2 / sec2  (Physic’sdefinition)

• calorie = heat to raise 1.00 g of water 1o

C

1 calorie = 4.184 J (exact)

1 kilocalorie is what we use to measure theenergy in our food.

Page 19: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 19/83

6-19

Figure 6.5

Some quantities of energy.

Page 20: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 20/83

6-20

Enthalpy:

Chemical Change at Constant Pressure

•   DE  = q + w  

 – To determine DE , both heat and work must be measured.

• The most common chemical work is PV  work 

 – the work done when the volume of a system changes in the

presence of an external pressure.

• Enthalpy (H) is defined as E  + PV so 

 –  DH  = DE  + DPV  

• If a system remains at constant pressure and its volume

does not change much, thenDH  ≈ DE  

Page 21: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 21/83

6-21

Figure 6.6 Two different paths for the energy change of a system.

Even though q  and w  for the two paths are different,

the total DE  is the same for both.

Page 22: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 22/83

6-22

Figure 6.7 Pressure-volume work.

An expanding gas pushing back the atmosphere does PV  work

(w  = -P DV ).

Page 23: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 23/83

6-23

ΔH  as a measure of ΔE  

•  DH  is the change in heat for a system at constant

pressure .

q P  = DE  + P DV = DH

•  D

H  ≈D

E   – for reactions that do not involve gases

 – for reactions in which the total amount (mol) of gas

does not change

 – for reactions in which qP  is much larger than P DV ,even if the total mol of gas does change.

Page 24: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 24/83

6-24

Figure 6.8

Enthalpy diagrams for exothermic and endothermic processes.

A Exothermic process

Heat is given out.

CH4(g ) + 2O2(g ) →  CO2(g ) + H2O(g )

B Endothermic process

Heat is taken in.

H2O(s ) →  H2O(l )

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 25: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 25/83

6-25

Sample Problem 6.2 Drawing Enthalpy Diagrams and Determining

the Sign of ΔH

PLAN: From each equation, note whether heat is a “reactant” or a

“product”. If heat is taken in as a “reactant”, the process is

endothermic. If heat is released as a “product”, the process is

exothermic.

For the enthalpy diagram, the arrow always points from

reactants to products. For endothermic reactions, the

products are at a higher energy than the reactants, since the

reactants take in heat to form the products.

PROBLEM: In each of the following cases, determine the sign of DH,

state whether the reaction is exothermic or endothermic,and draw and enthalpy diagram.

(a)  H2(g ) + ½O2(g ) →  H2O(l ) + 285.8 kJ 

(b) 40.7 kJ + H2O(l ) → H2O(g ) 

Page 26: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 26/83

6-26

Sample Problem 6.2

SOLUTION: (a)  H2(g ) + ½O2(g ) →  H2O(l ) + 285.8 kJ 

Heat is a “product” for this reaction and is therefore given out, so

the reaction is exothermic. The reactants are at a higher energy

than the products.

H2(g ) + ½ O2(g ) (reactants)

H2O(l )(products)

EXOTHERMIC ΔH  = -285.8 kJ

   E  n  e  r  g  y

Page 27: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 27/83

6-27

Sample Problem 6.2

SOLUTION: (b) 40.7 kJ + H2O(l ) → H2O(g ) 

H2O(g ) (reactants)

H2O(l )

(products)

ENDOTHERMIC ΔH  = + 40.7 kJ

   E  n  e  r  g  y

Heat is a “reactant” in this reaction and is therefore absorbed, so

the reaction is endothermic. The reactants are at a lower energy

than the products.

Page 28: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 28/83

6-28

Enthalpy Changes

• Heat change

•   D

H > 0 (positive) ENDOTHERMIC

Heat is absorbed by the process

•   D

H < 0 (negative) EXOTHERMIC 

Heat is produced by the process

Competency VI-3

Page 29: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 29/83

6-29

Calorimetry

q  = c  x m  x DT

q = heat lost or gained

c  = specific heat capacity

m = mass in g

DT  = T final - T initial

The specif ic heat capacity  (c ) of a substance is the

quantity of heat required to change the temperature of

1 gram  of the substance by 1 °C. 

Page 30: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 30/83

6-30

Heat Transfer of Liquids

• Specific Heat

The amount of heat required to raise the temperature of one

gram of a substance one degree Celsius(Kelvin), with no

change in state.Water 4.18 J/g•°C

Ice 2.03 J/g•°C

Air 1.01 J/g•°C

Alcohol 2.46 J/g•°CMetals 0.10 to 1.00 J/g•°C

Page 31: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 31/83

6-31

Table 6.2 Specific Heat Capacities (c ) of Some Elements, Compounds,

and Materials

Specific Heat

Capacity (J/g∙°C)

SubstanceSpecific Heat

Capacity (J/g∙°C)

Substance

Compounds

water, H2O(l )

ethyl alcohol, C2H5OH(l )

ethylene glycol, (CH2OH)2(l )

carbon tetrachloride, CCl4(l )

4.184

2.46

2.42

0.862

Elements

aluminum, Al

graphite,C

iron, Fe

copper, Cu

gold, Au

0.900

0.711

0.450

0.387

0.129

wood

cement

glass

granite

steel

Solid materials

1.76

0.88

0.84

0.79

0.45

Page 32: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 32/83

6-32

Sample Problem 6.3 Finding the Quantity of Heat from a

Temperature Change

PROBLEM:  A layer of copper welded to the bottom of a skillet weighs

125 g. How much heat is needed to raise the temperatureof the copper layer from 25°C to 300.°C? The specific

heat capacity (c ) of Cu is 0.387 J/g∙K.

SOLUTION:

PLAN: We know the mass (125 g) and c  (0.387 J/g∙K) of Cu

and can find DT  in °C, which equals DT  in K. We can usethe equation q = cmDT  to calculate the heat.

q = cmD

T   = 1.33x104 J

DT  = T final  – T initial = 300. – 25 = 275°C = 275 K

0.387 J

g∙Kx 125 g x 275 K=

Page 33: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 33/83

6-33

Figure 6.9  Coffee-cup calorimeter.

This device measures the heat transferred at constant pressure (q P ).

Page 34: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 34/83

6-34

Sample Problem 6.4 Determining the Specific Heat Capacity

of a Solid

PROBLEM:  A 22.05 g solid is heated in a test-tube to 100.00°C and

added to 50.00 g of water in a coffee-cup calorimeter. Thewater temperature changes from 25.10°C to 28.49°C. Find

the specific heat capacity of the solid.

PLAN: Since the water and the solid are in contact, heat is transferred

from the solid to the water until they reach the same T final. Inaddition, the heat given out by the solid (-qsolid) is equal to the

heat absorbed by the water (qwater ).

SOLUTION:

DT water  = T final  – T initial = (28.49°C – 25.10°C) = 3.39°C = 3.39 K

DT solid = T final  – T initial = (28.49°C – 100.00°C) = -71.51°C = -71.51 K

Page 35: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 35/83

6-35

Sample Problem 6.4

c solid  =

c   x mass x DTH

2O H

2O H

2O

masssolid x DT solid 

4.184 J/g∙K x 50.00 g x 3.39 K 

22.05 g x (-71.51 K)= = 0.450 J/g∙K 

Page 36: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 36/83

6-36

Sample Problem 6.5 Determining the Enthalpy Change of an

Aqueous Reaction

PROBLEM: 50.0 mL of 0.500 M  NaOH is placed in a coffee-cup

calorimeter at 25.00oC and 25.0 mL of 0.500 M  HCl is carefullyadded, also at 25.00oC. After stirring, the final temperature is

27.21oC. Calculate qsoln (in J) and the change in enthalpy, DH ,

(in kJ/mol of H2O formed).

 Assume that the total volume is the sum of the individual

volumes, that d  = 1.00 g/mL and c  = 4.184 J/g∙K

PLAN: Heat flows from the reaction (the system) to its surroundings (the

solution). Since –qrxn = qsoln, we can find the heat of the reaction

by calculating the heat absorbed by the solution.

Page 37: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 37/83

6-37

Sample Problem 6.5

SOLUTION:

Total mass (g) of the solution = (25.0 mL + 50.0 mL) x 1.00 g/mL = 75.0 g

DT soln = 27.21°C – 25.00°C = 2.21°C = 2.21 K

qsoln = c soln x masssoln x DT soln = (4.184 J/g∙K)(75.0 g)(2.21 K)  = 693 K

(a) To find qsoln: 

(b) To find DH rxn we first need a balanced equation: 

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l )

Page 38: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 38/83

6-38

Sample Problem 6.5

For HCl:

25.0 mL HCl x 1 L

103 mL

0.500 mol

1 L

x x 1 mol H2O

1 mol HCl= 0.0125 mol H2O

For NaOH:

50.0 mL NaOH x 1 L103 mL

x x 1 mol H2O1 mol NaOH

= 0.0250 mol H2O0.500 mol1 L

HCl is limiting, and the amount of H2O formed is 0.0125 mol.

DH rxn =qrxn 

mol H2O 0.0125 mol

-693 J=

1 kJ

103J

x = -55.4 kJ/mol H2O

Page 39: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 39/83

6-39

Figure 6.10 A bomb calorimeter.

This device measures the heat released at constant volume (q V).

Page 40: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 40/83

6-40

Sample Problem 6.6 Calculating the Heat of a Combustion

Reaction

PROBLEM:  A manufacturer claims that its new dietetic dessert has

“fewer than 10 Calories per serving.” To test the claim, achemist at the Department of Consumer Affairs places

one serving in a bomb calorimeter and burns it in O2. The

initial temperature is 21.862°C and the temperature rises

to 26.799°C. If the heat capacity of the calorimeter is

8.151 kJ/K, is the manufacturer’s claim correct? 

PLAN: When the dessert (system) burns, the heat released is

absorbed by the calorimeter:

-qsystem = qcalorimeter

To verify the energy provided by the dessert, we calculate

qcalorimeter .

Page 41: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 41/83

6-41

Sample Problem 6.6

SOLUTION:

40.24 kJ x kcal

4.184 kJ

= 9.63 kcal or Calories

The manufacturer’s claim is true, since the heat produced

is less than 10 Calories.

DT calorimeter  = T final  – T initial 

= 26.799°C – 21.862°C = 4.937°C = 4.937 K

qcalorimeter  = heat capacity x DT  = 8.151 kJ/K x 4.937 K = 40.24 kJ 

Page 42: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 42/83

6-42

Example

• Determine the amount of heat released

when 200.0g of H2O cools from 85.0OC

to 40.0O

C.• The molar heat capacity of H2O is

75.3J/mol•C.

• The specific heat of water is4.18 J/g•°C

Page 43: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 43/83

6-43

Page 44: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 44/83

6-44

Example

• The molar heat capacity of ethanol,

C2H5OH, is 113 J/mol•°C.

• Find the amount of heat required to raise

the temperature of 125.0g of ethanol

from 20.0°C to 30.0°C.

Molar mass of ethanol is 46.0g/mol.

Page 45: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 45/83

6-45

Page 46: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 46/83

Page 47: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 47/83

6-47

Figure 6.11

The relationship between amount (mol) of substance and the

energy (kJ) transferred as heat during a reaction

Page 48: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 48/83

6-48

Sample Problem 6.7 Using the Enthalpy Change of a Reaction

(ΔH ) to Find Amounts of Substance

multiply by

mass (g) of Al

heat (kJ)

mol of Al

PROBLEM: The major source of aluminum in the world is bauxite (mostly

aluminum oxide). Its thermal decomposition can berepresented by the equation

If aluminum is produced this way, how many grams of

aluminum can form when 1.000x103 kJ of heat is transferred?

 Al2O3(s) →  2Al(s) + O2(g ) DH rxn = 1676 kJ32

PLAN: From the balanced equation and DH , we see that 2 mol of

 Al is formed when 1676 kJ of heat is absorbed.

1676 kJ = 2 mol Al

Page 49: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 49/83

6-49

SOLUTION:

= 32.20 g Al

Sample Problem 6.7

26.98 g Al

1 mol Al

1.000x103 kJ x 2 mol Al

1676 kJ

x

Page 50: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 50/83

6-50

Heats of Reaction

• Calculate DH for the reaction in which

15.0g of Al reacts with oxygen to form

Al2O3. 

Page 51: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 51/83

6-51

Page 52: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 52/83

6-52

Hess’ Law 

Hess’s law states that the enthalpy change of an overall process is the sum of the enthalpy changes of its

individual steps. 

D

H overall = D

H 1 + D

H 2 + ………. + D

H n  

DH  for an overall reaction can be calculated if the DH  

values for the individual steps are known. 

Page 53: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 53/83

6-53

Calculating ΔH  for an overall process

• Identify the target equation, the step whose DH  isunknown.

 – Note the amount of each reactant and product.

• Manipulate each equation with known DH  values so

that the target amount of each substance is on thecorrect side of the equation.

 – Change the sign of DH  when you reverse an equation.

 – Multiply amount (mol) and DH  by the same factor.

•  Add the manipulated equations and their resulting DH  

values to get the target equation and its DH .

 –  All substances except those in the target equation must

cancel. 

Page 54: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 54/83

6-54

Sample Problem 6.8 Using Hess’s Law to Calculate an

Unknown ΔH

PROBLEM: Two gaseous pollutants that form in auto exhausts are CO

and NO. An environmental chemist is studying ways toconvert them to less harmful gases through the following

reaction:

CO(g ) + NO(g ) →  CO2(g ) + ½N2(g ) DH  = ?

Given the following information, calculate the unknown DH :

Equation A: CO(g ) + ½ O2(g ) →  CO2(g ) DH  A = -283.0 kJ

Equation B: N2(g ) + O2(g ) → 2NO(g ) DH B = 180.6 kJ

PLAN: Manipulate Equations A and/or B and their DH  values to get tothe target equation and its DH . All substances except those in

the target equation must cancel.

Page 55: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 55/83

6-55

Sample Problem 6.8

SOLUTION:

Multiply Equation B by ½ and reverse it:

D

H rxn = -373.3 kJ

CO(g ) + NO(g ) →  CO2(g ) + ½ N2(g )

Equation A: CO(g ) + ½ O2(g ) →  CO2(g ) DH  = -283.0 kJ

NO(g ) → ½ N2(g ) + ½ O2(g ); DH  = - 90.3 kJ

 Add the manipulated equations together:

½ Equation B: NO(g ) → ½ N2(g ) + ½ O2(g ) DH  = - 90.3 kJ

(reversed)

Page 56: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 56/83

6-56

Table 6.3 Selected Standard Enthalpies of Formation at 25°C (298K)

FormulaDH °f (kJ/mol)

Calcium

Ca(s)

CaO(s)

CaCO3(s)

Carbon

C(graphite)C(diamond)

CO(g )

CO2(g )

CH4(g )

CH3

OH(l )

HCN(g )

CSs(l )

Chlorine

Cl(g )

0

-635.1-1206.9

01.9

-110.5

-393.5

-74.9

-238.6

135

87.9

121.0

Hydrogen

Nitrogen

Oxygen

FormulaDH °f (kJ/mol)

H(g )

H2(g )

N2(g )

NH3(g )

NO(g )

O2(g )

O3(g )

H2O(g )

H2O(l )

Cl2(g )

HCl(g )

0

0

0

-92.30

218

-45.9

90.3

143

-241.8

-285.8

107.8

FormulaDH °f (kJ/mol)

Silver Ag(s)

 AgCl(s)

Sodium

Na(s)

Na(g )

NaCl(s)

Sulfur

S8(rhombic)

S8(monoclinic)SO2(g )

SO3(g )

0

0

0

-127.0

-411.1

0.3-296.8

-396.0

Page 57: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 57/83

6-57

Sample Problem 6.10 Calculating ΔH °rxn from ΔH °f  Values 

PROBLEM: Nitric acid, whose worldwide annual production is about 8

billion kilograms, is used to make many products, includingfertilizer, dyes, and explosives. The first step in the

industrial production process is the oxidation of ammonia:

4NH3(g ) + 5O2(g ) →  4NO(g ) + 6H2O(g )

Calculate DH °rxn from DH °f values.

PLAN: Use the DH °f  values from Table 6.3 or Appendix B and apply

the equation

DH rxn = S mDH °f  (products) - S nDH °f  (reactants)

Page 58: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 58/83

6-58

Sample Problem 6.10

SOLUTION:

DH rxn = [4(DH of  of NO(g ) + 6(DH of  of H2O(g )]

- [4(DH of NH3(g ) + 5(DH of O2(g )]

= (4 mol)(90.3 kJ/mol) + (6 mol)(-241.8 kJ/mol) – 

[(4 mol)(-45.9 kJ/mol) + (5 mol)(0 kJ/mol)]

= -906 kJ

D

H rxn = -906 kJ

DH rxn = S mDH °f  (products) - S nDH °f  (reactants)

Page 59: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 59/83

6-59

Standard Molar Enthalpies of Formation

• Hydrogen and oxygen react to form water

according to the equation shown below.

2 H2  + O2     2 H2O

• The reaction is performed with two moles

of H2 and 1 mole of O2, at 25C at one

atmosphere of pressure.

• 483.6 KJ of heat is evolved.

Page 60: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 60/83

6-60

Page 61: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 61/83

6-61

Heats of Reaction

• Calculate the standard enthalpy change for

the reaction in which propane reacts with

oxygen to produce carbon dioxide andwater. (VI-2)

C3H8( g ) + 5 O2( g )   3 CO2( g ) + 4 H2O( g )

• Indicate whether the reaction is

endothermic or exothermic. (VI-3)

Page 62: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 62/83

6-62

Page 63: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 63/83

6-63

Free Energy Changes

• Second Law of Thermodynamics

 –  In a spontaneous process, the entropy of a system and itssurroundings increases

 –  DS for the universe > 0

 –  Think about your room as a kid.

Page 64: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 64/83

6-64

Free Energy Changes

• Gibbs’ Free Energy, DGo 

•   DG = DH –  TDS

T = temperature, KDS = Entropy, “Disorder” 

•   If DG of a process is negative,

the process is said to be spontaneous

I CHM 152

Page 65: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 65/83

6-65

In CHM 152 … 

• We will discuss –  Entropy - DS

• and Gibb’s Free Energy –  DG

•  in much greater detail.

Page 66: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 66/83

6-66

Properties of a Covalent Bond

The bond order  is the number of electron pairs being shared by agiven pair of atoms.

 A single bond consists of one bonding pair and has a bond order of 1.

The bond energy  (BE) is the energy needed to overcome theattraction between the nuclei and the shared electrons. The

stronger  the bond the higher  the bond energy.

The bond length  is the distance between the nuclei of the bonded

atoms.

Page 67: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 67/83

6-67

Trends in bond order, energy, and length

For a given pair of atoms, a higher bond ord er  results in a shor ter

bond length  and higher bond energy .

For a given pair of atoms, a shorter bond is a stronger bond.

Bond length increases  down a group in the periodic table and

decreases  across the period.

Bond energy shows the opposite trend.

Table 9 2 Average Bond Energies (kJ/mol) and Bond Lengths (pm)

Page 68: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 68/83

6-68

Table 9.2 Average Bond Energies (kJ/mol) and Bond Lengths (pm)

T bl 9 3 Th R l ti f B d O d B d L th d

Page 69: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 69/83

6-69

Table 9.3 The Relation of Bond Order, Bond Length, and

Bond Energy

Figure 9 14 Bond length and covalent radius

Page 70: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 70/83

6-70

Figure 9.14 Bond length and covalent radius.

Internuclear distance

(bond length)Covalent

radius

72 pm

Internuclear distance

(bond length)

Covalent

radius

114 pm

Internuclear distance

(bond length)

Covalent

radius

133 pm

Internuclear distance

(bond length)

Covalent

radius

100 pm

Page 71: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 71/83

6-71

Average Bond Energies

• Heats of reaction are due to the breaking and

formation of bonds

• H2(g)    2H. (g) DH = 432kJ

• The bond energy for H-H is 432kJ/mole.

• This is energy that must be put in to break a bond.

Page 72: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 72/83

6-72

Bond Energies and DH orxn

The heat released or absorbed during a chemical change is due to

differences between the bond energies of reactants and products.

D

H ° rxn = SDH ° reactant bonds broken+ SDH ° product bonds formed

Figure 9 17 Using bond energies to calculate H° for

Page 73: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 73/83

6-73

Figure 9.17 Using bond energies to calculateDH ° rxn for

HF formation.

Figure 9.18 Using bond energies to calculateD

H° rxn for the

Page 74: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 74/83

6-74

g g g rxn

combustion of methane.

Sample Problem 9 3 Using Bond Energies to Calculate H°

Page 75: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 75/83

6-75

Sample Problem 9.3 Using Bond Energies to CalculateD

H° rxn

PROBLEM: Calculate DH °rxn for the chlorination of methane to form

chloroform.

PLAN:  All the reactant bonds break, and all the product bonds form.

Find the bond energies in Table 9.2 and substitute the twosums, with correct signs, into Equation 9.2.

bonds broken

SD

H ° positive

bonds formed

SD

H ° negative

Sample Problem 9 3

Page 76: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 76/83

6-76

Sample Problem 9.3

SOLUTION:

DH °reaction  = SDH °bonds broken + SDH  bonds formed 

= 2381 kJ + (-2711 kJ) = - 330 kJ

For bonds broken:4 x C-H = (4 mol)(413 kJ/mol) = 1652 kJ

3 x Cl-Cl = (3 mol)(243 kJ/mol) = 729 kJ

SD

H °bonds broken = 2381 kJ

For bonds formed:

3 x C-Cl = (3 mol)(-339 kJ/mol) = -1017 kJ

1 x C-H = (1 mol)(-413 kJ/mol) = -413 kJ

3 x H-Cl = (3 mol)(-427 kJ/mol) = -1281 kJ

SD

H °bonds formed  = -2711 kJ

Page 77: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 77/83

6-77

Table 9.4 Enthalpies of Reaction for Combustion of Some Foods

Fats

Carbohydrates

vegetable oil -37.0

margarine -30.1

butter -30.0

table sugar (sucrose) -16.2

brown rice -14.9

maple syrup -10.4

SubstanceDH 

rxn

(kJ/g)

Exercises

Page 78: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 78/83

6-78

Exercises

• Using average bond energies, calculate

the heat of reaction for the reaction of

 propane with oxygen to produce carbon

dioxide and water.

•   C3H8 (g) + 5O2 (g) 

  3CO2(g) +4H2O (g)

Page 79: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 79/83

6-79

Page 80: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 80/83

6-80

Exercises

Page 81: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 81/83

6-81

Exercises

• Use average bond energies to calculate

DHo for the reaction between nitrogen

and hydrogen to form ammonia.

•  N2(g) + 3H2(g) --> 2NH3(g)

Page 82: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 82/83

6-82

Page 83: New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

8/12/2019 New Chm 151 Unit 9 Power Points 140227172226 Phpapp01

http://slidepdf.com/reader/full/new-chm-151-unit-9-power-points-140227172226-phpapp01 83/83