new correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing...

Upload: hernan-gonzalez

Post on 19-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 New Correlations of Single-phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-phase Fri

    1/7

    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/251486588

    New correlations of single-phase friction factorfor turbulent pipe flow and evaluation of

    existing single-phase friction factor

    correlations

    ARTICLE in NUCLEAR ENGINEERING AND DESIGN MARCH 2011

    Impact Factor: 0.95 DOI: 10.1016/j.nucengdes.2010.12.019

    CITATIONS

    36

    READS

    1,467

    3 AUTHORS, INCLUDING:

    XD Fang

    Nanjing University of Aeronautics & Astron

    48PUBLICATIONS 272CITATIONS

    SEE PROFILE

    Yu Xu

    Nanjing University of Aeronautics & Astron

    7PUBLICATIONS 53CITATIONS

    SEE PROFILE

    Available from: Yu Xu

    Retrieved on: 19 October 2015

    http://www.researchgate.net/profile/Xd_Fang?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_4http://www.researchgate.net/?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_1http://www.researchgate.net/profile/Yu_Xu5?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_7http://www.researchgate.net/institution/Nanjing_University_of_Aeronautics_Astronautics?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_6http://www.researchgate.net/profile/Yu_Xu5?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_5http://www.researchgate.net/profile/Yu_Xu5?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_4http://www.researchgate.net/profile/Xd_Fang?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_7http://www.researchgate.net/institution/Nanjing_University_of_Aeronautics_Astronautics?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_6http://www.researchgate.net/profile/Xd_Fang?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_5http://www.researchgate.net/profile/Xd_Fang?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_4http://www.researchgate.net/?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_1http://www.researchgate.net/publication/251486588_New_correlations_of_single-phase_friction_factor_for_turbulent_pipe_flow_and_evaluation_of_existing_single-phase_friction_factor_correlations?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_3http://www.researchgate.net/publication/251486588_New_correlations_of_single-phase_friction_factor_for_turbulent_pipe_flow_and_evaluation_of_existing_single-phase_friction_factor_correlations?enrichId=rgreq-51307dcf-3c56-49ff-84e4-322011f22398&enrichSource=Y292ZXJQYWdlOzI1MTQ4NjU4ODtBUzo5ODQ1MjI1NjA2NzYwMkAxNDAwNDg0MjU2MTUx&el=1_x_2
  • 7/23/2019 New Correlations of Single-phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-phase Fri

    2/7

    Nuclear Engineering and Design 241 (2011) 897902

    Contents lists available atScienceDirect

    Nuclear Engineering and Design

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / n u c e n g d e s

    New correlations of single-phase friction factor for turbulent pipe flow and

    evaluation of existing single-phase friction factor correlations

    Xiande Fang , Yu Xu, Zhanru Zhou

    Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing 210016, China

    a r t i c l e i n f o

    Article history:

    Received 13 August 2010

    Received in revised form22 November 2010

    Accepted 21 December 2010

    a b s t r a c t

    Thedetermination of single-phase friction factorof pipe flowis essentialto a variety of industrial applica-

    tions, such as single-phase flow systems, two-phase flow systems and supercritical flow systems. There

    are a number of correlations for the single-phase friction factor. It still remains an issue to examine

    similarities and differences between them to avoid misusing. This paper evaluates the correlations for

    the single-phase friction factor against the Nikuradseequation and the Colebrook equation, respectively.

    These two equations are the base for the turbulent portion of the Moody diagram, and are deemed as

    the standard to test the explicit counterparts. The widely used correlations for smooth pipes, the Bla-

    sius correlation and the Filonenko correlation, have big errors in some Re ranges. Simpler forms of the

    single-phase friction factor covering large ranges are needed. For this reason, two new correlations of

    single-phase friction factor for turbulent flow are proposed, one for smooth pipes and the other for

    both smooth and rough pipes. Compared with the Nikuradse equation, the new correlation for smooth

    pipes has the mean absolute relative error of 0.022%, with the maximum relative error of0.045% in

    the Reynolds number (Re) range from 3000 through 108. It is an idea replacement of the correlations

    of Blasius and Filonenko. The new correlation for both smooth and rough pipes has the mean absolute

    relative error of 0.16% and the maximum relative error of 0.50% compared with the Colebrook equation

    inthe range ofRe = 3000108 and Rr= 0.00.05,whichis themost simplest correlation in that error band.

    2011 Elsevier B.V. All rights reserved.

    1. Introduction

    In-pipe (including channel) pressure drop calculations are

    important for designing a variety of industrial thermo-fluid

    equipment and systems, such as tubes, ducts, heat exchangers,

    hydraulic systems, nuclear, chemical and petroleum processes,

    various renewable energy systems, and heating, ventilation, air-

    conditioning and refrigerating systems, etc.

    The single-phase friction factor of pipe flow is not only the base

    for determining single-phase friction pressure drop, but also the

    foundation for pressure drop calculations of supercritical flow andtwo-phaseflow. Fornuclear industries andsystems with CO2as the

    refrigerant or coolant, pressure drop of supercritical flow has been

    animportantissuetobeexplored.Theflowpatternundersupercrit-

    ical pressures is somewhat similar to the conventional single-phase

    flow, which results in the practice to develop supercritical friction

    factor correlations based on single-phase friction factor equations

    (Petrov and Popov, 1988; Pioro et al., 2004; Yamshita et al., 2003 ).

    Corresponding author. Tel.: +86 25 8489 6381; fax: +86 25 8489 6381.

    E-mail address:xd [email protected](X. Fang).

    Methods for predicting two-phase friction pressure drop in

    pipes can be classified as two categories: Homogeneous and sep-

    arated flow approaches. The former treats two-phase flow as a

    pseudo single-phase flow characterized by suitably averaged prop-

    erties of the liquid and vapor phase (Chen et al., 2001; Shannak,

    2008). The latter considers a two-phase flow to be artificially sepa-

    rated into twostreams,each flowingin itsown pipe (Cavallini et al.,

    2009; Chisholm, 1967; Dalkilic et al., 2010; Friedel, 1979; Lockhart

    and Martinelli, 1949; Lee and Mudawar, 2005; Sun and Mishima,

    2009; Zhang et al., 2010),and then chooses a single-phase friction

    factor correlation to calculate the related friction pressure drops.There are a number of correlations for the single-phase fric-

    tion factor of pipe flow, whose ranges of validity were described

    by the corresponding author(s). The criteria vary, however, from

    author(s) to author(s). Therefore, a through evaluation is needed

    to provide the guide to the users. Romeo et al. (2002)compared

    the available correlations of the single-phase friction factor and

    ranked them. However, he did not provide details of the errors

    each correlation has.Yldrm (2009)conducted the most compre-

    hensive analysis of existing correlations for single-phase friction

    factor. He provided the maximum and minimum errors each cor-

    relation has in the ranges of 4000Re108 and 106 Rr0.05,

    0029-5493/$ see front matter 2011 Elsevier B.V. All rights reserved.

    doi:10.1016/j.nucengdes.2010.12.019

    http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.nucengdes.2010.12.019http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.nucengdes.2010.12.019http://www.sciencedirect.com/science/journal/00295493http://www.elsevier.com/locate/nucengdeshttp://-/?-http://-/?-http://-/?-mailto:[email protected]://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.nucengdes.2010.12.019http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.nucengdes.2010.12.019http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-mailto:[email protected]://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://www.elsevier.com/locate/nucengdeshttp://www.sciencedirect.com/science/journal/00295493http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.nucengdes.2010.12.019
  • 7/23/2019 New Correlations of Single-phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-phase Fri

    3/7

    898 X. Fang et al. / Nuclear Engineering and Design241 (2011) 897902

    whereReis the Reynolds number and Rris the relative roughness.

    The standard data bank Yldrm used was generated by read-

    ing a Moody diagram (Moody, 1944)using Techdig2.0 software.

    This method can cause remarkable reading errors, which makes

    the finding disputable. Our evaluation does not support Yldrms

    error estimations because Yldrm greatly overestimated errors

    and offered differentaccuracy-basedrank orderfor the correlations

    evaluated. For example, Yldrm gave maximum relative errors

    (MREs) of3.76% and 3.96 to theChen (1979)and theZigrang

    and Sylvester (1982) correlations, respectively. However, our eval-

    uation shows that the Chen correlation has a MRE of0.5%, while

    the ZigrangSylvester correlation has a MRE of 0.2%, which is

    smaller than Chens. Furthermore, both Romeo et al. and Yldrm

    did not pay attention to correlations for smooth pipes. It is the

    single-phase friction factor correlations for smooth pipes that are

    used most widely. Unfortunately, the widely used correlations for

    smooth pipes, the Blasius correlation and the Filonenko correla-

    tion, do not have good accuracy in the reported Re ranges, which

    not only needs to redefine their Re ranges of validity,but also needs

    to develop new alternatives.

    This work will evaluate the correlations of the single-phase fric-

    tion factor for turbulent pipe flow so that the Re and Rrranges

    of validity of each correlation are identified to provide a clear

    vision for users. The issue of single-phase friction factor correla-tions for smooth pipes is also addressed. New compact accurate

    correlations of the single-phase friction factor for smooth pipes

    and covering both smooth and rough pipes will be proposed,

    respectively.

    2. Brief review of single-phase friction factor correlations

    for pipe flow

    For single-phase fully developed internal laminar

    flow (Re2000), the widely used equation is given by

    HagenPoiseuilles law, which can be expressed as

    f =

    64

    Re (1)

    For fully developed turbulent flow in smooth pipes, Nikuradse

    (1933)proposed the following equation:

    1f= 2log(Re

    f) 0.8 (2)

    The Nikuradseequation is the basefor theturbulentsmoothportion

    of the Moody diagram (Moody, 1944).However, it is implicit for

    f, thus needs iteration that is not convenient. Consequently, the

    Blasius equation and the Filonenko equation are widely used for

    calculating turbulentflow in smoothpipes(Dang andHihara, 2004;

    Huai et al., 2005; Incropera and DeWitt, 2001; Son and Park, 2006;

    Yoon et al., 2003).For Re 2104, the Blasius equation is of the

    form

    f =0.316

    Re1/4 (3a)

    ForRe2104, the Blasius equation is of the form

    f =0.184

    Re1/5 (3b)

    The Filonenko equation is of the form

    f = (0.79lnRe 1.64)2 (4)

    Incropera and DeWitt (2001) gave the Filonenko equation appli-

    cableRerange of 3000Re5106

    .

    Danish et al. (2011) proposed the following correlation for

    smooth pipes both in laminar and in turbulent regimes:

    1

    2

    f= A

    1.73718Aln A

    1.73718 +A +

    2.62122A(lnA)2

    (1.73718+A)3

    +3.03568A(lnA)3

    (1.73718 +A)4 (5a)

    A = 4logRe 0.4 (5b)

    Colebrook (19381939) developed the following equation that

    combines experimental results of studies of turbulent flow in

    smooth and rough pipes:

    1f= 2log

    Rr

    3.7+

    2.51

    Re

    f

    (6)

    The validity of the Colebrook equation was reported in the range

    ofRe = 4000108 andRr= 00.05. It should be mentioned that the

    Colebrook equation was developed by Colebrook (19381939), but

    the Colebrook and White paper (1937)is often erroneously cited as

    the source of the equation.

    The Colebrook (or ColebrookWhite) equation contributes theroughportionof theMoody diagram.Due to its demonstratedappli-

    cability andMoodys work, the Colebrook equation has becomethe

    acceptable standard for testing single-phase friction factor corre-

    lations in turbulent regimes. It is not convenient to use, however,

    because its implicit expression in frequires iteration. For this rea-

    son, a number of approximate explicit counterparts have been

    proposed (Table 1).

    3. Evaluation of the existing correlations

    Based on theabovereview, we evaluate theexplicitcorrelations

    against the Colebrook equation in the range ofRe = 4000108 and

    Rr= 00.05. Therank,whichis based on accuracy,is given in Table 1.

    The detail accuracies are listed in Tables 27,where the relativeerror (RE) is defined as

    RE =f(i)pred f(i)st

    f(i)st(7)

    where f(i)pred is the single-phase friction factor predicted by the

    individualapproximate correlation, andf(i)stis thestandardsingle-

    phase friction factor value calculated with the Colebrook equation

    for the turbulent rough region and the Nikuradse equation for the

    turbulent smooth portion.

    To reduce the complexity ofTables 27, the following measures

    are taken:

    (1) Thecorrelations ofChurchill (1973) and SwameeJain are omit-

    ted because they are very close to the Jain correlation bothin form and in prediction, with the Jain correlation perform-

    ing a little better, so that the Jain correlation is chosen as the

    representative.

    (2) If any of Haaland, Moody, Wood and Round correlations does

    not have considerableRe range in the specified RE, it will not

    appear in that table.

    (3) If any of Serghides, ZigrangSylvester, Romeo et al., Chen, Barr

    and SonnadGoudar correlations has higher degree accuracy

    than the RE specified in a table, it will not appear in that table.

    3.1. Summary of evaluation of the existing correlations covering

    rough pipes

    FromTables 27, it follows:

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/23/2019 New Correlations of Single-phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-phase Fri

    4/7

    X. Fang et al. / Nuclear Engineering and Design241 (2011) 897902 899

    Table 1

    Single-phase friction factor correlations covering roughness: rank by accuracy in the range ofRe =4000108 andRr=00.05.

    Rank Model Correlation Range of validity

    reported in the

    original paper

    1 Serghides (1984) 1/

    f =A (B A)2/(C 2B A), Re > 2100

    A =2log(12/Re + Rr/3.7), 0Rr0.05

    B =2log(2.51A/Re + Rr/3.7)

    C=2log(2.51/Re + Rr/3.7)

    2 Zigrang and Sylvester (1982) 1/

    f = 2log{Rr/3.7 5.02/Re log[Rr/3.7 5.02/Re log(Rr/3.7 + 13/Re)]} a

    3 Romeo et al. (2002) 1/

    f = 2log(Rr/3.7065 5.0272/Re A) 3000Re1.5108

    A =log{Rr/3.8274.567/Re log[(Rr/7.7918)0.9924 + (5.3326/208.815+ Re)0.9345]} 0Rr0.05

    4 Chen (1979) 1/

    f = 2log[Rr/3.7065 5.0452/Re log(Rr1.1098 /2.8257 + 5.8506/Re0.8981 )] 4000Re4108

    107 Rr0.05

    5 Barr (1981) 1/

    f = 2log[Rr/3.7+ 4.518 log(Re/7)/Re(1+ Re0.52Rr0.7/29] a

    6 Sonnad and Goudar (2006) 1/

    f = 0.8686 ln[0.4587Re/SS/(S+1)] 4000Re108

    S= 0.124RrRe + ln(0.4587Re) 106 Rr0.05

    7 Manadilli (1997) 1/

    f = 2log(Rr/3.7 + 95/Re0.983 96.82/Re) 5200Re108

    0Rr0.05

    8 Haaland (1983) 1/

    f = 1.8log[(Rr/3.7)1.11

    + 6.9/Re] 4000Re108

    106 Rr0.05

    Jain (1976) 1/f = 2log(Rr/3.715+ 5.72/Re0.9) 5000Re107

    4105 Rr0.05

    Swamee and Jain (1976) 1/

    f = 2log(Rr/3.7 + 5/74/Re0.9) 5000Re108

    106 Rr0.05

    Churchill (1973) 1/

    f = 2log[Rr/3.7+ (7/Re0.9)] a

    Churchill (1977) f= 8[(8/Re)12+A3/2]

    1/12AnyRe > 0

    A = (37530/Re)16 [2.457 ln((7/Re)

    0.9+ 0.27Rr)]

    160Rr0.05

    9 Moody (1947) f= 0.0055

    1 + (2 104Rr+ 106/Re)1/3

    4000Re5108

    0Rr0.01

    10 Wood (1966) f= 0.53Rr+ 0.094Rr0.225 + 88Rr0.44Re1.62Rr0.134

    4000Re5107

    105 Rr0.04

    11 Round (1980) 1/

    f = 1.8log(0.135Rr+ 6.5/Re) 4000Re4108

    0Rr0.05

    a Not explicitly specified.

    (1) The correlations can be ranked as inTable 1.(2) In the range of Re = 4000108 and Rr= 00.05, the Serghides

    correlation has accuracy of0.1%, the ZigrangSylvester corre-

    lationand theRomeoet al.correlationhave accuracies of0.2%,

    the Chen correlation has accuracy of0.5%, the Barr correlation

    and the GoudarSonnadcorrelation have accuraciesof1%,the

    Haaland correlation has the accuracy of2%,and allothers have

    errors exceed 2%.

    (3) The correlations of Haaland, Jain and Churchill (1977) are

    closely tied in accuracies. The Haaland correlation has theaccu-

    racy of2%,while it does not have considerableRe range underaccuracy of0.1%.

    (4) The Churchill (1977)correlation is theonlyone covering allflow

    regimes. However, its accuracy is compromised.

    (5) The Manadilli correlation has the simplest form in the error of

    1% andRr0.0005.

    (6) The correlation which has high accuracy usually has compli-

    cated form. The compact and accurate correlation covering

    large ranges is still wanted.

    Table 2

    Rerange for given relative roughness under RE of0.1%.

    Model Rr

    0.000001 0.000005 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05

    Serghides 4E31E8a

    Zigr ang Sylves te r 4E3 9E3 4E 39E3 4 E39E 3 4E 31E4 4E31E 4 4E31E8

    3E61E8 2E61E8 8E51E8 3E51E8 2E51E8

    Romeo et al. 3E41E8 2E41E8 2E41E8 2E41E8 2E41E8 9E31E8 5E31E8 4E31E8 4E34E5 b

    Chen 1E44E7 1E42E6 1E43E5 9E34E4 6E61E8 1E61E8 5E51E8 6E41E8 2E42E6

    6E71E8 2E71E8

    Barr 2E41E8 2E41E8 2E41E8 3E41E8 2E51E8 6E41E8 4E41E8 8E31E5 2E47E4 4E51E8

    2E61E8 2E61E8

    SonnadGoudar 7E71E8 2E71E8 2E71E8 3E61E8 2E61E8 4E51E8 2E51E8 5E41E8 3E41E8 7E31E8

    Manadilli 4E32E6 4E37E5 4E33E5 4E36E4 4E32E4 2E71E8 7E61E8 2E61E8 1E61E8 3E51E8

    6E71E8

    Jain 4E71E8 7E61E8 4E61E8 7E54E6 4E51E6

    Churchill (1977) 5E71E8 1E71E8 5E61E8 2E61E8 6E51E8 2E53E6

    a Bold value covers theRrrange in the whole box it occupies. This also applies to Tables 37.b

    Symbol denotes not applicable. This also applies toTables 37.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/23/2019 New Correlations of Single-phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-phase Fri

    5/7

    900 X. Fang et al. / Nuclear Engineering and Design241 (2011) 897902

    Table 3

    Rerange for given relative roughness under RE of0.2%.

    Model Rr

    0.000001 0.000005 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05

    ZigrangSylvester 4E31E8

    Romeo et al. 4E31E8

    Chen 7E31E8 7E31E8 7E36E6 7E33E5 6E31E5 5E32E4 5E31E4 4E31E8 4E31E8 4E31E8

    2E71E8 5E61E8 3E61E8 5E51E8 2E51E8

    Barr 7E31E8 7E31E8 7E31E8 9E31E8 2E41E8 3E41E8 2E41E8 6E31E8 4E31E8 6E31E8

    SonnadGoudar 1E71E8 5E61E8 3E61E8 2E61E8 7E51E8 2E51E8 2E51E8 3E41E8 2E41E8 5E31E8

    Manadilli 4E38E6 4E32E6 4E31E6 4E31E5 4E35E4 6E61E8 4E61E8 9E51E8 5E51E8 2E51E8

    4E71E8 3E71E8

    Haaland 5E61E8 3E71E8 3E71E8 9E61E8 5E61E8 2E61E8 6E51E8 8E41E8 2E41E8 4E41E8

    Jain 4E71E8 2E71E8 4E61E8 2E61E8 5E51E8 3E51E8 7E41E6

    Churchill (1977) 5E71E8 3E71E8 5E61E8 3E61E8 6E51E8 4E51E8 1E51E8

    Table 4

    Rerange for given relative roughness under RE of0.5%.

    Model Rr

    0.000001 0.000005 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05

    Chen 4E31E8

    Barr 4E31E8 5E31E8 5E31E8 4E31E8

    SonnadGoudar 7E41E8 8E41E8 8E41E8 7E41E8 6E41E8 4E41E8 3E41E8 1E41E8 7E31E8 4E31E8

    Manadilli 4E31E8 4E38E5 4 E32E5 4E32E4 9 E51E8 3E51E8 2 E51E8 5 E41E88E61E8 5E61E8 2E61E8

    Haaland 2E61E8 6E61E8 9E61E8 4E61E8 3E61E8 6E51E8 3E51E8 3E41E8 4E31E8 7E31E8

    Jain 7E51E7 6E57E6 5E55E6 2E52E6 8E31E8 1E42E5 5E51E8 2E51E8 1E51E8 4E41E8

    7E61E8 7E51E8

    Churchill (1977) 5E58E6 4E56E6 3E54E6 1E41E6 1E41E6 2E42E5 6E51E8 2E51E8 2E51E8 5E41E8

    7E71E8 1E71E8 5E61E8 1E61E8

    Moody 2E41E5

    Wood 2E41E5

    Table 5

    Rerange for given relative roughness under RE of1%.

    Model Rr

    0.000001 0.000005 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05

    Barr 4E31E8

    SonnadGoudar 4E31E8Manadilli 4E31E8 4E31E4 9E41E8 6E41E8 3E41E8

    2E51E8

    Haaland 5E31E8 5E31E8 5E36E4 5E33E4 5E32E4 4E31E4 4E31E4 4E31E8

    4E51E8 2E61E8 8E51E8 3E51E8 1E51E8

    Jain 6E34E7 6E31E8 6E31E8 6E31E8 6E31E8 6E31E8 8E31E8 5E41E8 4E41E8 2E41E8

    Churchill (1977) 7E33E7 7E31E8 7E31E8 7E31E8 7E31E8 8E31E8 1E41E8 6E41E8 5E41E8 2E41E8

    Moody 4E32E4 4E32E4 4E32E4 4E32E4 4E33E4 4E31E5 4E33E4 5E32E4 6E41E8

    Wood 7E64E7 2E42E5 2E41E5 6E34E4

    5E71E8

    Round 2E62E7

    3.2. Summary of evaluation of the existing correlations for

    smooth pipes

    Both the correlations special for smooth pipes and the correla-tions listedin Table 1 are evaluated against the Nikuradse equation

    in the range ofRe = 4000108. The results for the RE range from

    0.05% to 2% are listed in Table 7. The details are summarized

    below:

    (1) The Blasius equation does not have good accuracy. The calcu-lation shows that its error increases from 2.6% atRe = 2106

    to 22.2% atRe = 108. Therefore, its usage should be limited to

    Table 6

    Rerange for given relative roughness under RE of2%.

    Model Rr

    0.000001 0.000005 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05

    Manadilli 4E31E8 1E41E8 7E31E8

    Haaland 4E31E8

    Jain 4E31E8 7 E31E8 1 E41E8 7 E31E8

    Churchill (1977) 4E31E8 9 E31E8 2 E41E8 8 E31E8

    Moody 4E32E4 4E32E4 4E32E4 4E32E4 4E33E4 4E31E5 4E33E4 5E32E4 6E41E8

    Wood 7E64E7 2E42E5 5E71E8 2E41E5 6E34E4

    Round 2E62E7

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/23/2019 New Correlations of Single-phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-phase Fri

    6/7

    X. Fang et al. / Nuclear Engineering and Design241 (2011) 897902 901

    Table 7

    Rerange for smooth portion under given RE.

    Model RE%

    2 1 0.5 0.2 0.1 0.05

    Danish et al. Laminar

    region and

    4E31E8

    Filonenko 1E41E8 2E41E8 4E42E7 1E67E6

    Blasius 4E38E3

    Serghides 4E31E8

    ZigrangSylvester 4E31E8 2E71E8

    Romeo et al. 4E31E8 3E61E8

    Chen 4E31E8 7E31E8 2E47E7 2E49E6

    Barr 4E31E8 7E31E8 2E42E7 2E45E6

    SonnadGoudar 4E31E8 7E41E8

    Manadilli 4E31E8 4E38E7 4E37E6 9E32E6

    Haaland 3E31E8 5E34E7 2E61E7

    Jain 4E31E8 6E34E7

    Churchill (1977) 4E31E8 5E33E7 5E59E6

    Moody 4E34E4 4E32E4

    Round 3E51E8 4E61E8 2E78E7

    Re = 2106. It is suggested to rewrite the Blasius equation as

    the following:

    f = 0.316Re1/4

    (Re 2 104) (8a)

    f =0.184

    Re1/5 (2 104 Re 2 106) (8b)

    (2) For the givenReranges above, both Eqs.(8a)and(8b)have the

    maximum RE of2.62%.

    (3) The Filonenko equation has the maximum RE of 2% for

    Re = 104108. Therefore, it is recommended to rewrite the Filo-

    nenko equation as the following:

    f = (0.79lnRe 1.64)2 (104 Re 108) (9)

    (4) The correlations of Danish et al. and Serghides have the highest

    accuracy, but they also are the most complicated ones, which

    impedes their applications.

    (5) The new compact and accurate correlation of the single-phase

    fraction factor for the turbulent smooth portion is needed.

    4. New correlations of the single-phase friction factor for

    turbulent pipe flow

    New correlations of the single-phase friction factor for turbulent

    pipe flow are developed based on computer analysis. A date bank

    ofRe (i)Rr(j)= 4 424 = 1056 data points covering the regime of

    Re = 3000108 and Rr= 0.00.05 is generated with the Colebrook

    equation and the Nikuradse equation.

    Based on regression and optimization with software, two corre-

    lations are proposed, one is for smooth pipes, and the other coversboth smooth and rough regions in the range ofRr= 0.00.05. The

    former is developed considering that the single-phase friction fac-

    tor for smooth pipes has more widely applications than those for

    rough pipes have, and that the commonly used equations have big

    errors and can not cover Rerange of 4000108.

    4.1. New correlation of the single-phase friction factor for

    turbulent flow in smooth pipes

    For turbulent flow in smooth pipes, the following correlation is

    proposed:

    f= 0.25log 150.39Re

    0.98865

    152.66

    Re 2

    (10)

    In the range ofRe = 3000108, the new correlation has the mean

    absolute relative error (MARE) of 0.022% and the maximum RE of

    0.045% compared with the Nikuradse equation. Therefore, it hasequivalentaccuracyto but much simpler formthan the correlations

    of Danish et al. and Serghides have, just one term more than the

    Filonenko equation. The MARE is defined as

    MARE =1

    N

    Ni=1

    f(i)pred f(i)stf(i)st

    (11)

    4.2. New correlation of the single-phase friction factor for

    turbulent flow in both smooth and rough pipes

    For turbulent flow in smooth pipes, the following correlation is

    proposed:

    f = 1.613

    ln

    0.234Rr1.1007 60.525Re1.1105

    + 56.291Re1.0712

    2 (13)

    Inthe range ofRe = 3000108 and Rr= 0.00.05, the new correlation

    has the MARE of 0.16% and the maximum RE of 0.50% compared

    with the Colebrook equation. Compared with all existing correla-

    tions, the new correlation is the simplest one with the maximum

    RE of0.50% in the range ofRe = 3000108 andRr= 0.00.05.

    5. Conclusions and suggestions

    Fifteen correlations for the single-phase friction factor of pipe

    flow are reviewed and evaluated. According to accuracy, the corre-

    lations covering rough portion are ranked inTable 1.In the range

    ofRe = 4000108

    andRr= 00.05, the accuracies are, respectively,0.1%for the Serghides correlation,0.2%for the ZigrangSylvester

    correlation and Romeo et al. correlation, 0.5% for the Chen cor-

    relation, 1% for the Barr correlation and the GoudarSonnad

    correlation, 2% for the Haaland correlation, and greater than 2%

    for all other correlations listed in Table 1. The Churchill (1977)

    correlation is the only one covering all flow regimes. Its accuracy,

    however, is compromised.

    The new applicableRe ranges for the Blasius equation and the

    Filonenko equation are recommended, as shown in Eqs. (8) and

    (9).Within the recommended Re range, the Blasius equation has

    the maximum RE of2.62%, and the Filonenko equation has the

    maximum RE of 2%.

    Two new correlations of single-phase friction factor for turbu-

    lent flow are proposed. One is for smooth pipes, and the other is for

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/23/2019 New Correlations of Single-phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-phase Fri

    7/7

    902 X. Fang et al. / Nuclear Engineering and Design241 (2011) 897902

    both smooth and rough pipes. The former is the form of

    f = 0.25

    log

    150.39

    Re0.98865

    152.66

    Re

    2with the MARE of 0.022% and the maximum RE of0.045% in the

    range ofRe = 3000108. The latter is the form of

    f = 1.613ln0.234Rr1.1007 60.525

    Re1.1105+

    56.291

    Re1.07122

    with the MARE of 0.16% and the maximum RE of 0.50% in the range

    ofRe = 3000108 andRr= 0.00.05.

    Acknowledgment

    This work was funded by AVIC Chengdu Aircraft Design &

    Research institute, China.

    References

    Barr, D.I.H., 1981. Solutions of the ColebrookWhite functions for resistance to uni-form turbulent flows. Proc. Inst. Civil Eng. 2, 71.

    Cavallini, A., Col, D., Matkovic, M., Rossetto, L., 2009. Pressure drop during two-phaseflowof R134aand R32 ina singleminichannel.ASMEJ. Heat Transfer131,033107-1033107-8.

    Chen, I.Y., Yang, K.S., Chang, Y.J., Wang, C.C., 2001. Two-phase pressure drop ofairwater and R-410a in small horizontal tubes. Int. J. Multiphase Flow 27,12931299.

    Chen, N.H., 1979. An explicit equation for friction factor in pipe. Ind. Eng. Chem.Fundam. 18 (3), 296297.

    Chisholm, D., 1967. A theoretical basis for the LockhartMartinelli correlation fortwo-phase flow. Int. J. Heat Mass Transfer 10, 17671778.

    Churchill, S.W., 1973. Empirical expressions for the shear stressing turbulent flowin commercial pipe. AIChE J. 19 (2), 375376.

    Churchill, S.W., 1977. Friction-factor equation spans all fluid-flow regimes. Chem.Eng. 7, 9192.

    Colebrook, C.F., 19381939.Turbulent flowin pipes, withparticular reference to thetransition region between the smooth and rough pipe laws. J. Inst. Civil Eng. 11,133.

    Colebrook, C.F., White, C.M., 1937. Experiments withfluid friction roughened pipes.In: Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Sci. , pp. 367381, 161 (906).

    Dalkilic,A.S.,Agra,O., Teke, I.,Wongwises,S., 2010. Comparison offrictional pressuredrop models during annular flow condensation of R600a in a horizontal tube atlow mass flux and of R134a in a vertical tube at high mass flux. Int. J. Heat Mass

    Transfer 53, 20522064.Dang, C., Hihara, E., 2004. In-tube cooling heattransfer of supercriticalcarbon diox-

    ide. Part 1. Experimental measurement. Int. J. Refrig. 27, 736747.Danish,M., Kumar,S., Kumar,S., 2011. Approximateexplicit analytical expressionsof

    frictionfactor forflow of Binghamfluids in smooth pipes using Adomiandecom-position method. Commun. Nonlinear Sci. Numer. Simulat. 16 (1), 239251.

    Friedel, L., 1979. Improved friction pressure drop correlation for horizontal andvertical two-phase pipe flow. Eur. Two-phase Flow Group Meet. Pap. E2 (18),485492.

    Haaland,S.E., 1983. Simple and explicit formulasfor friction factor in turbulent pipeflow. Trans. ASME, J. Fluids Eng. 105, 89.

    Huai, X.L., Koyama,S., Zhao, T.S., 2005. Anexperimentalstudyof flowand heattrans-fer of supercritical carbon dioxide in multi-port mini channels under coolingconditions. Chem. Eng. Sci. 60, 33373345.

    Incropera, F.P., DeWitt, D.P., 2001. Fundamentals of Heat and Mass Transfer, 5th ed.John Wiley & Sons, New York.

    Jain, A.K., 1976. Accurate explicit equations for friction factor. J. Hydraul. Div. ASCE102 (5), 674677.

    Lee,J., Mudawar,I., 2005. Two-phase flowin high-heat-fluxmicro-channel heatsinkfor refrigeration cooling applications. Part I. Pressure drop characteristics. Int. J.Heat Mass Transfer 48, 928940.

    Lockhart, R.W., Martinelli, R.C., 1949. Proposed correlation of data for isother-mal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45 (1),3948.

    Manadilli, G.,1997. Replaceimplicitequations withsigmoidal functions. Chem. Eng.J. 104 (8), 129132.

    Moody, L.F., 1947. An approximate formula for pipefrictionfactors. Trans. ASME 69,

    1005.Moody, L.F., 1944. Friction factors for pipe flow. Trans. ASME, 671684.Nikuradse, J., 1933. Stroemungsgesetze in rauhen Rohren. Ver. Dtsch. Ing. Forsch.

    (361), 122.Petrov,N.E., Popov, V.N., 1988. Heattransfer andhydraulic resistance withturbulent

    flow in a tube of water under supercritical parameters of state. Thermal Eng. 35(10), 577580.

    Pioro, I.L., Duffey, R.B., Dumouchel, T.J., 2004. Hydraulic resistance of fluids flowingin channels at supercritical pressures (survey). Nucl. Eng. Des. 231, 187197.

    Romeo, E., Royo, C., Monzon, A., 2002. Improvedexplicit equationsfor estimation ofthe friction factor in rough and smooth pipes. Chem. Eng. J. 86, 369374.

    Round, G.F., 1980. Anexplicitapproximationfor thefrictionfactor-Reynoldsnumberrelation for rough and smooth pipes. Can. J. Chem. Eng. 58, 122123.

    Serghides, T.K., 1984. Estimate friction factor accurately. Chem. Eng. 91, 6364.Shannak, B.A., 2008. Frictional pressure drop of gas liquid two-phase flow in pipes.

    Nucl. Eng. Des. 238, 32773284.Son,C.H., Park, S.-J., 2006. An experimental study on heattransfer andpressure drop

    characteristics of carbon dioxide during gascoolingprocessin a horizontal tube.Int. J. Refrig. 29, 539546.

    Sonnad, J.R., Goudar, C.T., 2006. Turbulent flow friction factor calculation using amathematically exact alternative to the ColebrookWhite equation. J. Hydraul.Eng. ASCE 132 (8), 863867.

    Sun, L., Mishima, K., 2009. Evaluation analysis of prediction methods for two-phaseflow pressure drop in mini-channels. Int. J. Multiphase Flow 35, 4754.

    Swamee, P.K., Jain, A.K., 1976. Explicit equation for pipe flow problems. J. Hydraul.Div. ASCE 102 (5), 657664.

    Wood, D.J., 1966. An explicit friction factor relationship. Civil Eng. 60 (12), 6061.Yamshita, T., Mori, H., Yoshida, S., Ohno, M., 2003. Heat transfer and pressure drop

    of a supercritical pressure fluid flowing in a tube of small diameter. Mem. Fac.Eng., Kyushu Univ. 63 (4), 227243.

    Yldrm, G., 2009. Computer-based analysis of explicit approximations to theimplicit ColebrookWhite equation in turbulent flowfriction factor calculation.Adv. Eng. Softw. 40, 11831190.

    Yoon, S.H., Kim, J.H., Hwang, Y.W., Kim, M.S., Min, K., Kim, Y., 2003. Heat transferand pressure drop characteristics during the in-tube cooling process of carbondioxide in the supercritical region. Int. J. Refrig. 26, 857864.

    Zhang, W.,Hibiki,T., Mishima,K., 2010. Correlationsof two-phasefrictional pressure

    drop and void fraction in mini-channel. Int. J. Heat Mass Transfer 53, 453465.Zigrang, D.J., Sylvester, N.D., 1982. Explicit approximations to the Colebrooks fric-tion factor. AICHE J. 28 (3), 514515.

    Xiande Fangis a professor atthe Instituteof AirConditioningand Refrigeration, Nan-jing University of Aeronauticsand Astronautics(NUAA), China. Ph.D. in EngineeringThermophysics from University of Science and Technology of China. M.Sci.in Ther-mal Engineering from Tsinghua University, China. B. Eng. in Environmental ControlEngineering from NUAA. His research areas are air conditioning and refrigeration,thermo-fluid engineering, and environmental control engineering.

    Yu Xu is a graduate student under the supervision of Prof. Xiande Fang. He receivedhis B. Eng. in Environmental Control Engineering from NUAA.

    Zhanru Zhou is a graduate student under the supervision of Prof. Xiande Fang. Shereceived her B. Eng. in Environmental Control Engineering from NUAA.