next-generation superhard, electronic & optical materials...

1
Vision Institute of Functional Materials and Devices (I-FMD) Bulk and Thin-Film Single Crystal Growth of Next-Generation Superhard, Electronic & Optical Materials Materials Science & Engineering Department | Center for Photonics & Nanoelectronics The MATS Group (PI: Siddha Pimputkar) Solvothermal Methods Ammonothermal Method MATS Facilities & Autoclaves Materials: e.g. cubic BN Chemical Vapor Deposition HPS-CVD Materials: e.g. Group III-N Alkali metal Fluxes Flux Methods Materials: e.g. Ternary Nitrides Kasap, S. & Capper, P. ‘Springer Handbook of Electronic and Photonic Materials’, (2007). 10.1007/978-0-387-29185-7 Li Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si Ge C B W Mo Cr Mn Fe Co Ni In Ga Al Ge C B W Mo Cr Mn Fe Co Ni In Ga Al Bi Sb Sn Pt Pd Rh Ir Ru Os Re Au Ag Cd Pb Cu Te Se S Sc Y Bi Sb Sn Pt Pd Rh Ru Ir Os Re Au Ag Cd Pb Cu Te Se S Sc Y Li ultra-hard | ultrahigh–thermal conductivity | superior electronic properties ‘Low’ temperature and pressure synthesis will result in > 1-inch boules suitable for use in mechanical systems (abrasives, heat sinking) and power electronics (high voltage, high power transistors). Taniguchi, T., et al., PSS (a) 201 (2004) 2573. 10.1002/pssa.200405191 Tsao, J., et al. Adv. Elec. Mat. 4 (2018) 1600501. 10.1002/aelm.201600501 unexplored & new material systems | fundamental science 447 stable ternary nitrides predicted, only 213 demon- strated to-date. Requires new approaches to synthesize. Sun, W., et al. Nature Mat. 18 (2019) 732. 10.1038/ s41563-019-0396-2 Experimentally known in ICSD Stabilizable P > 1 GPa Stable H f (eV per atom) –2 –1 0 Metastable versus binaries H f (eV per atom) –2 –1 0 Metastable versus elements H f (eV per atom) 0 1 2 New stable ternary space Stabilizable Δ μ N 2 < 1 eV per N Suihkonen, S., Pimputkar, S., et al. Adv. Elec. Mat. 3 (2017) 1600496. 10.1002/ aelm.201600496 < 300 MPa | < 1000 °C | supercritical NH 3 solvent Due to use of ammonia as a solvent, we can synthesize nitrogen-containing materials (nitrides, carbonitrides, oxynitrides, etc.) under relatively mild thermodynamic or kinetically-limited conditions to sizes < 1 inch. Single Crystal Ammonothermal Gallium Nitride T melt 4000 °C P melt 12 GPa Our crystal growth facility is unique in the world due to our ability to pursue ammono- thermal single crystal growth in novel, extremely corrosion resistant Mo-alloy, in traditional NiCr superalloy (right) or in SS autoclaves. Operations require an oxygen-free environment and hence the use of hermetically sealed, inert atmosphere, 1-inch thick steel-walled containment vessels is mandated (le). > 6 autoclaves in parallel | 2 independent setups | 1” inner diameter autoclaves 12 inches 1 inch inner diameter Dollen, P., Pimputkar, S., et al. J. Cryst. Growth 456 (2016) 58. 10.1016/j.jcrysgro.2016.07.044; Dollen, P., Pimputkar, S., et al. J. Cryst. Growth 456 (2016) 67. 10.1016/j.jcrysgro.2016.08.018 Single Crystal Na-Flux Gallium Nitride Boule T flux 890 °C P system 8 MPa 1 mm [+c] < 10 MPa | < 1200 °C | non-toxic | high nitrogen solubility Exposing molten alkali metals (e.g. Na) to high pressure gases, e.g. N 2 , leads to solubility of, e.g. N, into the melt. Desired crystals can be synthesized by tailoring the melt composition (e.g. addition of Ga) and driving growth via application of gas pressures in excess of their equilibrium vapor pressures or via temperature gradients. A novel high pressure spatial chemical vapor deposition (HPS-CVD) tool is being developed to synthesize thin lms of decomposition-limited materials by growing at pressures up to 100 atm, for the rst time. Elevated pressures allow for higher growth temperatures (yielding high quality materials), increased alloy constituent compositions (via reduced decomposition), increased impurity concentrations (improved doping or desired element incorporation), and use of pressure-stabilized precursors. UV-IR emitters | high frequency/power electronics | UWBG semiconductors High In-content III-N alloys can reveal the true potential of this semi- conductor family via accessing the entire solid solution region of AlInGaN. novel equipment development | crystalline materials | nitrides & related materials | (ultra) wide bandgap semiconductor As a group, we develop new growth systems to produce crystalline materials which are currently challenging to synthesize or scale in size. We are particularly interested in pursuing materials which have ‘extreme’ properties or are of particular value to enable highly efficient energy conversion (solar energy, electrical energy) or optoelectronic device of exceptional efficiency due to optimized pairing and tailoring of the substrate with the device layers. alloy compositions | doping | phases Use in-house produced (or external) substrates to demonstrate new materials with superior properties as thin films using novel precursors. Thin Films material properties | lattice constant Grow large, single crystals for their desired intrinsic properties or to access novel substrates with targeted lattice constants. Boule Growth efficiency | novelty | performance Devices Demonstrate cutting- edge devices due to superior material properties, quality, or newly enabled device structures. Pimputkar, S. Patent Application (2019) PCT/US19/52667 < 100 atm | < 1300 °C | scalable design | grow decomposition-limited materials Modied from: Caro Bayo, M. Á., Ph.D. Thesis, University College Cork (2013), https://cora.ucc.ie/handle/10468/1344 Designs are being optimized using CFD/ thermal computational methods (COMSOL/ ANSYS) to demonstrate ability to overcome known challenges due to higher density of process gases and resulting consequences. Dietz, N. Final Technical Report (2015). AFOSR FA9550-10-1-0097. 10.21236/ada624591 Proof-of-concept: HP-CVD growth of InN (decomposition-limited) MATS Materials for Advanced Technologies & Sustainability [email protected] | www.pimputkar.org We are vertically integrated, allowing us to develop next-gen devices on tailored substrates in innovative growth systems 1 mm HPHT c-BN

Upload: others

Post on 17-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Next-Generation Superhard, Electronic & Optical Materials ...cpb-us-w2.wpmucdn.com/.../dist/c/87/files/2019/12/MATS-Group.pdf · Bulk and Thin-Film Single Crystal Growth of Next-Generation

Vision

Institute of Functional Materials and Devices (I-FMD)

Bulk and Thin-Film Single Crystal Growth of Next-Generation Superhard, Electronic & Optical Materials

Materials Science & Engineering Department | Center for Photonics & NanoelectronicsThe MATS Group (PI: Siddha Pimputkar)

Solvothermal Methods

Ammonothermal Method

MATS Facilities & Autoclaves

Materials: e.g. cubic BN

Chemical Vapor Deposition

HPS-CVD

Materials: e.g. Group III-N

Alkali metal Fluxes

Flux Methods

Materials: e.g. Ternary Nitrides

Kasap, S. & Capper, P. ‘Springer Handbook of Electronic and Photonic Materials’, (2007). 10.1007/978-0-387-29185-7

New stableternary space

Experimentallyknown in ICSD Metastable versus

binariesStable Metastable versus

elements

!Hf (eV per atom) !Hf (eV per atom) !Hf (eV per atom)

StabilizableP > 1 GPa

Stabilizable"µN2 < 1 eV per N

Li Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si

BaSrCaMgZnNa

KRbCsV

NbTaHfZrTiSi

Ge C B W Mo CrMn Fe Co Ni In Ga Al

GeCBW

MoCr

MnFeCoNiIn

GaAl

Bi Sb Sn Pt Pd Rh Ir Ru Os Re Au Ag Cd Pb Cu Te Se S Sc Y

BiSbSnPtPdRh

RuIr

OsReAuAgCdPbCuTeSe

SScY

Li

–2 –1 0 –2 –1 0 0 1 2

ultra-hard | ultrahigh–thermal conductivity | superior electronic properties‘Low’ temperature and pressure synthesis will result in > 1-inch boules

suitable for use in mechanical systems (abrasives, heat sinking) and power electronics (high voltage, high power transistors).

Tan

igu

chi,

T.,

et a

l., P

SS

(a)

201

(20

04)

257

3. 1

0.1

00

2/p

ssa.

200

4051

91

Tsa

o, J

., et

al.

Ad

v. E

lec.

Mat

. 4 (

2018

) 16

00

501.

10

.10

02/

aelm

.20

160

050

1

unexplored & new material systems | fundamental science 447 stable ternary nitrides predicted, only 213 demon-strated to-date. Requires new approaches to synthesize.

Su

n, W

., et

al.

Nat

ure

Mat

. 18

(20

19)

732.

10

.10

38/

s415

63

-019

-039

6-2

New stableternary space

Experimentallyknown in ICSD Metastable versus

binariesStable Metastable versus

elements

!Hf (eV per atom) !Hf (eV per atom) !Hf (eV per atom)

StabilizableP > 1 GPa

Stabilizable"µN2 < 1 eV per N

Li Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si

BaSr

CaMgZnNa

KRbCsV

NbTaHfZrTiSi

Ge C B W Mo CrMn Fe Co Ni In Ga Al

GeCBW

MoCr

MnFeCoNiIn

GaAl

Bi Sb Sn Pt Pd Rh Ir Ru Os Re Au Ag Cd Pb Cu Te Se S Sc Y

BiSbSnPt

PdRh

RuIr

OsReAuAgCdPbCuTeSeS

ScY

Li

–2 –1 0 –2 –1 0 0 1 2

New stableternary space

Experimentallyknown in ICSD Metastable versus

binariesStable Metastable versus

elements

!Hf (eV per atom) !Hf (eV per atom) !Hf (eV per atom)

StabilizableP > 1 GPa

Stabilizable"µN2 < 1 eV per N

Li Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si

BaSr

CaMgZnNa

KRbCsV

NbTaHfZrTiSi

Ge C B W Mo CrMn Fe Co Ni In Ga Al

GeCBW

MoCr

MnFeCoNiIn

GaAl

Bi Sb Sn Pt Pd Rh Ir Ru Os Re Au Ag Cd Pb Cu Te Se S Sc Y

BiSbSnPt

PdRh

RuIr

OsReAuAgCdPbCuTeSeS

ScY

Li

–2 –1 0 –2 –1 0 0 1 2

New stableternary space

Experimentallyknown in ICSD Metastable versus

binariesStable Metastable versus

elements

!Hf (eV per atom) !Hf (eV per atom) !Hf (eV per atom)

StabilizableP > 1 GPa

Stabilizable"µN2 < 1 eV per N

Li Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si

BaSr

CaMgZnNa

KRbCsV

NbTaHfZrTiSi

Ge C B W Mo CrMn Fe Co Ni In Ga Al

GeCBW

MoCr

MnFeCoNiIn

GaAl

Bi Sb Sn Pt Pd Rh Ir Ru Os Re Au Ag Cd Pb Cu Te Se S Sc Y

BiSbSnPt

PdRh

RuIr

OsReAuAgCdPbCuTeSeS

ScY

Li

–2 –1 0 –2 –1 0 0 1 2

New stableternary space

Experimentallyknown in ICSD Metastable versus

binariesStable Metastable versus

elements

!Hf (eV per atom) !Hf (eV per atom) !Hf (eV per atom)

StabilizableP > 1 GPa

Stabilizable"µN2 < 1 eV per N

Li Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si

BaSrCaMgZnNa

KRbCsV

NbTaHfZrTiSi

Ge C B W Mo CrMn Fe Co Ni In Ga Al

GeCBW

MoCr

MnFeCoNiIn

GaAl

Bi Sb Sn Pt Pd Rh Ir Ru Os Re Au Ag Cd Pb Cu Te Se S Sc Y

BiSbSnPtPdRh

RuIr

OsReAuAgCdPbCuTeSe

SScY

Li

–2 –1 0 –2 –1 0 0 1 2

New stableternary space

Experimentallyknown in ICSD Metastable versus

binariesStable Metastable versus

elements

!Hf (eV per atom) !Hf (eV per atom) !Hf (eV per atom)

StabilizableP > 1 GPa

Stabilizable"µN2 < 1 eV per N

Li Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si

BaSrCaMgZnNa

KRbCsV

NbTaHfZrTiSi

Ge C B W Mo CrMn Fe Co Ni In Ga Al

GeCBW

MoCr

MnFeCoNiIn

GaAl

Bi Sb Sn Pt Pd Rh Ir Ru Os Re Au Ag Cd Pb Cu Te Se S Sc Y

BiSbSnPtPdRh

RuIr

OsReAuAgCdPbCuTeSe

SScY

Li

–2 –1 0 –2 –1 0 0 1 2

New stableternary space

Experimentallyknown in ICSD Metastable versus

binariesStable Metastable versus

elements

!Hf (eV per atom) !Hf (eV per atom) !Hf (eV per atom)

StabilizableP > 1 GPa

Stabilizable"µN2 < 1 eV per N

Li Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si

BaSr

CaMgZnNa

KRbCsV

NbTaHfZrTiSi

Ge C B W Mo CrMn Fe Co Ni In Ga Al

GeCBW

MoCr

MnFeCoNiIn

GaAl

Bi Sb Sn Pt Pd Rh Ir Ru Os Re Au Ag Cd Pb Cu Te Se S Sc Y

BiSbSnPt

PdRh

RuIr

OsReAuAgCdPbCuTeSe

SScY

Li

–2 –1 0 –2 –1 0 0 1 2

New stableternary space

Experimentallyknown in ICSD Metastable versus

binariesStable Metastable versus

elements

!Hf (eV per atom) !Hf (eV per atom) !Hf (eV per atom)

StabilizableP > 1 GPa

Stabilizable"µN2 < 1 eV per N

Li Ba Sr Ca Mg Zn Na K Rb Cs V Nb Ta Hf Zr Ti Si

BaSrCaMgZnNa

KRbCsV

NbTaHfZrTiSi

Ge C B W Mo CrMn Fe Co Ni In Ga Al

GeCBW

MoCr

MnFeCoNiIn

GaAl

Bi Sb Sn Pt Pd Rh Ir Ru Os Re Au Ag Cd Pb Cu Te Se S Sc Y

BiSbSnPtPdRh

RuIr

OsReAuAgCdPbCuTeSe

SScY

Li

–2 –1 0 –2 –1 0 0 1 2

Suihkonen, S., Pimputkar, S., et al.

Adv. Elec. Mat. 3 (2017) 1600496. 10.1002/aelm.201600496

< 300 MPa | < 1000 °C | supercritical NH3 solvent

Due to use of ammonia as a solvent, we can synthesize

nitrogen-containing materials (nitrides,

carbonitrides, oxynitrides, etc.) under relatively mild thermodynamic or kinetically-limited

conditions to sizes < 1 inch.

Single CrystalAmmonothermal Gallium NitrideTmelt ≈ 4000 °CPmelt ≈ 12 GPa

Our crystal growth facility is unique in the world due to our ability to pursue ammono-

thermal single crystal growth in novel, extremely corrosion

resistant Mo-alloy, in traditional NiCr superalloy (right) or in

SS autoclaves.

Operations require an oxygen-free environment and hence the use of hermetically sealed, inert atmosphere, 1-inch thick steel-walled containment

vessels is mandated (left).

> 6 autoclaves in parallel | 2 independent setups | 1” inner diameter autoclaves

12 in

ches

1 inch inner diameter

Dollen, P., Pimputkar, S., et al. J. Cryst. Growth 456 (2016) 58. 10.1016/j.jcrysgro.2016.07.044; Dollen, P., Pimputkar, S., et al. J. Cryst. Growth 456 (2016) 67. 10.1016/j.jcrysgro.2016.08.018

Single CrystalNa-Flux Gallium Nitride BouleTflux ≈ 890 °CPsystem ≈ 8 MPa1 mm

[+c]

< 10 MPa | < 1200 °C | non-toxic | high nitrogen solubility

Exposing molten alkali metals (e.g. Na)

to high pressure gases, e.g. N2, leads to solubility of, e.g. N,

into the melt.Desired crystals can be synthesized by tailoring the melt composition (e.g.

addition of Ga) and driving growth via application of gas

pressures in excess of their equilibrium

vapor pressures or via temperature gradients.

A novel high pressure spatial chemical vapor deposition (HPS-CVD) tool is being developed to synthesize thin films of decomposition-limited materials by growing at pressures up to 100 atm, for the first time.

Elevated pressures allow for higher growth temperatures (yielding high quality materials), increased alloy constituent compositions (via reduced

decomposition), increased impurity concentrations (improved doping or desired element incorporation), and use of pressure-stabilized precursors.

UV-IR emitters | high frequency/power electronics | UWBG semiconductorsHigh In-content III-N alloys can reveal the true potential of this semi-conductor family via accessing the entire solid solution region of AlInGaN.

novel equipment development | crystalline materials | nitrides & related materials | (ultra) wide bandgap semiconductorAs a group, we develop new growth systems to produce crystalline materials which are currently challenging to synthesize or scale in size. We are particularly interested in pursuing materials which have ‘extreme’ properties or are of particular value to enable highly efficient energy conversion (solar energy, electrical energy) or optoelectronic device of exceptional efficiency due to optimized pairing and tailoring of the substrate with the device layers.

alloy compositions | doping | phases

Use in-house produced (or external) substrates to demonstrate new

materials with superior properties as thin films using novel precursors.

Thin Filmsmaterial properties | lattice constant

Grow large, single crystals for their desired intrinsic properties or to

access novel substrates with targeted lattice constants.

Boule Growthefficiency | novelty | performance

Devices

Demonstrate cutting-edge devices due to superior material

properties, quality, or newly enabled device

structures.

Pimputkar, S. Patent Application (2019) PCT/US19/52667

< 100 atm | < 1300 °C | scalable design | grow decomposition-limited materials

Modified from: Caro Bayo, M. Á., Ph.D. Thesis, University College Cork (2013), https://cora.ucc.ie/handle/10468/1344

Designs are being optimized using CFD/ thermal computational methods (COMSOL/

ANSYS) to demonstrate ability to overcome known challenges due to higher density of

process gases and resulting consequences.

Dietz, N. Final Technical Report (2015). AFOSR FA9550-10-1-0097. 10.21236/ada624591

Proof-of-concept: HP-CVD growth of InN (decomposition-limited)

MATSMaterials for Advanced

Technologies & [email protected] | www.pimputkar.org

We are vertically integrated, allowing us to develop next-gen devices on tailored substrates in innovative growth systems

1 mm ◻HPHT c-BN