nonlinear optics lecture 6

Upload: t8ened

Post on 13-Apr-2018

257 views

Category:

Documents


2 download

TRANSCRIPT

  • 7/27/2019 Nonlinear Optics Lecture 6

    1/16

    Nonlinear Optics

    Lecture 6

  • 7/27/2019 Nonlinear Optics Lecture 6

    2/16

    Boundary problem for SHG in the

    noncentrosymmetric media

    1

    (1)

    (1)1

    1

    (1)

    (1)

    1, . ;

    2

    1, .2

    1, .

    2

    i

    ii T

    i R

    i i t

    i i

    i i t

    T T

    i i t

    R R i

    t e c c

    t e c c

    t e c c

    k r

    k r

    k r

    E r A

    E r A

    E r A

    Incident wave generates regular reflected andtransmitted waves at the same frequency

    according to Snells law and Fresnel formulas

    It also generates 2ndorder polarization,

    responsible for SH propagating inside the

    medium as well as reflected from the medium

    (1) (1)

    (1)

    (2)

    (2)

    21 1(1) (1) (1)

    2 1

    221 1(2) (2) (2)1

    2 22 (1) (2)

    1 1(2) (2) (2)

    22 ; 2

    2 216;

    4

    2 2;

    s s

    T

    T

    R

    Ti ieff T s T

    iTi

    T T T

    T T

    RiR R R

    P d A e p e k kc

    p eE A e k

    c ck k

    E A e kc

    k r k r

    k r

    k r

    k r

    Reflected wave is necessary

    to satisfy boundaryconditions at the interface.

    Here we assume that

    nonlinear polarization

    generates TE wave (s-

    polarization) and neglect

    birefringence

  • 7/27/2019 Nonlinear Optics Lecture 6

    3/16

    Snells law for SH

    (1) (2) (2) (2) (2)

    (2) (2)1 1 1

    sin sin sin

    sin 2 sin 2 sin

    s s T T R R

    T s T T R T

    k k k

    Usual requirement that the boundary conditions must be obeyed everywhere

    along the plane interface result in the condition that components of the wave

    number of all SH waves along the interface be equal to each other.

    Taking into account that the wave generated by nonlinear polarization with

    propagates in the same direction as the linear transmitted wave so that

    we obtain the last missing relation to

    determine all propagation angles

    (1)2s Tk k

    1 1sin sinT s R i

  • 7/27/2019 Nonlinear Optics Lecture 6

    4/16

    Equations for the fields

    12(0, ,0) ,0,y xy E EiEc z y

    E BMaxwell equations give:

    On the incident side of the interface one has only reflected SH, so that

    (2) (2) (2) (2)sin sin(2) (2) (2) (2) (2)

    10 ; ( 0) 2 cosR R R Rik x ik x

    R R x R R RE A e B A e

    On the transmission side of the interface there are two waves propagating at two

    different wave numbers so that

    (1)

    ( 2) ( 2)

    ( 2) ( 2)

    (1)

    2 sinsin(2) (2)

    1 1

    sin(2) (2)

    1

    2 sin

    1

    1 1

    4

    ( 0) 2

    ( 0) 2 cos

    4 cos

    2

    sT

    T T

    T T

    sT

    ik xik x

    T T

    T T

    ik x

    x T T T

    ik x

    T s

    T T

    p e

    E A e

    B A e

    p e

  • 7/27/2019 Nonlinear Optics Lecture 6

    5/16

    Equation for reflection and

    transmission amplitudes

    (2) (2)

    1 1

    1(2) (2) (2) (2)

    1 1

    1 1

    (2)

    1 1(2)

    (2) (2)1 1 1 1

    (2)

    1 1(2)

    1 1

    4

    2

    4 cos

    2 cos 2 cos 2

    cos 2 cos4

    2 2 cos 2 cos

    2 cos cos4

    2

    R T

    T T

    T s

    R R R T T T

    T T

    T s R R

    T

    T T T T R R

    T T T

    R

    T T

    pA A

    p

    A A

    pA

    pA

    (2) (2)1 12 cos 2 coss

    T T R R

  • 7/27/2019 Nonlinear Optics Lecture 6

    6/16

    Reflected wave

    ( 2)(2) (2)

    (2)

    1 1(2)

    (2) (2)1 1 1 1

    2

    1 1

    2 cos cos4

    2 2 cos 2 cos

    41

    2 2

    Ri

    R R

    T T T s

    R

    T T T T R R

    effT R

    E A e

    pA

    p p

    k r

  • 7/27/2019 Nonlinear Optics Lecture 6

    7/16

    Transmitted waves

    (1) (2)

    (1)

    (2)

    1 12(2)(2) (2)

    1 1 1 1

    (2 )

    1 12

    (2) (2)1 1 1 1

    1(2 )

    cos 2 cos4

    2 2 cos 2 cos

    cos 2 cos41

    2 2 cos 2 cos

    4 /

    T T

    T

    T s R Ri iT

    T T T T R R

    T s R Ri i kz

    T T T T R R

    R

    pE e e

    pe e

    p cA

    k r k r

    k r

    (2)1 1

    (2) (2)

    1 1 1

    1(2 )

    1

    cos 2 coscos 1

    2 cos 2 cos

    4 /1 4

    i kzT s R Rs

    T T T R R

    R T

    effT

    e

    k

    p c pA iz ik z

    (2) (1) (2) (2) (1)

    (2 )11 1

    2 cos 2 cos

    2 2 cos cos

    T T z T T T s

    z T T T s

    k k k

    c

    k k e

    e

  • 7/27/2019 Nonlinear Optics Lecture 6

    8/16

    Third order nonlinearities

    (3) (3)4 4 1 2 3 1 2 3{1,2,3}

    1; , , ( , ) ( , ) ( , )

    2i ijkl j k l P E E E r r r

    General form of the 3rdorder nonlinear polarization:

    Optical Kerr effect 4 1 2 2

    (3) (3)13 3 ; , , ( , ) ( , ) ( , )2

    i ijkl j k l

    jkl

    P E E E r r r

    3rdharmonic generation4

    (3) (3)

    1 1 1 2 2 1 2 23 ; , , ( , ) ( , ) ( , )i ijkl j k l jklP E E E

    r r r

    Intensity dependent refractive index

    (3) (3)

    1

    3; , , ( , ) ( , ) ( , )

    2i ijkl j k l jklP E E E

    r r r

  • 7/27/2019 Nonlinear Optics Lecture 6

    9/16

    Effective dielectric constant

    2 21 12 ( )1

    1, 1, 1,2 2

    22 ( )1

    1, 1 1,2

    4

    0

    NL

    i i i

    NL

    i ij ij j

    j

    E E Pc c

    E Ec

    r r r

    r r

    In the case of optical Stark effect and intensity dependent refractive index, the

    nonlinear polarization can be presented as a filed-dependent dielectric constant

    For Kerr effect, the dielectric constant is modulated by a strong pump field at frequency

    2, while the weak probe wave propagates at the frequency 1.

    ( ) (3) 1 1 2 2 2 212 ; , , ( , ) ( , )NL

    ij ijkl k l

    kl

    E E r r

    In the case of the field modulated refractive index, we deal with the self-modulation of

    the index by the wave propagating at the frequency .

    ( ) (3)6 ; , , ( , ) ( , )NLij ijkl k l kl

    E E r r

  • 7/27/2019 Nonlinear Optics Lecture 6

    10/16

    Effective refractive indexAssume that the light in linearly polarized, and lets choose one of the coordinate axes

    (x) along the polarization direction. Also assume that the sample has cubic symmetry,

    so that its optically isotropic and Then we can introduce intensity-

    dependent effective refractive indexij ij

    2(3)

    0

    (3)2

    0

    0

    6 ; , , ( , )

    3( , )

    ij iixx x ij

    x

    E

    n n En

    r

    r

    In the literature, intensity dependent refractive index is often written down as

    0 2n n n I

    Taking into account that we find20

    8n cI E

    2(3)

    2 2

    0

    24nn c

    Typical values of the nonlinear refractive index coefficient are given in Table 4.1.1

    of Boyds. They can range between for electronic nonlinearities and

    for thermal effects

    21610 cm

    W

    2610 cm

    W

  • 7/27/2019 Nonlinear Optics Lecture 6

    11/16

    Third order susceptibility in isotropic

    materials

    In the most general case, when all frequencies are different and there are no additional

    permutation symmetries, the isotropy condition requires any tensor of the 4thrank to have

    the form of

    With three independent coefficients.3rdharmonic generation:all frequency are the same so, all permutation of indexes are

    equivalent, hence

    Nonlinear refractive index: first two frequencies are the same, thus

    Polarization in the later case becomes

    (3) (3) (3) (3)

    1122 1212 1221ijkl ij kl ik jl il jk

    (3) (3)1122 3ijkl ij kl ik jl il jk

    (3) (3) (3)1122 1221ijkl ij kl ik jl il jk

    2 2(3) (3) (3) * 2 (3) (3) (3) * 2

    1 1122 1221 1122 1221

    3 32 ; 3

    2 2i i i

    P E E

    E E P E E E E

  • 7/27/2019 Nonlinear Optics Lecture 6

    12/16

    Alternative notation for the 3rdorder

    susceptibility

    2 2(3) (3) (3) * 2 (3) (3) (3) * 2

    1 1122 1221 1122 1221

    (3) (3)

    1122 1221

    2(3) * 2

    3 32 ; 3

    2 2

    3 ; 3

    1

    2

    i i iP E E

    A B

    A B

    E E P E E E E

    P E E E E

    ( ) ( ) (3)

    2(3) (3) * (3) *

    1122 1122 1221

    2(3) (3) (3) * *

    1122 1221 1221

    2 * *

    (3)

    1122 1221

    3; ; , , ( , ) ( , )

    2

    3 3 3

    2 2 2

    3 32

    2 2

    1

    2

    3

    22

    eff eff

    i ij j ij ijkl k l

    kl

    ij i j i j

    ij i j i j

    ij i j i j

    P E E E

    E E E E

    E E E E

    A B E E E E

    A

    r r

    E

    E

    E

    (3) (3)

    1221; 3B

    / 6 / 3 molecular orientation

    / 1 / 2 noneresonant electrons

    / 0 / 0 electrostriction

    B A B A

    B A B A

    B A B A

  • 7/27/2019 Nonlinear Optics Lecture 6

    13/16

    Basis of circularly polarized light

    Circularly polarized light is described by combination of two beams polarized in utuallyperpendicular directions with a phase shift between them equal to /2

    Left-hand circular (counterclockwise) Right-hand (clockwise)

    ;2 2

    i i

    E E

    x y x y

    E

  • 7/27/2019 Nonlinear Optics Lecture 6

    14/16

    Non-linear polarization in the circular basis

    2(3) * 2

    2 22 * 2 *

    1

    2

    1 1;

    2 2

    A B P P

    P A E B E P A E B E

    P E E E E

    E E E E

    One can rewrite the polarization in the circular basis as

    Where the terms quadratic in the field are given by

    2 2* 2; 2E E E E E E E

    Thus, circular components of the polarization become

    2 2 2 2

    ( )

    22( )

    ;

    NL

    NL

    P A E A B E E P A E A B E E

    P E

    A E A B E

  • 7/27/2019 Nonlinear Optics Lecture 6

    15/16

    Wave equation in the circular basis

    2 2 2 ( )2 1

    2 2 2 2 2 2 22 1

    2 2 2 2 2 2 2 ( )2 1

    2 2 2 2

    2 2 222 2 2 2

    1 12 2

    2 2

    1

    4

    4

    4

    ; 4 4

    2

    NL

    NL

    NL

    n E PE

    n c t c t

    c t c t n E PE

    c t c t

    n EE n n n A E A B Ec t

    n n B E E n

    E PE

    If the absence of damping, the wave equation has a solution in which amplitudes of

    different polarization components are constants. In this case, the solutions are regular

    plane waves, but with intensity dependent refractive indexes

  • 7/27/2019 Nonlinear Optics Lecture 6

    16/16

    Polarization rotation in the medium with

    intensity dependent refractive index

    / /

    /

    ( )

    1 1; ; /

    2 2

    cos sin ;cos sin2

    in z c in z c

    in z c i i

    i

    E z E E A e A e

    e A e A e n n n n z c

    x x yiey y x

    x y