notes 8 transmission lines (bounce diagram)courses.egr.uh.edu/ece/ece3317/sectionjackson/class...

33
Notes 8 Transmission Lines (Bounce Diagram) 1 ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2018

Upload: others

Post on 18-Mar-2020

34 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Notes 8 Transmission Lines (Bounce Diagram)

1

ECE 3317 Applied Electromagnetic Waves

Prof. David R. Jackson Fall 2018

Page 2: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Step Response

The concept of the bounce diagram is illustrated for a step response on a terminated line:

2

( )gv t( ) ( )0gv t V u t=

0V

t

Generator voltage

0Z( )gv t+ -

0z =[ ]0 VV

0t =

LR

z L=

gR

Page 3: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Step Response (cont.)

The wave is shown approaching the load.

00

0g

ZV VR Z

+

= + (from voltage divider)

3

dc0t = 1t t= 2t t=V +

0Z( )gv t+ -

0z =[ ]0 1 VV =

0t =

LR

z L=

gR

Page 4: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Bounce Diagram

d

LTc

=

00

0g

ZV VR Z

+

= +

0

0

gg

g

R ZR Z

−Γ = +

0

0

LL

L

R ZR Z

−Γ = +

t↓

4

0t =

T

2T

3T

4T

5T

6T

LΓgΓ

V +

L V +Γ

g L V +Γ Γ

2g L V +Γ Γ

2 2g L V +Γ Γ

2 3g L V +Γ Γ

0

V +

(1 )L V ++ Γ

(1 )L g L V ++ Γ +Γ Γ

2(1 )L g L g L V ++ Γ +Γ Γ +Γ Γ

2 2(1 )g L V ++ + Γ Γ

2 3(1 )g L V ++ + Γ Γ

z

0Z( )gv t+-

0z =[ ]0 VV

0t =

LR

z L=

gR

The purple values give the total voltage in each region.

Page 5: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Steady-State Solution

2 2 3 3 2 2 3 3

Sum of all right-traveling waves Sum of all left-traveling waves

0

( , ) (1 ) (1 )

(1 )1 1 1

1

g L g L g L L g L g L g L

L L

g L g L g L

L

L

V z V V

VV V

R ZR

+ +

+++

∞ = +Γ Γ +Γ Γ +Γ Γ + + Γ +Γ Γ +Γ Γ +Γ Γ +

Γ +Γ= + =

−Γ Γ −Γ Γ −Γ Γ

−+

=

( )( )

( )( ) ( )( )

0 00

00 0

0 0

00 0

0 00

00 0 0 0

1

1

gg L

g L

Lg L

L

gg L g L

Z Z VR ZR Z R Z

R Z R Z

R Z R Z R ZR Z Z V

R ZR Z R Z R Z R Z

+ + − − − + +

−+ + + + = ++ + − − −

Adding all infinite number of bounces (t = ∞), we have:

( )0

111

n

nz

zz

=

=−

<

Note: We have used

5

Page 6: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Steady-State Solution (cont.)

( )( )

( )( ) ( )( )

( )( )

( )( ) ( )( )( )

( )( ) ( )( )

( )

00 0

0 00

00 0 0 0

0 00 0

000 0 0 0

0 00

00 0 0 0

0 0

0

1( , )

2

2

2

Lg L

L

gg L g L

Lg L

L

gg L g L

L g

gg L g L

L

g L

R Z R Z R ZR Z ZV z V

R ZR Z R Z R Z R Z

R R Z R ZR Z Z V

R ZR Z R Z R Z R Z

R R Z Z VR ZR Z R Z R Z R Z

R Z VR Z R Z

−+ + + + ∞ = ++ + − − −

+ + + = ++ + − − −

+ = ++ + − − −

=+ +( ) ( )( )0 0 0

0 02 20 0 0 0 0 0

0 0

0 0 0 0

2

2

g L

L

g L L g g L L g

L

L g L g

R Z R Z

R Z VR R Z R Z R Z R R Z R Z R Z

R Z VR Z R Z R Z R Z

− − −

=+ + + − − + +

=+ + + +

Simplifying, we have:

6

Page 7: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

( )

( )

( )

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

2( , )

22

L

L g L g

L

L g

L

L g

L

L g

R Z VV zR Z R Z R Z R Z

R Z VR Z R Z

R Z VR Z R Z

R VR R

∞ =+ + +

=+

=+

=+

0( , ) L

L g

RV z VR R

∞ = +

Hence we finally have:

This is the DC circuit-theory voltage divider equation!

Continuing with the simplification:

Note: The steady-state solution does not depend on the transmission

line length or characteristic impedance!

7

Steady-State Solution (cont.)

Page 8: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example

0

1

2

3

4

5

6

12LΓ = −

12gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z0

00

1 [V]g

ZV VR Z

+ = = +

0

0

12

gg

g

R ZR Z

−Γ = = +

0

0

12

LL

L

R ZR Z

−Γ = = − +

8

+

- ( )gv t

0z = z L=

0t =

[ ]0 4 VV =

[ ]225gR = Ω

[ ]25LR = Ω[ ]0 75Z = Ω [ ]1 nsT =

Page 9: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example (cont.) The bounce diagram can be used to get an “oscilloscope trace” of the voltage at any point on the line.

Steady state voltage: 0( , ) 0.400 [V]L

L g

Rv z VR R

∞ = = +

9

[ns]t

1 2 3 4 5

1 [V]

0.5 [V] 0.375 [V] 0.4375 [V]

0.25 [V]

34( , ) ( )v L t oscilloscope trace

[V]

34

z L=34

z L=

0.75 [ns]

1.25 [ns]

2.75 [ns]

3.25 [ns]

0

1

2

3

4

5

6

12LΓ = −

12gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z

Page 10: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

The bounce diagram can also be used to get a “snapshot” of the line voltage at any point in time.

Example (cont.)

10

[m]z4L

0.375 [V]0.25 [V]

( , 3.75 [ns]) ( )v z snapshot

2L 3

4L L

Wavefront is moving to the left

[V]

[ ]3.75 nst =

3.75 [ns]t =

L/4

0

1

2

3

4

5

6

12LΓ = −

12gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z

Page 11: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

To obtain a current bounce diagram from the voltage diagram, multiply forward-traveling voltages by 1/Z0, backward-traveling voltages by -1/Z0.

0

1

2

3

4

5

6

1

12

14

116

132

0

1

1.5

1.25

1.125

1.1875

164

−1.203125

[ns]t↓ 1

8−

1.21875

0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t↓

[m]z

Note: This diagram is for the normalized current,

defined as Z0 i (z,t).

[m]z

Voltage Normalized Current

Example (cont.)

11

Page 12: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Note: We can also just change the signs of the reflection coefficients, as shown.

Note: This diagram is for the normalized current, defined as Z0 i (z,t).

IΓ = −Γ

0

1

2

3

4

5

6

1

12

14

116

132

0

1

1.5

1.25

1.125

1.1875

164

−1.203125

[ns]t↓ 1

8−

1.21875

12

IgΓ = − 1

2ILΓ =

[m]z

Normalized Current

Example (cont.)

12

( )( )( ) ( )( ) ( )( )( )

0

0

,,

, 1 /, 1 /

,,

IL

L

i L ti L t

v L t Zv L t Z

v L tv L t

+

+

+

Γ =

−=

= −

= −Γ

Page 13: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example (cont.)

Steady state current: 0( , ) 0.016 [A]L g

Vi zR R

∞ = = +

( ) ( )0 ( , ) 0.016 75 1.20Z i z ∞ = =

1 2 3 4 5

1

1.5

1.125 1.18751.25

30 4( , )

(Z i L t

oscilloscope trace of current)

[ ]t ns

13

0

1

2

3

4

5

6

1

12

14

116

132

0

1

1.5

1.25

1.125

1.1875

164

−1.203125

[ns]t↓ 1

8−

1.21875

12

IgΓ = − 1

2ILΓ =

[m]z

Normalized Current

2.75 [ns]

3.25 [ns]

0.75 [ns]

1.25 [ns]

34

z L=

(units are volts)

34

z L=

Page 14: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example (cont.)

0

1

2

3

4

5

6

1

12

14

116

132

0

1

1.5

1.25

1.125

1.1875

164

−1.203125

[ns]t↓ 1

8−

1.21875

12

IgΓ = − 1

2ILΓ =

[m]z

Normalized Current

3.75 [ns]t =

L/4

[m]z4L

1.1251.25

0 ( , 3.75 [ns])Z i z(snapshot of current)

2L 3

4L L

14

Wavefront is moving to the left

(units are volts)

[ ]3.75 nst =

Page 15: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example Reflection and Transmission Coefficient at

Junction Between Two Lines

KVL: TJ = 1 + ΓJ (This follows from the fact that voltage must be continuous across the junction.)

15

[ ]0 4 VV =+

- ( )gv t

150 75 1225 3

413

J

J JT

+

+ +

−Γ = =

= +Γ =

75 150 1225 3

213

J

J JT

− −

−Γ = = −

= +Γ =

Junction

J+Γ

JT +

JT −

J−Γ

0t = [ ]225gR = Ω [ ]1 nsT = [ ]1 nsT =

[ ]50LR = Ω[ ]0 75Z = Ω [ ]0 150Z = Ω

0z = z L=

Page 16: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example (cont.)

1323

J

JT

+

Γ =

=

43

13

J

J

T +

=

Γ = −

Bounce Diagram for Cascaded Lines

0

1

2

3

4

12gΓ =

1 [V]

0.3333 [V]

0.1667[V]

0[V]1 [V]

1.3333 [V]

1.5000 [V][ns]t↓

12LΓ = −

1.3333 [V]

0.6667 [V]−

0 [V]

1.3333 [V]

0.6667 [V]-0.4444 [V] 0.0555 [V] -0.3888 [V]

1.1111 [V] 1.1111 [V]

0.2222 [V] 0.2222 [V] 0.4444 [V]

[m]z

16

+

- ( )gv t

Junction 0t =

[ ]0 4 VV =

[ ]225gR = Ω [ ]1 nsT = [ ]1 nsT =

[ ]50LR = Ω[ ]0 75Z = Ω [ ]0 150Z = Ω

0z = z L=

Page 17: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Pulse Response

Superposition can be used to get the response due to a pulse.

( ) ( ) ( )( )0gv t V u t u t W= − −

We thus subtract two bounce diagrams, with the second one being a shifted version of the first one.

17

+

- ( )gv t+ - ( )gv t

gR

0z = z L=

0Z LR

( )gv t

0V

Wt

Page 18: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example: Pulse

1 [V]V + =

18

+ -

Oscilloscope trace

( )gv t

[ ]225gR = Ω

[ ]0 75Z = Ω [ ]1 nsT = [ ]25LR = Ω

0z = z L=

0.75z L=

( )gv t

0V

Wt

[ ]0 4 VV =

[ ]0.25 nsW =

Page 19: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example: Pulse (cont.)

Subtract

19

( ) ( ) ( )( )0gv t V u t u t W= − −

0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0 [V]

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t

0.75 [ns]

1.25 [ns]

2.75 [ns]

3.25 [ns]

4.75 [ns]

5.25 [ns]

1.25

2.25

3.25

4.25

5.25

6.25

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0 [V]

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[m]zW

0.25

1.00 [ns]

1.50 [ns]

3.00[ns]

3.50[ns]

5.00 [ns]

5.50 [ns]

34

z L= 34

z L=[ ]0.25 nsW =

Oscilloscope trace 0.75z L=

Page 20: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example: Pulse (cont.)

Oscilloscope trace of voltage

[ns]t1 2 3 4 5

1 [V]

0.5 [V]−

0.125 [V]

0.25 [V]−

34( , )v L t

0.0625 [V]

0.03125 [V]−

20

( )gv t

0V

Wt

[ ]0 4 VV =

[ ]0.25 nsW =

+ -

Oscilloscope trace

( )gv t

[ ]225gR = Ω

[ ]0 75Z = Ω [ ]1 nsT = [ ]25LR = Ω

0z = z L=

0.75z L=

Page 21: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

1 [V]V + =

21

+ -

Snapshot

( )gv t

[ ]225gR = Ω

[ ]0 75Z = Ω [ ]1 nsT = [ ]25LR = Ω

0z = z L=

[ ]1.5 nst =

( )gv t

0V

Wt

[ ]0 4 VV =

[ ]0.25 nsW =

Example: Pulse (cont.)

Page 22: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example: Pulse (cont.)

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[m]zW

3L / 4

0

1

2

3

4

5

6

12LΓ = −1

2gΓ =

1 [V]

1 [V]2

1 [V]4

1 [V]8

+

1 [V]16

+

1 [V]32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1 [V]64

−0.390625 [V]

[ns]t

1.25

2.25

3.25

4.25

5.25

6.25

0.25

L / 2

22

subtract

W = 0.25 [ns]

Snapshot ( ) ( ) ( )( )0gV t V u t u t W= − −[ ]1.5 nst =

Page 23: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example: Pulse (cont.)

Snapshot of voltage

[m]z

0.5 [V]−

( , 1.5 [ns])v z

L0.5L 0.75L0.25L

23

Pulse is moving to the left

( )gv t

0V

Wt

[ ]0 4 VV =

[ ]0.25 nsW =

+ -

Snapshot

( )gv t

[ ]225gR = Ω

[ ]0 75Z = Ω [ ]1 nsT = [ ]25LR = Ω

0z = z L=

[ ]1.5 nst =

Page 24: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Capacitive Load

Note: The generator is assumed to be matched to the transmission line for convenience (we wish to focus on the effects of the capacitive load).

0gΓ =Hence

The reflection coefficient is now a function of time.

24

+ -

( )gv t

0z = z L=

0ZLC

0gR Z=

[ ]0 VV

0t =

Page 25: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Capacitive Load (cont.)

0t =

T

2T

3T

( )L tΓ0gΓ =

V +

( )L dt t V +Γ −

0V +

( )( )1 L dt t V ++ Γ −

t

z 0

00 0

0 / 2

ZV VZ Z

V

+ = + =

25

( ) /d dt L z c= −dt

z

+ -

( )gv t

0z = z L=

0ZLC

0gR Z=

[ ]0 VV

0t =

Page 26: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Capacitive Load (cont.)

At t = T : The capacitor acts as a short circuit: ( ) 1L TΓ = −

At t = ∞: The capacitor acts as an open circuit: ( ) 1LΓ ∞ =

Between t = T and t = ∞, there is an exponential time-constant behavior.

( ) ( ) ( )/1 1 1 ,t TL t e t Tτ− − Γ = + − − ≥

0 LZ Cτ =

( ) ( ) ( ) ( ) ( )/t TF t F F T F e τ− − = ∞ + − ∞

General time-constant formula: Hence we have:

26

t T≥

( ) /d dt L z c= −dt

z

+ -

( )gv t

0z = z L=

0ZLC

0gR Z=

[ ]0 VV

0t =

Page 27: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Capacitive Load (cont.)

0t =

T

2T

3T

( )L tΓ0gΓ =

V +

( )L t T V +Γ −

0V +

( )( )1 L t T V ++ Γ −

t

z

27

( ) ( ) ( ) ( )( ) ( )( ) ( )( )/ / 2 /01 2 , 1 2 1 , 1 1t T t T t T

L L Lt e t e V t T V eτ τ τ− − − − − −+Γ = − +Γ = − +Γ − = −

Assume z = 0 0 / 2V V+ =

+ -

( )gv t

0z = z L=

0ZLC

0gR Z=

[ ]0 VV

0t =

steady-state

( )( )2 /0 1 t TV e τ− −−

( )0,v t

0V

0 / 2V

T 2T t

Page 28: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Inductive Load

At t = T: inductor as a open circuit: ( ) 1L TΓ =

At t = ∞: inductor acts as a short circuit: ( ) 1LΓ ∞ = −

Between t = T and t = ∞, there is an exponential time-constant behavior.

( ) ( ) ( )/1 1 1 ,t TL t e t Tτ− − Γ = − + − − ≥

0/LL Zτ =

28

+

- ( )gv t

0gR Z=

0z = z L=

0Z

0t =

[ ]0 VV LL

Page 29: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Inductive Load (cont.)

0t =

T

2T

3T

( )L tΓ0gΓ =

V +

( )L t T V +Γ −

0V +

( )( )1 L t T V ++ Γ −

t

z

29

( ) ( ) ( ) ( ) ( )( ) ( )/ / 2 /01 2 , 1 2 , 1t T t T t T

L L Lt e t e V t T V eτ τ τ− − − − − −+Γ = − + + Γ = + Γ − =

0 / 2V V+ =Assume z = 0

+

- ( )gv t

0gR Z=

0z = z L=

0Z

0t =

[ ]0 VV LL

steady-state

( )2 /0

t TV e τ− −

( )0,v t

0V

0 / 2V

T 2T t

Page 30: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Time-Domain Reflectometer (TDR) This is a device that is used to look at reflections on a line, to look

for potential problems such as breaks on the line.

Resistive load, RF > Z0 Resistive load, RF < Z0

30

The time indicates where the break is.

dt t=

t

( )0,v t

+

- ( )gv t

(dt round - trip time down to fault)

z = zF

2 /d F dt Z c=0gR Z=0t =

[ ]0 VV 0Z

0z = z L=

LoadFault

F FR z z=The fault is modeled as a load resistor at

t

( )0,v tdt t=

Page 31: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Time-Domain Reflectometer (cont.)

Resistive load, RL > Z0 Resistive load, RL < Z0

31

The reflectometer can also tell us what kind of a load we have.

+

- ( )gv t

0gR Z=0t =

[ ]0 VV 0Z

0z = z L=

Load

t

( )0,v t

t

( )0,v t

Page 32: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Time-Domain Reflectometer (cont.)

Capacitive load Inductive load

32

The reflectometer can also tell us what kind of a load we have.

+

- ( )gv t

0gR Z=0t =

[ ]0 VV 0Z

0z = z L=

Load

( )0,v t

t t

( )0,v t

Page 33: Notes 8 Transmission Lines (Bounce Diagram)courses.egr.uh.edu/ECE/ECE3317/SectionJackson/Class Notes/Notes 8 3317 Transmission...Transmission Lines (Bounce Diagram) 1 . ECE 3317

Example of a commercial product

“The 20/20 Step Time Domain Reflectometer (TDR) was designed to provide the clearest picture of coaxial or

twisted pair cable lengths and to pin-point cable faults.”

AEA Technology, Inc.

Time-Domain Reflectometer (cont.)

33