prof. d. r. wilton note 3 transmission lines (bounce diagram) ece 3317

31
Prof. D. R. Wilton Note 3 Note 3 Transmission Lines Transmission Lines (Bounce Diagram) (Bounce Diagram) ECE 3317

Upload: terence-sanders

Post on 03-Jan-2016

230 views

Category:

Documents


1 download

TRANSCRIPT

Prof. D. R. Wilton

Note 3 Note 3 Transmission LinesTransmission Lines

(Bounce Diagram)(Bounce Diagram)

ECE 3317

Step Response

The concept of the bounce diagram is illustrated for a unit step response on a terminated line.

RL

z = 0 z = L

V0 [V]

t = 0

+

-

Rg

gV t Z0

t

gV t

0gV t V u t

0V

Step Response (cont.)

The wave is shown approaching the load.

RL

z = 0 z = L

V0 [V]

t = 0

+

-

Rg

gV t Z0

dct = 0 t = t1 t = t2 V +

00

0g

ZV V

R Z

(from voltage divider)

Bounce Diagram

z = 0

RL

z = L

V0 [V]

t = 0

+

-

Rg

gV t Z0

d

LT

c

00

0g

ZV V

R Z

0

0

gg

g

R Z

R Z

0

0

LL

L

R Z

R Z

0t

T

2T

3T

4T

5T

6T

Lg

V

L V

g L V

2g L V

2 2g L V

2 3g L V

0

V

(1 )L V

(1 )L g L V

2(1 )L g L g L V

2 2(1 )g L V

2 3(1 )g L V

z

t

Steady-State Solution

2 2 3 3 2 2 3 3

Sum of all right-traveling waves Sum of all left-traveling waves

0

( , ) (1 ) (1 )

(1 )

1 1 1

1

g L g L g L L g L g L g L

L L

g L g L g L

L

L

V z V V

VVV

R Z

R

0 00

00 0

0 0

00 0

0 00

00 0 0 0

1

1

gg L

g L

Lg L

L

gg L g L

Z ZV

R ZR Z R Z

R Z R Z

R ZR Z R Z

R Z ZV

R ZR Z R Z R Z R Z

Adding all infinite number of bounces, we have:

0

1

1

1

n

n

zz

z

Note: We have usedthe geometric series formula

Steady-State Solution

00 0

0 00

00 0 0 0

0 00 0

000 0 0 0

0 00

00 0 0 0

0 0

0

1

( , )

2

2

2

Lg L

L

gg L g L

Lg L

L

gg L g L

L g

gg L g L

L

g L

R ZR Z R Z

R Z ZV z V

R ZR Z R Z R Z R Z

RR Z R Z

R Z ZV

R ZR Z R Z R Z R Z

R R Z ZV

R ZR Z R Z R Z R Z

R Z V

R Z R Z

0 0 0

0 02 20 0 0 0 0 0

0 0

0 0 0 0

2

2

g L

L

g L L g g L L g

L

L g L g

R Z R Z

R Z V

R R Z R Z R Z R R Z R Z R Z

R Z V

R Z R Z R Z R Z

Simplifying, we have:

Steady-State Solution

0 0

0 0 0 0

0 0

0 0

0 0

0 0

2( , )

2

2

L

L g L g

L

L g

L

L g

R Z VV z

R Z R Z R Z R Z

R Z V

R Z R Z

R Z V

R Z R Z

0( , ) L

L g

RV z V

R R

Hence we finally have:

This is just the voltage divider equation!

Continuing with the simplification:

Note: the steady-state solution does not depend on the transmission line length or characteristic impedance.

Example

z = 0

RL = 25 []

z = L

V0 = 4 [V]

t = 0

+

-

Rg = 225 []

gV t Z0 = 75 [] T = 1 [ns]

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z0

00

1 [V]g

ZV V

R Z

0

0

1

2g

gg

R Z

R Z

0

0

1

2L

LL

R Z

R Z

Example (cont.)

The bounce diagram can be used to get an “oscilloscope trace” at any point on the line.

[ns]t1 2 3 4 5

1 [V]

0.5 [V]0.375 [V] 0.4375 [V]

0.25 [V]

34( , ) ( )V L t oscilloscope trace

steady state voltage: 0( , ) 0.400 [V]L

L g

RV z V

R R

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z

3

4z L

0.75 [ns]

1.25 [ns]

2.75 [ns]

3.25 [ns]

The bounce diagram can also be used to get a “snapshot” of the line voltage at any point in time.

Example (cont.)

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z

3.75 [ns]t

L/4

[m]z4

L

0.375 [V]0.25 [V]

( , 3.75 [ns]) ( )V z snapshot

2

L 3

4

LL

To obtain current bounce diagram from voltage diagram, multiply forward-traveling voltages by 1/Z0, backward-traveling voltages by -1/Z0.

0

1

2

3

4

5

6

1

1

2

1

4

1

16

1

32

0

1

1.5

1.25

1.125

1.1875

1

64

1.203125

[ns]t

1

8

1.21875

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

[m]z

Note: This diagram is for the normalized current, defined as Z0 I (z,t).

[m]z

voltage current

Example (cont.)

0

1

2

3

4

5

6

1

1

2

1

4

1

16

1

32

0

1

1.5

1.25

1.125

1.1875

1

64

1.203125

[ns]t

1

8

1.21875

[m]z

Note: We can also just change the signs of the reflection coefficients, as shown.

0

1

2

3

4

5

6

1

1

2

1

4

1

16

1

32

0

1

1.5

1.25

1.125

1.1875

1

64

1.203125

[ns]t

1

8

1.21875

1

2Ig 1

2IL

[m]z

Note: These diagrams are for the normalized current, defined as Z0 I (z,t).

I

current current

Example (cont.)

0

1

2

3

4

5

6

1

1

2

1

4

1

16

1

32

0

1

1.5

1.25

1.125

1.1875

1

64

1.203125

[ns]t

1

8

1.21875

1

2Ig 1

2IL

[m]z

current

oscilloscope trace of current

Example (cont.)

steady state current: 0( , ) 0.016 [A]L g

VI z

R R

0 ( , ) 0.016 75 1.20[A]Z I z

1 2 3 4 5

1

1.5

1.125 1.1875

1.25

30 4( , )Z I L t

[ ]t ns

2.75 [ns]

3.25 [ns]

0.75 [ns]

1.25 [ns]

Example (cont.)

0

1

2

3

4

5

6

1

1

2

1

4

1

16

1

32

0

1

1.5

1.25

1.125

1.1875

1

64

1.203125

[ns]t

1

8

1.21875

1

2Ig 1

2IL

[m]z

current

3.75 [ns]t

L/4

snapshot of current

[m]z

4

L

1.1251.25

0 ( , 3.75 [ns])Z I z

2

L 3

4

LL

Example

Reflection and Transmission Coefficient at Junction Between Two Lines

z = 0

RL = 50 []

z = L

V0 = 4 [V]

t = 0

+

-

Rg = 225 []

gV t Z0 = 75 [] Z0 = 150 []

T = 1 [ns]T = 1 [ns]

150 75 1

225 34

13

J

J JT

75 150 1

225 32

13

J

J JT

junction

KVL: TJ = 1 + J(since voltage must be continuous across the junction)

Example (cont.)

0

1

2

3

4

1

2g

1 [V]

0.3333 [V]

0.1667[V]

0[V]

1 [V]

1.3333 [V]

1.5000 [V]

[ns]t

1

2L

1.3333 [V]

0.6667 [V]

0 [V]

1.3333 [V]

0.6667 [V]-0.4444 [V] 0.0555 [V]-0.3888 [V]

1.1111 [V] 1.1111 [V]

0.2222 [V] 0.2222 [V] 0.4444 [V]

150 75 1

225 32

13

J

J JT

41

375 150 1

225 3

J J

J

T

Bounce Diagram for Cascaded Lines

z = 0

RL = 50 []

z = L

V0 = 4 [V]

t = 0

+

-

Rg = 225 []

gV t Z0 = 75 [] Z0 = 150 []

T = 1 [ns]T = 1 [ns]

[m]z

Pulse Response

Superposition can be used to get the response due to a pulse.

0gV t V u t u t W

t

gV t 0V

W

We thus subtract two bounce diagrams, with the second one being a shifted version of the first one.

RL

z = 0 z = L

Vg (t)+

-

Rg

gV t Z0+-

Example: Pulse

RL = 25 []

z = 0.75 L

z = 0 z = L

Rg = 225 []

Z0 = 75 [] T = 1 [ns]Vg (t) +-

W = 0.25 [ns]

V0 = 4 [V]

t

gV t 0V

W

1 [V]V

Example: Pulse

-

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0 [V]

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

0.75 [ns]

1.25 [ns]

2.75 [ns]

3.25 [ns]

4.75 [ns]

5.25 [ns]

1.25

2.25

3.25

4.25

5.25

6.25

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0 [V]

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[m]zW

0.25

1.00 [ns]

1.50 [ns]

3.00[ns]

3.50[ns]

5.00 [ns]

5.50 [ns]

z = 0.75 L

W = 0.25 [ns]

Example: Pulse (cont.)

oscilloscope trace of voltage

[ns]t1 2 3 4 5

1 [V]

0.5 [V]

0.125 [V]

0.25 [V]

34( , )V L t

0.0625 [V]

0.03125 [V]

RL = 25 []

z = 0.75 L

z = 0 z = L

Rg = 225 []

Z0 = 75 [] T = 1 [ns]Vg (t) +-

W = 0.25 [ns]

V0 = 4 [V]

t

gV t 0V

W

Example: Pulse (cont.)

-

t = 1.5 [ns]

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[m]zW

L / 4

0

1

2

3

4

5

6

1

2L 1

2g

1 [V]

1[V]

2

1[V]

4

1[V]

8

1[V]

16

1[V]

32

0

1 [V]

0.5 [V]

0.25 [V]

0.375 [V]

0.4375 [V]

0.40625 [V]1

[V]64

0.390625 [V]

[ns]t

1.25

2.25

3.25

4.25

5.25

6.25

0.25

L / 2

Example: Pulse (cont.)

snapshot of voltage

[m]z

0.5 [V]

( , 1.5 [ns])V z

L0.5L 0.75L0.25L

t = 1.5 [ns]

RL = 25 []

z = 0 z = L

Rg = 225 []

Z0 = 75 [] T = 1 [ns]Vg (t) +-

W = 0.25 [ns]

V0 = 4 [V]

t

gV t 0V

W

Capacitive Load

C

z = 0 z = L

V0 [V]

t = 0

+

-

Z0

gV t Z0

Note: The generator is assumed to be matched to the transmission line for convenience (we wish to focus on the effects of the capacitive load).

0g Hence

The reflection coefficient is now a function of time.

Capacitive Load

CL

z = 0 z = L

V0 [V]

t = 0

+

-

Z0

gV t Z0

0t

T

2T

3T

L t0g

V

L t V

0V

1 L t V

t

z0

00 0

0 / 2

ZV V

Z Z

V

Capacitive Load (cont.)

CL

z = 0 z = L

V0 [V]

t = 0

+

-

Z0

gV t Z0

At t = 0: capacitor acts as a short circuit. 0 1L

At t = : capacitor acts as an open circuit. 1L

Between t = 0 and t = , there is an exponential time-constant behavior.

/1 1 1 ,t TL t e t T

0 LZ C

/0 tF t F F F e

Time-constant formula: Hence we have:

(valid for t < T)

Capacitive Load (cont.)

CL

z = 0 z = L

V0 [V]

t = 0

+

-

Z0

gV t Z0

0t

T

2T

3T

L t0g

V

L t V

0V

1 L t V

t

z

t

V(0,t)

T 2T

V0 / 2

V0 steady-state

Inductive Load

At t = 0: inductor as a open circuit. 0 1L

At t = : inductor acts as a short circuit. 1L

Between t = 0 and t = , there is an exponential time-constant behavior.

/1 1 1 ,t TL t e t T

0/LL Z

LL

z = 0 z = L

V0 [V]

t = 0

+

-

Z0

gV t Z0

(valid for t < T)

Inductive Load (cont.)

0t

T

2T

3T

L t0g

V

L t V

0V

1 L t V

t

z

t

V(0,t)

T 2T

V0 / 2

V0

steady-state

LL

z = 0 z = L

V0 [V]

t = 0

+

-

Z0

gV t Z0

Time-Domain Reflectometer (TDR)

This is a device that is used to look at reflections on a line, to look for potential problems such as breaks on the line.

z = 0

load

z = L

V0 [V]

t = 0

+

-

Z0

gV t Z0

(matched source)

t

V (0, t)

resistive load, RL > Z0

t

V (0, t)

resistive load, RL < Z0

Time-Domain Reflectometer (cont.)

z = 0

load

z = L

V0 [V]

t = 0

+

-

Z0

gV t Z0

(matched source)

capacitive load inductive load

t

V (0, t)

t

V (0, t)

Example of a commercial product

The 20/20 Step Time Domain Reflectometer (TDR) was designed to provide the clearest picture of coaxial or twisted pair cable lengths and to pin-point cable faults. 

AEA Technology, Inc.

Time-Domain Reflectometer (cont.)